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Transcriptional adaptation of olfactory sensory
neurons to GPCR identity and activity
Luis Flores Horgue1,3, Alexis Assens1,3, Leon Fodoulian 1,2, Leonardo Marconi1, Joël Tuberosa1,

Alexander Haider1, Madlaina Boillat1, Alan Carleton 2,4✉ & Ivan Rodriguez 1,4✉

In mammals, chemoperception relies on a diverse set of neuronal sensors able to detect

chemicals present in the environment, and to adapt to various levels of stimulation. The

contribution of endogenous and external factors to these neuronal identities remains to be

determined. Taking advantage of the parallel coding lines present in the olfactory system,

we explored the potential variations of neuronal identities before and after olfactory

experience. We found that at rest, the transcriptomic profiles of mouse olfactory sensory

neuron populations are already divergent, specific to the olfactory receptor they express, and

are associated with the sequence of these latter. These divergent profiles further evolve in

response to the environment, as odorant exposure leads to reprogramming via the mod-

ulation of transcription. These findings highlight a broad range of sensory neuron identities

that are present at rest and that adapt to the experience of the individual, thus adding to the

complexity and flexibility of sensory coding.
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Mammals use various sensory tools to build a repre-
sentation of the outside world. A precise and robust
representation being critical for survival and repro-

duction, we evolved a considerable number of different receptors
able to respond to external stimuli. This is particularly true for
chemical recognition, for which most of us benefit from large
odorant chemoreceptor gene repertoires, that range in the hun-
dreds in humans and dogs, up to over a thousand in mice and
elephants1–3. Our understanding of olfactory information coding
is based on the expression of a single chemoreceptor gene, sto-
chastically chosen from a single allele, in each olfactory sensory
neuron (OSN); this is referred to as singular expression4–7. Given
the millions of OSNs present in a nasal cavity, large neuronal
populations with identical agonist receptivity coexist with other
populations that exhibit different response profiles. Olfactory
receptors being able to bind various molecules and a volatile to be
recognized by different receptors, to any given olfactory stimulus
corresponds a specific pattern of activation. The term combina-
torial coding has been coined to describe this encoding of che-
mical identities8,9. The odorant-dependent activation map is not
just a concept, but is directly observable in the olfactory bulb,
where axonal projections of OSNs coalesce into neuropil-rich
structures, the glomeruli, that are each innervated by a specific
sensory population. Following this first relay of olfactory pro-
cessing and after being transmitted to cortical areas, olfactory
information often translates into a percept, a smell. A series of
parallel and invariable coding lines, defined by the expressed
odorant receptor (OR) (and a few guidance molecules that may
be differentially expressed between populations), is thus at the
heart of the way we understand olfaction.

The ability of neurons to adapt, to respond dynamically to the
environment, both during development and later, is critical10. In
the central nervous system, adaptive and compensatory
mechanisms that control neural activity, for example through the
modulation of synaptic efficacy and membrane excitability, allow
homeostasis maintenance within the system upon
perturbations11. Various mechanisms answering this need have
been selected during evolution, among which the repression or
activation of specific genes10,12,13. In a peripheral sensory tool
such as the olfactory system, which is in direct contact with highly
variable environments, rapid and long-term sensory adaptation
and compensatory mechanisms may be of particular importance.
Activity-regulated transcription in the olfactory system has been
addressed in the past by various groups in the context of axon
guidance mechanisms, OSN survival and adaptation to the
environment14–24. Almost without exception, these approaches
have involved the silencing of neuronal activity via naris occlu-
sion or activity mutants, thus adding various confounding factors
to odorant-induced activity. Due to a lack of technology available
at the time, most of these approaches explored the system at the
level of the whole olfactory mucosa, precluding an evaluation of
the response to a specific ligand of specific neurons or specific
neuronal populations expressing a given OR. We recently
reported that following in vivo odorant exposure of OSNs in the
mouse, a decrease in the amount of mRNA encoding for the OR
gene expressed by the activated neurons takes place25. Whether
this odorant-induced decrease of mRNA concentration is limited
to the receptor mRNA, or whether it is part of a broader activity-
induced transcriptional alteration that could modulate the neu-
ron’s genetic identity, remains to be determined.

In this work, we explored the transcriptional identities of
olfactory neuronal populations and their modulation upon acti-
vation. We characterized the transcriptomes of several thousand
mouse OSNs and uncovered a variability of profiles, each defined
by the differential expression of numerous genes, and dependent
on the expressed chemoreceptor. Following neuronal activation,

we found that a second layer of transcriptome variability is added
to this initial landscape. It results from the transcriptional mod-
ulation of hundreds of genes and represents a potential tool to
adapt sensory responses to upcoming signals.

Results
Variable transcriptomes among OSN populations at rest. The
main determinant of an OSN identity is the OR gene it expresses.
In addition to this functional characteristic, a few genes have been
described to be unequally expressed in different olfactory popu-
lations. These latter are however thought to be shared by large
numbers of OSN populations (that is populations expressing
different ORs), and to be involved in the topographic organiza-
tion of the olfactory sensory mucosa, in which neurons expressing
a given OR are restricted to specific zones.

