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Abstract

Background: Ubiquitination, which is also called “lysine ubiquitination”, occurs when an ubiquitin is attached to
lysine (K) residues in targeting proteins. As one of the most important post translational modifications (PTMs), it
plays the significant role not only in protein degradation, but also in other cellular functions. Thus, systematic anatomy
of the ubiquitination proteome is an appealing and challenging research topic. The existing methods for identifying
protein ubiquitination sites can be divided into two kinds: mass spectrometry and computational methods. Mass
spectrometry-based experimental methods can discover ubiquitination sites from eukaryotes, but are time-consuming
and expensive. Therefore, it is priority to develop computational approaches that can effectively and accurately identify
protein ubiquitination sites.

Results: The existing computational methods usually require feature engineering, which may lead to redundancy and
biased representations. While deep learning is able to excavate underlying characteristics from large-scale training data
via multiple-layer networks and non-linear mapping operations. In this paper, we proposed a deep architecture within
multiple modalities to identify the ubiquitination sites. First, according to prior knowledge and biological knowledge,
we encoded protein sequence fragments around candidate ubiquitination sites into three modalities, namely raw protein
sequence fragments, physico-chemical properties and sequence profiles, and designed different deep network layers to
extract the hidden representations from them. Then, the generative deep representations corresponding to three modalities
were merged to build the final model. We performed our algorithm on the available largest scale protein ubiquitination sites
database PLMD, and achieved 66.4% specificity, 66.7% sensitivity, 66.43% accuracy, and 0.221 MCC value. A number of
comparative experiments also indicated that our multimodal deep architecture outperformed several popular protein
ubiquitination site prediction tools.

Conclusion: The results of comparative experiments validated the effectiveness of our deep network and also displayed that
our method outperformed several popular protein ubiquitination site prediction tools. The source codes of our proposed
method are available at https://github.com/jiagenlee/deepUbiquitylation.
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Background
Ubiquitin is discovered by Goldstein et al. [1] in 1975,
which is a small protein consists of 76 amino acids [2].
Under the effects of E1 activation, E2 conjugation and
E3 ligation enzymes, ubiquitin may conjugate to a sub-
strate protein on a certain lysine residue [3, 4]. ubiquiti-
nation is one of the most important reversible protein
posttranslational modifications (PTMs) and plays the
significant roles in protein degradation and other cellular
functions [5, 6]. The ubiquitination system is also associ-
ated with immune response, cellular transformation and
inflammatory response [7].
Owing to its importance and complexity of ubiquitina-

tion, recognizing potential ubiquitination sites contributes
to obtaining a deep understanding of protein regulation
and molecular mechanism. Traditional experimental tech-
niques such as CHIP-CHIP analysis and mass spectrometry
are time-consuming, costly and laborious, while com-
putational approaches that could effectively and accurately
identify protein ubiquitination sites are urgently needed.
Some computational methods have been developed for

the identification of protein ubiquitination sites. Huang et
al. [8] developed a predictor called UbiSite, which fused
multiple features such as amino acid composition (AAC),
positional weighted matrix (PWM), position-specific scor-
ing matrix (PSSM), solvent-accessible surface area (SASA)
and MDDLogo-identified substrate motifs into a two-layer
Support Vector Machine (SVM) model to predict protein
ubiquitination sites. Nguyen et al. [9] also applied SVM to
build the prediction model, using three features including
amino acid composition, evolutionary information and
amino acid pair composition. Additionally, the motif dis-
covery tool, MDDLogo, was also used in their predictor.
Qiu et al. established the tool iUbiq-Lys [10], which
adopted sequence evolutionary information and gray sys-
tem model, to identify protein ubiquitination sites. Chen
constructedUbiProber [11] to combine sequence informa-
tion, physico-chemical properties and amino acid compos-
ition with SVM, In which they respectively trained general
model for a eukaryotic proteome and species-specific
model for three species-specific proteomes. ESA-UbiSite
[12] proposed by Wang et al., introduced physico-chem-
ical properties into SVM. But they applied evolutionary
screening algorithm (ESA) to select effective negative
dataset from the whole dataset.
These existing machine learning approaches have good