As an initial approach to determine potential differences in the
identity of the various sensory neurons populating the main
olfactory epithelium, we performed a single-cell RNA-seq of
dissociated cells extracted from the nasal cavity of 8-week-old male
mice (Fig. 1a). The data were clustered and visualized on a UMAP
plot (Fig. 1b and Supplementary Fig. 1). We obtained a total of
15,859 cells, from which mature OSNs (expressing the Omp and
Adcy3 genes) were readily distinguishable from immature neurons
and non-neuronal cells (Fig. 1b and Supplementary Fig. 2a), in
agreement with previous observations26. A total of 9,539 mature
OSNs (composed of 798 olfactory sensory populations of at least
three neurons (Supplementary Fig. 2d)) expressing the olfactory
marker gene Omp were then selected, and clustered again. Specific
subclusters were observed (Fig. 1c and Supplementary Fig. 2b), that
were defined by the expression of marker genes (Calb2, Cd36 and
others), and that showed a clear separation between sensory
neurons located ventrally (Nfix+) and dorsally (Nqo1+) in the
nasal cavity (OSNs expressing specific ORs are unequally scattered
across the nasal epithelium27). We then explored the potential
transcriptional proximity of neurons expressing the same OR.
Their positions were visualized on the UMAP plot, which revealed
a striking grouping of each of the different neuronal populations
(Fig. 1d and Supplementary Fig. 4), ranging from dense
transcriptomic clustering of some populations (such as those
expressing Olfr354 or Olf553), to populations exhibiting a larger
variance in gene expression (such as Olfr1183). To quantify this
observation, we measured the pairwise transcriptomic distances
(computed on the PC space used for clustering and UMAP plot
generation) between pairs of sensory neurons expressing the same
receptor (intra) and found that neurons expressing the same
receptor were significantly more similar transcriptionally than
those expressing different receptors (inter) (Fig. 1e, Supplementary
Figs. 6 and 7). To determine the potential role played by the
expression of the ORs themselves in this clustering, this latter was
performed without taking the OR gene expression data into
account. Remarkably, the grouping of populations expressing the
same chemoreceptor, irrespective of whether the analysis was
performed on the whole sensory population or a given subcluster
(Fig. 1e and Supplementary Fig. 5), was maintained. These results
were stable over a wide range of number of top PCs chosen for
downstream analyses (Supplementary Fig. 3). To explore this OR-
associated population specificity, we identified specific genes that
were differentially expressed between the different neuronal
populations (Fig. 1f and Supplementary Fig. 2c). These included
genes that were either transcribed or whose transcripts were absent
in the different populations such as Cidea, or that were expressed in
a graded manner across most populations, such as S100a5. These
transcriptomic profiles were not merely reflecting different general
types of sensory neurons, since they were not only observed to
be different between subclusters, but also within subclusters
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(Fig. 1g, h). At rest, that is without active olfactory stimulation, a
transcriptomic code thus characterizes each OR-defined
population.

Transcriptomic proximity versus olfactory receptor identity.
What may determine the transcriptional distance between two
neuronal populations expressing different ORs? Considering OSN
maturation as a series of differentiation steps that at each incre-
ment determine more and more specific identities26,28, tran-
scriptomic distances between two mature sensory neuron
populations may reflect how many of these steps they shared. If
transcriptomic identity is largely determined prior to odorant
gene choice, the closeness between two populations should be
mirrored by their use of the same OR gene cis-regulatory element.
These elements are known to be necessary for the choice of

specific sets of OR genes and control small clusters of adjacent
OR genes29–32. Alternatively, or in addition to this first hypoth-
esis, one could envisage a direct role played by the receptor itself,
which may define a basal activity level in neurons for example,
and a corresponding transcriptomic profile.

We tested the first hypothesis by evaluating whether OR genes
sharing a common enhancer are transcriptionally closer to each
other than to those under the control of other cis-regulatory
elements. We took advantage of two well defined cis-regulatory
elements acting on mouse OR genes (the H and P elements),
whose OR gene targets are quite dissimilar (Fig. 2a–d), and have
been well described29–32. Calculating a centroid-based Euclidean
distance between OSN population transcriptomes (Fig. 2b and
Supplementary Fig. 8a), we evaluated the similarity between the
transcriptomes of sensory neuron subpopulations expressing OR
genes under the control of the same cis-regulatory elements, as
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well as their neighbors (Fig. 2c, d). No increase in transcriptomic
similarity was observed between genes under the control of the H
or P elements. To further explore this hypothesis, we took a
global approach based on the possible link between the genomic
distance separating OR genes and their difference in transcrip-
tomic identity, the idea being again that since olfactory cis-
regulatory elements act on adjacent genes, those located in
proximity may also result closer transcriptionally. Pairwise
genomic distances between OR genes (Fig. 2b) were calculated
for all pairs of genes located in the same gene cluster and
compared to the transcriptomic distance between the OSN
populations expressing these ORs. A weak positive association
between genomic and transcriptomic proximity was observed in
the first 30% of the genomic distance value range (Fig. 2e and
Supplementary Fig. 8f). This association decreased when using a
binning based on the intergenic distance between OR genes
(Supplementary Fig. 8c, d) and including approximately the first
10% of the genomic distance value range. This relationship was
more visible when considering different equal width bins of the
observed range of transcriptomic distances, in relation to the
proportion of pairs of neighboring genes (Fig. 2f and Supple-
mentary Fig. 8b, c).

We then evaluated our second hypothesis, which proposes that
the ORs themselves define transcriptomic profiles. We deter-
mined the levels of sequence homology between ORs using
Miyata scores (Fig. 2b and Supplementary Fig. 8e) and tested
their potential association with the transcriptomic distances
between the corresponding neuronal populations. We found a
positive association between transcriptomic proximity and OR
sequence similarity in the first 30% of the amino acid difference
value range (Fig. 2e and Supplementary Fig. 8g), that was further
supported by a clear overrepresentation of similar OR pairs in
sensory populations that are transcriptionally close (Fig. 2f and
Supplementary Fig. 8e). Given this last observation and knowing
that OR genes tend to duplicate in cis, it is likely that sequence
identity is a confounding factor when measuring genomic
proximity. To reevaluate whether genomic proximity plays
indeed a role in addition to receptor identity, we took advantage
of evolutionary accidents that led duplicated OR genes to land in
close vicinity or distantly from their princeps allele. We thus
evaluated the potential differences in transcriptional proximity
between neuronal populations expressing ORs that are similar
and associated in the genome, and neuronal populations
expressing ORs that are similar but located in different gene
clusters. In parallel, we evaluated the transcriptomic distances of
neuronal populations expressing ORs that are dissimilar and are

associated in the genome (Fig. 2g). We found no significant
difference in the average transcriptional distance between
neurons expressing similar OR genes, whether these genes are
located in proximity or are distant from each other. On the
contrary, we found an increase in transcriptomic distances
between dissimilar and similar ORs associated in the genome,
supporting our second hypothesis, that is a role played by the OR
identity in transcriptome determination.

Activity-induced transcriptomic modulation in defined OSN
populations. Following the identification of specific tran-
scriptomic identities characterizing the different olfactory neu-
ronal populations at rest, we explored their potential evolution
after agonist activation. To address this question, we determined
the transcriptome of defined and well described neuronal popu-
lations following exposure to odorants (Fig. 3a). We used two
knockin mouse lines, Olfr151GFP/GFP and Olfr16GFP/GFP, in which
OSNs expressing the Olfr151 (M71) and the Olfr16 (MOR23) OR
genes are modified such that when transcribed, a green fluor-
ophore is coexpressed. These olfactory receptors have different
sequences (Miyata Score=273.24), are expressed in different
subzones of the olfactory epithelium (Fig. 3b, h), are expressed in
different basoapical layers (Fig. 3c, i), and respond to different
agonists. 12 live and freely moving mice were exposed for 5 h to
acetophenone and lyral, two known agonists of Olfr151 and
Olfr16, respectively33,34 (Fig. 3a). To extract the most possible
transcriptomic information, we did not opt here for a scRNA-seq
approach but rather for the bulk sequencing of purified neuronal
populations. Following exposure, fluorescent Olfr151- and Olfr16-
expressing neurons were isolated by FACS, and their tran-
scriptomes were determined and analyzed. In all conditions, high
amounts of transcripts of the OR gene corresponding to the
targeted population were detected and sequence reads from other
OR genes were almost absent (Supplementary Fig. 9). Significant
and robust transcriptomic modulations were observed for both
olfactory populations after agonist exposure, with 645 and 752
genes upregulated and downregulated respectively for Olfr151-
transcribing neurons, and 419 genes upregulated and 356
downregulated for Olfr16-transcribing neurons (Fig. 3d–g, j–m
and Supplementary Data 1). The fold-change modulation ranged
from 0.032 to 1505 and from 0.056 to 517 in the Olfr151- and
Olfr16-transcribing populations, respectively (Fig. 3f, l).

To confirm the specificity of the transcriptional modulation, we
performed single-molecule RNA in situ hybridization (via
RNAscope) to evaluate expression levels of two genes of interest:

Fig. 1 Variable odorant receptor-associated transcriptomes among olfactory sensory populations. a Schematic of the approach. b Main olfactory
epithelium (MOE) cell clusters on a UMAP plot. Inset: normalized expression levels of two mature olfactory sensory neuron (OSN) gene markers, Omp and
Adcy3. HBC horizontal basal cells, GBC globose basal cells, Sus sustentacular cells, Mv microvillar cells, INP immediate neuronal precursors, iOSN
immature OSNs. c Mature OSN cell clusters on a UMAP plot computed after removing the olfactory receptor gene counts from the data. Inset: normalized
expression levels of Nfix and Nqo1 (markers of neurons located ventrally and dorsally). d Dispersion of OSN populations on the UMAP plot shown in (c).
Colors indicate the cluster to which the cells pertain. e (left) Density distribution of transcriptomic Euclidean distances (computed on the first 15 PCs)
between pairs of OSNs expressing the same receptor (intra, n= 97,999), different receptors (inter, n= 45,393,492), and the same receptor after
permutation of all receptor identities prior to distance calculation (intra perm, n= 97,999,000, see methods). Horizontal bars correspond to mean values
and dots correspond to median values. (middle) Range of Cohen’s d values calculated between the distribution of intra or inter OSN population pairwise
transcriptomic Euclidean distances and each of the distributions of distances after permutation of receptor identities (n= 1000 per violin plot). The
horizontal bar corresponds to the Cohen’s d value computed between the distributions of intra and inter OSN population pairwise transcriptomic Euclidean
distances. (right) Density distribution of transcriptomic Euclidean distances (computed on the first 14 PCs) between pairs of OSNs expressing the same
receptor (intra) or different receptors (inter). Data are plotted for all OSNs (top) or ventral cluster OSNs (bottom). ***p < 0.001; two-sample
Kolmogorov–Smirnov test. f Mature OSN population-specific distribution of selected markers (log-normalized UMI). OSN populations are ordered by their
mean expression of S100a5. Colors indicate the cluster to which the majority of the cells from the given population pertain. Exact p values are provided in
Supplementary Table 1. g, h Expression levels of specific gene markers of the largest mature OSN populations selected from each cluster (g) or from the
ventral Dlg2-, Calb2-, Cd36- and Cd55- clusters (h). Source data are provided as a Source Data file.
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Mustn1, which we found to be highly upregulated in the FACS-
seq experiments, and Olfr16, which we expect to be down-
regulated upon activation (see Fig. 3d, e, j, k). In mice exposed to
lyral, the Olfr16-neuronal population showed significant upregu-
lation of Mustn1, while the transcripts of the OR gene were
downregulated (Fig. 3n–t). Conversely, when mice were exposed
to acetophenone, which is not a ligand for Olfr16, there was no
transcriptional modulation occurring in the Olfr16-transcribing
population (Supplementary Fig. 10). This confirms that the
transcriptional modulations observed in the FACS-seq analysis
are indeed triggered by the binding of agonists to the receptor
defining the population, and not by aspecific activity within the
olfactory sensory epithelium.

Common activity-induced transcriptomic adaptation in dif-
ferent OSN populations. Taking advantage of our double
approach and to potentially extract general rules, we compared
the transcriptomic modulations of the Olfr151- and Olfr16-tran-
scribing populations after agonist exposure (Fig. 4a). In

accordance with our initial observations describing significant
transcriptomic distances between populations expressing differ-
ent receptors, we first observed that the transcriptomes of
Olfr151- and Olfr16-transcribing neurons were significantly dis-
similar (882 genes were differentially expressed between the two
neuron populations (Fig. 4b–e). Among the differentially
expressed genes (DEGs) between Olfr151- and Olfr16-transcrib-
ing populations, several genes related to axon guidance were
identified, such as Pcdh7, Pcdh9, Nrp1, and Sema7A (Supple-
mentary Data 2).

We then compared the activity-induced modulated genes
between the Olfr151- and Olfr16-transcribing populations
(Fig. 4f–h), that without surprise, showed again a significant
difference between populations. A principal component analysis
(PCA) of the Olfr151 and Olfr16 transcriptomic sets, before and
after agonist exposure, showed 39% of variance explained by cell
identity, and 20% of variance by activity. The overlap between the
activity-induced responses of the Olf151- and Olfr16-transcribing
populations was further explored by comparing their potentially
common down and upregulated genes. A significant proportion
of these genes were shared, 215 (51.3%) and 134 (37.6%) of them
being commonly upregulated and downregulated, respectively
(Fig. 4i).

In both Olfr151- and Olfr16-activated populations, the
dispersion of downregulated genes decreased, while it increased
for upregulated genes; this was also true for the genes shared by
both populations (Supplementary Fig. 11). We then aimed to
functionally interpret our data by attributing Gene Ontology
(GO) terms to the activity-dependent modulated genes common
to the Olfr151- and Olfr16-transcribing populations. Among the

Fig. 2 Association between transcriptomic distances and odorant
receptor similarity levels. a 1152 mouse odorant receptor (OR) phylogeny.
Colored bars show the transcriptomic identity of the olfactory sensory
neuron (OSN) population expressing a given OR. Colored dots indicate that
the corresponding OR belongs to the gene cluster analyzed in (c, d).
b Schematics of the different metrics used to express distance between
pairs of OSN populations. From left to right, transcriptomic distance
(Euclidean distance between centroids of OSN population transcriptomes in
the PCA space), genomic distance (base pairs between OR gene start
codons), amino acid difference (sum of Miyata amino acid replacement
scores between OR protein sequences). c Pairwise transcriptomic distances
between OSN populations expressing OR genes in the same cluster on
chromosome 14. The orange box highlights H element-regulated OR genes.
The dotted line in the pairwise distance matrix encompasses comparisons
between OR genes under control of the H element. d Same analysis as in
(c) but for OR genes under the control of the P element, on chromosome 7.
e Distribution of transcriptomic distances per bins of either genomic
distances (top) or amino acid differences (bottom), for all pairs of ORs
belonging to the same class and the same gene cluster (n= 3602 pairs).
Transcriptomic distances and genomic distances: Spearman’s rank
correlation ρ= 0.16, ***p < 0.001, n= 2598 pairs. Transcriptomic distances
and amino acid differences: Spearman’s rank correlation ρ= 0.29,
***p < 0.001, n= 222 pairs. Correlation scores (ρ) and associated p values
between the transcriptomic distances and each of the different metrics was
calculated for the pairs included in the three first bins. f Proportions of
closely related pairs of OSN populations across bins of transcriptomic
distances. Close pairs are defined depending on either their genomic
distance or their amino acid differences. g Transcriptomic distance
distribution of four categories of OSN population pairs defined by a
combination of their genomic distances and amino acid differences.
***p < 0.001, ns p > 0.05; two-sided Wilcoxon rank test, p values were
adjusted with a Bonferroni correction. Exact p values are provided in
Supplementary Table 1. Source data are provided as a Source Data file.
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significantly enriched terms, we found “signaling” and “G-
protein-coupled receptor activity” in the GO biological processes
terms, “molecular transducer activity” in the GO molecular
functions category, and “plasma membrane” and “cell periphery”
in the GO cellular components category (Fig. 4j and Supplemen-
tary Table 2). A pattern thus emerged, pointing to actors of the
transduction cascade being modulated by agonist exposure.