performance on small-scale data, nevertheless, there are
still some challenges for large-scale protein ubiquitina-
tion site prediction: (1) Weakness of artificially designed
features. All existing methods utilized feature enginee-
ring in feature extraction stage, which relied on expert
knowledge, and usually lead to incomplete and biased
feature vectors [13, 14]. (2) Heterogeneity among fea-
tures. Almost existing prediction tools chose to fuse

multiple features to improve the accuracy, but neglected
the intrinsic heterogeneity among them. (3) Unbalanced
distributions between positive and negative samples [15].
In the whole proteome, only a small part of lysine resi-
dues can be attached to ubiquitin, which determines
protein ubiquitination site prediction as an extreme un-
balanced issue. Existing methods do not perform well in
identifying potential protein ubiquitination site under
such unbalanced circumstance. Deep learning as a
trendy machine learning technique for large scale data is
considered promising to solve these problems. It pro-
vides multiple-layer networks and non-linear mapping
operations to excavate deep characteristics and reveal
their internal association, especially on large-scale data.
The deep-learning framework detects potential complex
patterns from raw input signals, and generates
homogenous deep representations for classification
tasks. A variety of deep learning networks have been ap-
plied to genomic and proteomic analyses successfully
[16–18]. However, deep learning technique is yet to
utilize to predict protein ubiquitination sites.
In this paper, we established a multimodal deep archi-

tecture by using three different kinds of protein modal-
ities, namely raw protein sequence fragments, selected
physico-chemical properties of amino acids, and corre-
sponding position-specific scoring matrix (PSSM). In the
deep architecture, we built multiple convolution layers
for detecting raw information from protein sequence
representations, and combined the physico-chemical
properties of amino acids with the help of some stacked
fully connected layers, and brought other multiple con-
volution layers to explore the evolutionary profile toward
potential ubiquitination sites. Then, such three sub-nets
were trained separately so that these multiple modalities
were transformed into more compatible representations
for combination to predict unseen protein ubiquitination
sites. As far as we know, this is the first published work
that employs deep architecture to protein ubiquitination
site prediction.

Methods
Large scale dataset collection
For implementing the large scale prediction of ubiquiti-
nation sites, we collected data from Protein Lysine
Modification Database 3.0 version (PLMD) consisting of
25,103 proteins with 121,742 ubiquitination sites. PLMD
is a specialized dataset containing 20 types of protein ly-
sine modifications, and extends from CPLA 1.0 dataset
and CPLM 2.0 dataset. As we know up to now, this is
probably the largest-scale available protein ubiquitina-
tion database, and is never referred in any other re-
searches of protein ubiquitination site prediction. For
the sake of avoiding overestimation caused by homolo-
gous sequences, we utilized CD-HIT tool [19] to screen
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the similar protein sequences by 40% similarity in all
data, and finally extracted 60,879 annotated protein ubi-
quitination sites from 17,406 proteins. Moreover, these
protein sequences were divided into training dataset and
testing dataset by random partition for constructing pre-
diction model. Thus, there are totally 12,100 protein se-
quences with 54,586 ubiquitylated sites in training
dataset and 1345 proteins with 6293 ubiquitylated sites
in the independent testing dataset.
We used a conventional way to segment protein frag-

ments with central lysine residues and fixed window size
of 2n + 1, in which n was the number of upstream or
downstream flanking amino acids around the targeting
lysine residue. Furthermore, to control the interference
that some negative training samples may be homologous
to positive training samples, the tool CDHIT- 2D was
utilized to remove the negative samples with 50% simi-
larity to positive samples [8]. For building unbiased
models, a relative small proportion of 30% from training
samples were extracted as validation samples by random
sampling in every epoch of training process. The details
of experimental datasets are shown in Table 1.

Encoding of protein fragments
In this paper, we employed three types of encoding
schemes to represent the protein sequence fragments.

1) One hot vector: every sample included m amino
acids was constructed as an m × k 2-dimensional
(2D) matrix, using a k dimensional zero vector with
a one corresponding to the amino acid at the index
of protein sequence. We assigned 0.05 to the posi-
tions whose left or right neighboring amino acids
cannot fit the window size. Therefore, each protein
fragment was mapped into a sparse and exclusive
coding within its relative position information.