We finally looked at genes that were modulated after activation
in one OSN population and not in the other (fold change after
activation < 0.5 for downregulated genes and >2 for upregulated
genes, Supplementary Data 3). Among these genes, we observed
that a large proportion encoded transcription factors (8.2% and
7.1% forOlfr151- andOlfr16-transcribing populations, respectively,
to be compared to 5% observed in commonly modulated genes).
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Modulation of transcription following odorant exposure.
Modulations in mRNA concentration may result from various
processes. Among them and first in line, the regulation of tran-
scriptional activity and the modulation of mRNA half-life. Our
previous work has pointed to a rapid downregulation of OR gene
mRNA concentration following odor exposure (as fast as 20 min),
and in some cases an almost absence of OR mRNA 5 h after
stimulation25. This nearly immediate modulation and complete
loss of messenger is suggestive, or at least compatible with an
active degradation of cytosolic mRNAs. To explore this question,
we took advantage of the different characteristics of nascent and
mature mRNAs, namely the presence and lack of intronic
sequences, respectively. We first analyzed the exonic versus
intronic reads of the modulated genes that we identified after
odorant exposure of Olfr151- and Olfr16-transcribing neurons
(Fig. 5a). Following agonist exposure, a large portion of the genes
whose modulation was determined after analysis of exonic reads,
were also modulated, both up and down and in both Olfr151- and
Olfr16-transcribing neurons, when restricting the analysis to
intronic reads (Fig. 5b–g and Supplementary Fig. 12). To further
explore this question, we exposed wild type mice to ethyl iso-
butyrate (Fig. 5h), an agonist for which we previously determined
a set of highly responsive OR genes, among which Olfr60, Olfr166,
Olfr169, and Olfr171, whose corresponding mRNA concentra-
tions drastically decrease after exposure25. We evaluated this
potential modulation at the level of nascent mRNAs. We
observed a downregulation of OR mRNAs that was similar using
exonic and intronic reads as readouts (Fig. 5i) (although, for some
OR genes, the number of intronic reads in the bulk RNA-seq was
too low to evaluate differential expression (Supplementary
Fig. 13)). Finally, we looked at the cellular localization of tran-
scripts (Fig. 5h). We took advantage of the high level of OR
transcription that makes nascent transcripts easily visualized
using in situ hybridization. Since OR genes are transcribed
monoallelically, a single nuclear transcriptional spot corre-
sponding to their expressed OR gene is observed in the nucleus of
each sensory neuron (Fig. 5j). We exposed wild type mice to ethyl
isobutyrate and performed in situ hybridizations with a probe
specific for Olfr171, whose mRNA we previously showed to be
modulated following ethyl isobutyrate stimulation. We quantified
the intensity of the nuclear signal, before and after agonist
exposure, and found a significant decrease in signal intensity after
ethyl isobutyrate exposure (Fig. 5j). Taken together, these data all
point to an odorant-induced modulation of transcription, and not
to a mechanism involving degradation or stabilization of mature
mRNAs.

Discussion
In this work, we took advantage of the unique opportunity pro-
vided by the mouse olfactory epithelium, which contains hun-
dreds of singular cell subpopulations, each defined by the
expression of a known chemoreceptor gene, and activable at will.
We first characterized the transcriptomes of these subpopulations
in a basal state, at rest, that is in mice living in their usual
environment without exposure to specific olfactory stimuli. Sec-
ond, by activating defined OSN subpopulations in vivo using
odorants, we further explored how these neurons adapt to
environmental changes. We found that the transcriptomic iden-
tity of mouse OSNs is remarkably variable, a variability that
results from the apparent interplay of two dimensions: a first,
steady state transcriptomic identity that characterizes each OSN
population, to which a second is added, following the recent
odor-driven activity of the sensory neuron.

What does determine the transcriptomic identities of OSN
populations? It is the expressed OR that appears to be the main
factor in the establishment of these identities. Our data indeed
show that transcriptomic similarities are better predicted by
receptor similarities than by shared OR regulatory sequences. In
agreement with our data, the importance of the OR in the
establishment of the transcriptional identity was shown in a
recently published manuscript35.

We showed here that odorant recognition triggers OSN tran-
scriptomic modulation, that not only includes the downregulation
of the expressed OR genes25, but the up- and downregulation of
hundreds of additional ones. By comparing the agonist response
of two olfactory populations expressing different ORs and
responding to different odorants, we found a significant overlap
between activity-modulated genes. These represent late respon-
sive genes (in opposition to early response genes), typically
encoding proteins that regulate dendritic growth, synapse elim-
ination or spine maturation10. For example, a gene that was
significantly upregulated in both Olfr151- and Olfr16-populations
upon activation was the late responsive gene Mustn1, whose
transcription is regulated by immediate early genes including
c-Fos and JunD36. Mustn1 may constitute an activity marker in
OSNs, although additional experiments would be required to
generalize this observation. More generally, in our case most
modulated genes pertain to signal transduction categories, which
possibly reflects the peculiarly ordered and relatively invariant
olfactory circuitry. Interestingly, among the main genes involved
in the olfactory transduction cascade, including those coding for
ORs, GnaI, Adcy3, Cnga2, Cngb1b, or Cnga4, none were upre-
gulated after odorant-mediated activation, and most were

Fig. 3 Odorant-induced transcriptomic modulations. a Schematic of the experiment. After being exposed to their cognate ligand for 5 h, fluorescent
neurons from Olfr151GFP/GFP and Olfr16GFP/GFP mice were FAC-sorted and total mRNA was sequenced. b, c Coronal section of an Olfr151GFP/GFP mouse
main olfactory epithelium (MOE) containing GFP-expressing neurons (green, endogenous GFP) and stained with DAPI (blue). The schematic in
(b) indicates the antero-posterior position of the section and the white square the region magnified in (c). Scale bars, 0.5 mm (b), 20 μm (c, left) and 5 μm
(c, right). d Scatter plot showing mean normalized counts resulting from the differential expression analysis (exposed versus non-exposed Olfr151GFP/GFP

mice). Blue and orange dots: significantly downregulated and upregulated genes, respectively. Black dots highlight Mustn1 and Olfr151. e Volcano plot
showing differentially expressed genes (DEGs) between exposed and non-exposed Olfr151GFP/GFP mice. The x-axis is the log2 scale of the gene expression
fold change. Negative values indicate downregulation and positive values upregulation. The y-axis is the minus log10 scale of the adjusted p values.
f Distribution of the DEGs between exposed and non-exposed Olfr151GFP/GFP mice based on their fold change (log2). g Heatmap showing DEGs between
exposed and non-exposed Olfr151GFP/GFP mice. h–m Same analyses as in (b–g) but with Olfr16GFP/GFP exposed and non-exposed mice. n Schematic of the
experiment. After being exposed to lyral for 5 h, coronal sections of the MOE were processed for RNAscope in situ hybridization (also see Supplementary
Fig. 10). o Coronal section of the MOE labeled with probes against Olfr16 (yellow) and Mustn1 (magenta) and counterstained with DAPI (blue). White
square highlights a region of interest with an Olfr16-transcribing cell. Scale bar, 100 µm. p, q Magnification of a cell expressing Olfr16 in a control mouse
(p) and in a mouse exposed to the Olfr16 agonist lyral (q). Channels are shown separately and together with the DAPI staining. Scale bar, 5 µm.
r–t Quantification of Mustn1 (r) and Olfr16 (s, t) transcription. Horizontal bars correspond to mean values and dots correspond to median values.
***p < 0.001; two-sided Wilcoxon signed rank test. Exact p values are provided in Supplementary Table 1. Source data are provided as a Source Data file.
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downregulated. This parallels the data presented by Tsukahara
et al. in which most of these genes were also found modulated
after naris occlusion and long-term odorant exposure35. Such
transcriptomic contraction affecting all members of the olfactory
cascade suggests a functional transcriptional adaptation, leading
in the case of a sustained odorant exposure to a decreased
response to the experienced odor. Such an adaptive mechanism

would not be surprising, since functional plasticity of sensory
inputs mediated by olfactory stimulation has been observed37.

We also report different transcriptomic identities of OSN
populations at rest (that is in the absence of actively exposing
mice to odors). In this almost silent state, how does the olfac-
tory receptor translate its identity to the OSNs that express it?
One may argue, as Tsukahara et al.35 that some OSNs expressing
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specific ORs will fire in a nose even without experimental sti-
mulation, as some volatile molecules are always present in the
environment. But we rather suggest that there is an inherent
activity state that may characterize each sensory population at rest,
that translates into a specific transcriptomic identity. This last view
is supported by the observation that the elimination of odorant-
induced activity through naris occlusion does not abolish tran-
scriptomic variability between OSN populations35. Moreover, also
supporting this view, it was previously shown that OSN popula-
tions expressing different ORs exhibit different basal activity levels,
that is levels of basal transduction activity and fluctuation of cur-
rents, which drive concomitant firing of action potentials38,39. Even
in the absence of odor-stimulation, OSNs are indeed characterized
by high adenylate cyclase 3 activity and by large fluctuations in
cAMP levels39,40, both of which are suggestive of intrinsic OR
activity. An interesting candidate mechanism for the generation of
such odorant receptor-dependent and odorant-independent gra-
ded cellular states is the agonist-independent natural basal activity
of G-coupled receptors (GPCRs). Both GPCRs and other ligand-
activated receptors are indeed known to spontaneously oscillate
between two conformations, one active and the other inactive, in
the absence of ligands41–43 (in the presence of these latter, the
receptors are stabilized in an active state44). For GPCRs, this effect
was already observed over 30 years ago with the delta opioid
receptor45. Since then, and despite being often considered as noise,
many more examples of such constitutive GPCR activity have been
reported (with some receptors exhibiting high levels of agonist-
independent activity such as the Ghrelin receptor46), as well as
various diseases associated with GPCR mutations affecting this
constitutive activity.