2) Physico-chemical properties: Prior researches [15, 20]
demonstrated that there were strong correlations
between physico-chemical properties of amino acids
and ubiquitination sites. Many researches introduced
physico-chemical properties in diverse protein post-
translation modification site predictions such as
acetylation, phosphorylation and sulfation [11]. These

physico-chemical properties corresponding to each
amino acid can be found in an AAindex database
[21]. It recorded 544 physico-chemical properties
which would lead to excessive model parameters in
deep architecture [22]. To reduce redundancy infor-
mation and control complexity of model, we only se-
lect top thirteen physico-chemical properties that
have been validated strongly related to ubiquitination
in literature [11], and then a m × 13 2D matrix was
formulated as another encoding modality for each
sample. The details of these selected physio-chemical
properties are shown in Table 2.

3) PSSM Profile: In this paper, we also employed
PSSM to represent the evolutionary profile of the
protein sequence. We referred the non-redundant
database Swiss-Prot as the search source, generating
the raw PSSMs of all protein sequences by utilizing
the Basic Local Alignment Search Tool (BLAST)
with the parameter “-j 3 -h 0.001” [23]. In one raw
PSSM, a 20 dimensional vector demonstrated ap-
proximately the preference of 20 types of amino
acids at each position of protein sequence. In order
to focus on the potential ubiquitination sites, we ex-
tracted the PSSM fragment corresponding to the
window size m from the PSSM matrix from the
whole protein sequence, which recorded the
position-specific evolutionary profiles of protein
fragment. Hence, we obtained an m × 20 2D matrix
as PSSM encoding for each protein fragment.

Multimodal deep architecture construction
As Fig. 1 shown, we could find that our deep architec-
ture includes three parts of sub-nets dealing separately
with the above three kinds of input feature encodings.

Table 1 Details of training dataset, validation dataset and
independent testing dataset

Data set Description

Number of
sequences

Number of
positive
data

Number of
negative
data

Note

Training 12,100 7733 250,054 Random partitioning
in each training
iterationValidation 1547 50,010

Testing 1345 6293 46,080 Reservation

Table 2 The selected physico-chemical properties

Physico-chemical property Description

EISD860102 Atom-based hydrophobic moment

ZIMJ680104 Isoelectric point

HUTJ700103 Entropy of formation

KARP850103 Flexibility parameter for two rigid neighbors

JANJ780101 Average accessible surface area

FAUJ880111 Positive charge

GUYH850104 Apparent partition energies calculated from
Janin index

JANJ780103 Percentage of exposed residues

JANJ790102 Transfer free energy

PONP800102 Average gain in surrounding hydrophobicity

CORJ870101 NNEIG index

VINM940101 Normalized flexibility parameters, average

OOBM770101 Average non-bonded energy per atom
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After that, we chose to merge their output layers for
combining the three modalities [24].
For the purpose of precisely detecting implicit

sequence-type features, we used 3 hidden layers of one
dimensional Convolution Neural Network (1D CNN) to
process one hot vector. Because of its inherent sparsity
[25], a main function of CNN is to transform one hot
vector into a given range of feature maps as detected
sequential information. When this hierarchical convolu-
tion process ended, all newly generated feature maps
were merged together into three fully connected dense
layers, which may produce lower dimensional feature
representations [26]. We found that this structure was
impactful to detect sequential feature representations.
For physico-chemical properties, a Deep Neural Net-

work (DNN) with three dense layers was introduced to

generate their deep representations [27]. Physico-chemical
properties reflected characteristic of proteins from various
prospective, so that fully connected DNN structure that
interconnects all these factors was utilized for their joint
effect and useful combination. .
For the input modality of PSSM, we mainly applied 1D

CNN with 3 hidden layers to detect potential inform-
ative descriptions among amino acids through evolution
to the protein fragment. Differing from the sub-net of
one hot vector, the trans-positioned PSSM vector was
inputted into another three layers 1D CNN to obtain
deep evolutionary characterization among different se-
quence positions. Then the feature maps involving two
1D CNNs were jointly merged to produce completely
PSSM representations by three following fully connected
dense layers.

Fig. 1 The structure of the proposed deep architecture
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Next, the output states of three sub-nets are
merged into a mixed representation for fusing the
three deep representations of multiple input moda-
lities at higher level, where the mutual heterogeneity
among their raw shallow representations was elimi-
nated. This part of structure composed of dense
layers and a 2-state output layer for implementing
binary classification activating by softmax function.
The weights between merged layer and output layer
may be regarded as the contributions from three in-
put modalities. All hyper-parameters of our deep
architecture are detailed in Table 3.
For controlling the training process under balanced

data, one training strategy was introduced to our
model. Considering the considerable model parameters
in three subnets, each subnet was respectively trained
to guarantee the optimality of their weights, and then
reloaded these trained weights as initialization to the
whole multi-modal deep architecture. In the following
training process of whole network, overall weights in-
cluding the weights of last merged layer would be
fine-tuned until they achieved global optimum. We im-
plemented the training procedure of the whole deep

architecture and subnets following the bootstrapping
strategy. Let pos and neg represented the number of
positive samples and negative samples respectively.
Because of relative small size of positive samples, pos
negative samples were randomly chosen to build ba-
lanced training dataset with all positive samples in each
bootstrapping iteration [28, 29]. Therefore, all negative
samples were divided into N = ⌊neg/pos⌋ bins, and our
deep-learning network would be trained N times. The
early stop rule [30] was introduced to control epoch
numbers in our work, and the training process stopped
automatically by the time the observed metric had not
changed any more for a default epoch iterations (50 in
this study).
We established this deep architecture using Keras

1.1.0 with Theano 0.9, and ran it on a graphic processing
unit (GPU) GTX1080Ti. Due to the advantage of GPU
computations and no need of feature engineering in
modeling, the average time for predicting ubiquitination
sites in a protein was in a few minutes, although it took
about 2 h to train the model on 12,100 protein se-
quences. Nevertheless, the training process only needed
to conduct once.

Table 3 The hyper-parameters of the proposed deep architecture

Subnet Layer Hyper-parameters

Activation function Sizec Filters Drop-out

One hot vector 1D Convolution softsign 2 200 0.4

softsign 3 150 0.4

softsign 5 150 0.4

softsign 7 100 0.4

Densea relu 256 – 0.3

relu 128 – 0

relu 128 – –

Phsico- chemical properties Dense softplus 1024 – 0.2

softplus 512 – 0.4

softplus 256 – 0.5

relu 128 – –

PSSM profile 1D Convolution relu 1 200 0.5

relu 8 150 0.5

relu 9 200 0.5

1D Convolutionb relu 1 200 0.5

relu 3 150 0.5

relu 7 200 0.5

Dense relu 128 – 0.3

relu 128 – 0

Merged representations Dense softmax 2 – 0
aDense layers represent for the fully connected layers in keras
bThe layers were designed for trans-positioned PSSM profile
cThe size of convolution layers means the kernel sizes, and the size of Dense layers denotes the number of hidden states
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Result and discussion
Performance of the multimodal deep architecture
Window size for cutting protein fragments is an important
variable for protein ubiquitination sites [31], owing to its
direct effect on the representation and information invol-
ving in modeling. We designed experiments to search for
feasible values of window size for our deep architecture.
The attempts started with the window length 7 and ended
at the window length 61(n was from 3 to 30). For each
candidate, protein sequence fragments cutting from
protein sequence were encoded into three types of input
modality, to train corresponding deep network one by
one. We displayed the performance of different window
sizes using one hot vector, physico-chemical properties
and PSSM profile on the validation samples in Fig. 2.
In Fig. 2, we can see that when window size reached

to 49, the three kinds of modalities achieved comparable
accuracies to other candidates. This conclusion was
inconsistent with some existing studies [8, 11], which im-
plied that our deep architecture needed longer sequence
fragments to offer potential long distance information.