In the olfactory system, odorant-independent OSN basal
activity has also been described in the context of axon guidance,
where it plays an important role in regulating anterior-posterior
targeting of OSN axons during development47. Constitutive OR
activity thus appears to produce several different cellular states,
whose number would be sufficient for defining enough non-
overlapping neuronal categories to which distinctive rostro-
caudal projection positions are assigned. The extent to which
odor-induced activity experienced during development may
influence the establishment of the glomerular map in addition to
intrinsic activity, remains to be explored in details.

Finally, we identified the process at the origin of the agonist-
induced variations of mRNA concentrations, which appears not
to involve the half-life of mRNAs nor the nuclear export of these
latter, but the modulation of transcription itself. Which molecular

players are involved in this process is still unknown, but obvious
candidates come to mind, such as the cAMP response element-
binding protein (CREB), a transcription factor critical for activity-
dependent neuronal plasticity10 that is involved in the activation-
induced prolonged lifespan of OSNs48.

The mammalian olfactory mucosa thus represents a multi-
functional sensor whose neuronal elements, that use olfactory
receptors as internal and external chemical probes, are in con-
stant evolution, adapting to the world via the activation of large-
scale transcriptomic programs. Whether this transcriptomic
diversity and dynamics functionally parallels the one recently
observed in some central structures49–52, and whether the
molecular tools involved in transcriptomic adjustments are
shared between different circuits, remains to be explored. Given
the transcriptomic diversity of neurons in the mammalian brain
and knowing that 90% of non-sensory GPCRs are expressed in
mammalian brains, the question is worth asking.

Methods
Animals. All experiments were conducted in accordance with the veterinary
guidelines and regulations of the University and of the state of Geneva (Direction
de l’expérimentation animale de l’UNIGE). C57BL/6J male mice were purchased at
5–7 weeks of age from Charles River Laboratories. Upon arrival, they were housed
in groups of 4–5 animals. The following transgenic mouse lines were employed:
Olfr16-IRES-tau-GFP (Olfr16tm2Mom, referred to as Olfr16GFP/GFP), Olfr151-IRES-
tau-GFP (Olfr151tm26Mom, referred to as Olfr151GFP/GFP)53–55. Transgenic mice
were backcrossed on C57BL/6J background for over ten generations. Transgenic
mice were bred and maintained at the University of Geneva. All mice were housed
in standard type II cages with access to food and water ad libitum, on a dark/light
cycle of 12/12 h, temperature between 21 and 22 °C, humidity between 45 and 55%.

10X single-cell RNA sequencing
Cell isolation, sorting, and sequencing. 8 weeks old male C57BL/6J mice were used
(n= 4). All experiments were performed during daytime. Mice were euthanized
with intraperitoneal injection of pentobarbital (150 mg/kg) and their olfactory
epithelia were immediately extracted and processed for tissue dissociation using the
Papain Dissociation System (cat #LK003150; Worthington® Biochemical Cor-
poration, New Jersey, USA) following the manufacturer’s protocol. Cell suspen-
sions were then incubated with 2 μg/ml of Hoechst 33342 (a UV fluorescent
adenine-thymine binding dye; #H1399, Life Technologies) at 37 °C for 15 min.
Before fluorescence activated cell sorting (FACS) and to exclude dead cells, 1 μM of
DRAQ7TM (a far-red fluorescent DNA intercalating dye; #DR71000, BioStatus)
was added to the cell suspensions. Approximately 80,000 Hoechst+/DRAQ7− cells
were collected from each sample, each in a final volume of 100 μl. After FACS
sorting, cell suspensions were concentrated at 800 cells/μl. The targeted cell
recovery was set to 10,000. In accordance with the Cell Suspension Volume Cal-
culator Table of 10X Genomics, 22.6 μl of nuclease-free water was added to 20.6 μl
of cell suspension and the samples were loaded on the 10X Genomics Chromium
controller. GEM generation and barcoding, cDNA amplification and cDNA library
construction were performed following the 10X Genomics Chromium Next GEM