Subsequently, we trained three subnets using the three
modalities including one hot vector, physico-chemical
properties and PSSM profile. The generative ROC (re-
ceiver operating characteristic) curves and precision-recall
curves of uni-modal subnets and multi-modal deep net-
work were plotted in Fig. 3.
Benefiting from the data-driven combination way, the

whole multi-modal network achieved better performance
than any subnets of uni-modality. The AUC (area under
the ROC curves) and mean precision (area under the
precision-recall curves) of multi-modal deep network
reached 0.73 and 0.24 as shown in Fig. 3. Due to the
pre-training of three subnets, the optimal weights of trained
subnets for one hot vector, physico-chemical property and
PSSM profile would be searched in advance for combin-
ation. Thus, the applicable weights of whole multi-modal
deep architecture was able to appear by the following
supervised fine tune. Figure 3 also indicated that one hot
vector outperformed among three input modalities. It sug-
gested that deep learning architecture may detect effective
potential features hidden in raw protein sequences.

Fig. 3 ROC and precision-recall curves comparing our multi-modal network and subnets of uni-modality

Fig. 2 The accuracies of validation samples using different window sizes on three modalities
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In order to exhibit the rationality and validity of our
deep architecture, the discrimination among testing
samples was plotted in 2D coordinate using t-SNE [32]
as Fig. 4 shown. It obviously showed that positive
samples and negative samples tended to be separated
after multilayer processing, which implied that our
multi-modal deep architecture may detect distinguishing
representations from three different modalities and fuse
them to further enhance their discriminative ability.

Comparisons with other classifiers
In the next stage, we would like to compare our deep
architecture with two most popular used protein ubiqui-
tination site prediction classifiers: SVM and Random
Forest. For fair comparisons, all three types of input
modalities, namely one hot vector, physico-chemical
properties, and PSSM profile were used to train SVM
model and Random Forest model severally. In addition,

all the three modalities were also concatenated into a
vector called merged feature, which was sent to train an-
other model independently. Considering the unbalanced
training samples, we randomly extracted the same num-
ber of positive samples and negative samples to form
training data in each training process. All these models
were trained with 10-fold cross-validation using the
same experimental protocol. Their results were com-
bined with those of our deep architecture in Table 4.
Table 4 indicated that our deep architecture was su-

perior to other models. The SVM and random forest
models using uni-modal obtained general high specificity
and a low sensitivity. It can be concluded that these
traditional machine learning modeling approaches were
incapacity of generating discriminative features from raw
inputs. That is the reason why existing tools did not choose
to input raw sequence fragments and properties, while fur-
ther transformed these modalities into meaningful feature

Table 4 Comparative results with SVM classifier and Random Forest

Model Input Metrics

Accuracy Sensitivity Specificity MCC

SVM One hot vector 59.65% 46.69% 61.42% 0.054

Physico-chemical property 57.36% 43.84% 59.22% 0.051

PSSM 55.71% 44.29% 57.84% 0.047

Merged 56.92% 44.34% 58.97% 0.049

Random Forest One hot vector 57.27% 45.01% 58.94% 0.026

Physico-chemical property 56.55% 47.40% 57.80% 0.034

PSSM 54.19% 44.98% 56.32% 0.021

Merged 56.52% 46.36% 58.83% 0.024

Our deep architecture One hot vector 64.15% 64.41% 64.08% 0.189

Physico-chemical property 61.84% 60.97% 61.95% 0.151

PSSM 56.82% 58.73% 56.57% 0.099

Merged 66.43% 66.67% 66.40% 0.221

Fig. 4 t-SNE visualization of (a) input layers and (b) merged layer
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vectors, i.e. amino acid composition, for modeling.
Meanwhile our deep architecture had the ability of detec-
ting useful information from raw sequence fragments with-
out feature engineering. The same situation occurred in the
experiments of multi-modalities among different, which
revealed that our deep architecture may carry out
multi-modal fusion in a conductive way. The overall
estimator Matthews correlation coefficients (MCC) of the
traditional machine learning models were much lower than
that of our architecture, which reflected that our bootstrap-
ping training strategy may consolidate the generalization of
our architecture on unbalanced training dataset from
another respective.

Comparisons with other protein Ubiquitylation site
prediction tools
We compared our proposed with several popular protein
ubiquitination site prediction tools namely Ubisite [8],
iUbiq-Lys [10], UbiProber [11], and ESA-UbiSite [12] by
submitting our testing dataset to their websites. The
assessed metrics were calculated according to the results
from these websites in Table 5.
From Table 5, it can be found that our deep architec-

ture yielded an acceptable performance, including
66.43% accuracy, 66.7% sensitivity, 66.4% specificity, and
0.221 MCC value with a 0.5 decision threshold. With

regard to the unbalanced negative distribution of testing
samples, our deep architecture showed unbiased pre-
diction results in terms of equilibrium sensitivity and
specificity. Our highest sensitivity among all tools
demonstrated that our deep architecture can identify po-
tential protein ubiquitination sites more effectively.
Moreover, we plotted the ROC and precision-recall
curves with AUC and mean precision of Ubisite,
ESA-Ubisite and our model in Fig. 5. The reason why
the ROC of other tools were absent in Fig. 5 was that
these websites only returned predicted decisions instead
of predicted scores.
Figure 5 exhibited that our model had evident overall

advantages in terms of ROC and precision-recall carves.
It proved high confidence of deep architectureon
large-scale protein ubiquitination site data. It is worth
noting that under a certain minor recall, Ubisite achieved
higher precision among the three methods,probably
because Ubisite introduced more prior knowledge from
positive training samples to its classification model. It di-
vided positive training samples into 12 subgroups accor-
ding to the clustered results of significant substrate motifs
using the MDDLogo tool [33]. And then it trained 12
sub-models using the 12 subgroups of positive training
samples and the same number of negative samples to
implement a boosting classification. Such classification
models emphasized the feature patterns of positive sam-
ples, and guided to detect potential homologous protein
fragments with high similarity to its positive training
samples. Consequently, it resulted in better precision than
that of our deep architecture only when the recall was less
than 3.89%.
Furthermore, a series of extensive comparative experi-

ments were carried out on independent testing datasets.
We tried our best to collect the data sets used in the
above mentioned three literatures. CPLM [34],
UniprotKB/Swiss-Prot, hCKSAAP [35]. However, due to
data release upgrade, and random division in their

Fig. 5 The ROC and precision-recall curves comparing proposed deep architecture and other protein ubiquitination site prediction tools

Table 5 Comparison of independent testing performance with
other ubiquitination site prediction tools

Tool Metrics

Accuracy Sensitivity Specificity MCC

ESA-Ubisite 61.26% 46.14% 63.34% 0.064

UbiProber 55.06% 62.40% 54.05% 0.107

iUbiq-Lys 84.63% 3.35% 96.88% 0.005

Ubisite 73.63% 29.62% 79.64% 0.073

Our deep architecture 66.43% 66.67% 66.40% 0.221
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experiments, we cannot reappear the identically experi-
mental data in the literatures. By inputting these collect-
ive datasets into our deep architecture, we can observe
their prediction results as shown in Table 6. Our deep
architecture also performed effectively and powerfully
on these collective datasets.
Even though our deep learning architecture promoted

the performance of protein ubiquitination site prediction
on large scale data, there is still room for improvement.
In the future, we would like to continue studying the
optimization strategyfor guiding the selection of deep
learning hyper-parameters, and cooperate with biologists
to upgrade the model more biologically interpretable
and reliable.

Conclusion
In this paper, a multimodal deep architecture was pro-
posed method to predict large scale protein ubiquitina-
tion sites. Three different modalities include one hot
vector, physico-chemical properties and PSSM, were
employed to build the predition model. Comparative re-
sults on the available largest scale protein ubiquitination
site database PLMD validated the effectiveness of our
method. From the t-SNE visualization, it can be found
that our deep architecture can generate powerful dis-
criminative features to distinguish ubiquitination sites
from non-ubiquitination sites in protein sequences. The
success of our method is mainly due to the data-driven
feature detection in deep learning, the multimodal fu-
sion of deep representations, and the bootstrapping al-
gorithm. Our source codes are freely available at https://
github.com/jiagenlee/deepUbiquitylation.
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