Fig. 4 Shared odorant-induced transcriptomic modulations between different olfactory populations. a Schematic of the experiment. After being exposed
to their cognate ligand, fluorescent neurons from Olfr151GFP/GFP and Olfr16GFP/GFP mice were FAC-sorted and total mRNA was sequenced. n= 3 × 4 mice/
condition. b Two dimensional PCA representing the differences in gene expression between two populations of olfactory sensory neurons (OSNs) in their
basal state (non-exposed) and after exposure to their cognate ligand. Each dot represents a pool of 4 mice. c Scatter plot showing the differential
expression analysis between Olfr15- and Olfr16-transcribing neurons in their basal state. Dark and light green dots: genes expressed significantly higher in
Olfr15- and in Olfr16-transcription neurons, respectively. Black dots highlight Olfr151 and Olfr16. d Volcano plot showing differentially expressed genes in
Olfr151- and in Olfr16-transcribing neurons in their basal state. Dark and light green dots: genes expressed significantly higher in Olfr15- and in Olfr16-
transcribing neurons, respectively. Black dots highlight Olfr151 and Olfr16. e Distribution of the differentially expressed genes between Olfr151- and in Olfr16-
transcribing neurons in their basal state. f Scatter plot showing the differential expression analysis between Olfr151- and Olfr16-transcribing neurons after
exposure to their respective cognate ligands. Dark and light green dots: genes expressed significantly higher in Olfr151- and in Olfr16-transcribing neurons
after activation, respectively. g Volcano plot showing differentially expressed genes in Olfr151- and in Olfr16-transcribing neurons after agonist exposure.
Dark and light green dots: genes expressed significantly higher in Olfr15- and in Olfr16-transcribing neurons, respectively. h Distribution of the differentially
expressed genes between Olfr151- and in Olfr16-transcribing neurons after agonist exposure. i Volcano plot showing differentially expressed genes in
Olfr151- and in Olfr16-transcribing neurons after exposure to their respective cognate ligands. Orange and blue dots: genes significantly upregulated and
downregulated in both Olfr151- and Olfr16-transcribing neurons, respectively, after agonist exposure. Light orange and blue dots represent genes modulated
in either Olfr151- and in Olfr16-transcribing neurons, respectively. j Gene Ontology analysis of the common differentially expressed genes in Olfr151- and in
Olfr16-transcribing neurons. The dashed line corresponds to the significant threshold (adjusted p values < 0.05). Raw p values were extracted with Fisher’s
exact test and then adjusted for multiple comparisons with the Benjamini–Hochberg correction. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30511-4 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2929 | https://doi.org/10.1038/s41467-022-30511-4 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Single-Cell 3′ v3.1 protocol (dual index libraries). The cDNA libraries from each
sample were then pooled and loaded at 2 nM on 2 lanes of the Illumina HiSeq
4000 system for paired-end sequencing.

scRNA-seq mapping and counting. fastq files were pre-processed with Cell Ranger
version 6.0.156 with default settings. Reads were mapped on the Mus musculus gen-
ome primary assembly reference 38 (GRCm38) using the STAR aligner57 imple-
mented in Cell Ranger. A modified version of the Ensembl release 102 of the Mus

musculusGTF annotation was used. This GTF file was updated with the re-annotation
of the 3′UTR of olfactory receptor genes. The filtered feature-barcode matrices were
used for downstream analysis. These matrices included a total of 21,809 cells (sample
1: 5364 cells; sample 2: 5696 cells; sample 3: 4756 cells; sample 4: 6004 cells).

scRNA-seq data filtering. Single-cell RNA sequencing data analyses were performed
on R version 4.0.5 using the Seurat R package version 4.0.158,59. Seurat’s functions
were used with default settings unless specified. The standard analysis consisted of
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the following steps. First, the four 10X gene expression matrix files were indivi-
dually loaded into R using the Read10x function of Seurat. The 10X data were then
converted to Seurat objects using the CreateSeuratObject function of Seurat. The
gene expression data was then normalized using the SCTransform function of
Seurat60, and the top 5000 variable genes were determined for datasets
integration61,62. Following the integration of the four datasets, a preliminary
clustering was performed without any additional cell filtering in order to identify
and remove cell clusters composed of blood, immune or suffering cells (i.e., cells
exhibiting high expression levels of mitochondrial genes). PCA was performed on
the integrated assay of the Seurat object using the RunPCA function of Seurat. A
visual inspection of their explained standard deviation led to the selection of the
top 9 PCs for subsequent cell clustering. To construct a shared nearest-neighbor
graph, the above-mentioned PCs were used as input to the FindNeighbors function
of Seurat (dims= 1:9). Cell clusters were then identified using the FindClusters
function of Seurat with a clustering resolution of 1.1. This preliminary clustering
yielded 28 cell clusters. Cluster-specific gene markers were then identified for
cluster annotation. Briefly, the raw dataset containing cells sampled from all four
mice was normalized by library size, scaled to 104 and natural-log-transformed
after adding a pseudocount of 1 using the NormalizeData function of Seurat. This
normalized data was then used for differential expression analysis computed
between each cell cluster and all other clusters taken together using the Wilcoxon
rank sum test implemented in the FindAllMarkers function of Seurat (test.use=
“wilcox”; only.pos= TRUE). Only genes with an adjusted p value below 0.05 were
considered. Two blood cell clusters (n= 2) were identified based on their high
expression of Ptprc and hemoglobin chain complex genes such as Hba-a1 and Hba-
a2 (Supplementary Fig. 1). Immune cell clusters (n= 7) were identified based on
their high expression of known immune cells markers such as Igkc, Cd52, Cybb,
Ctss, Tyrobp, and Gypa (Supplementary Fig. 1). Suffering cell clusters (n= 4) were
identified based on their high percentage of mitochondrial gene counts. This
preliminary clustering led to the removal of 13 cell clusters from the dataset
(n= 4708 cells). Furthermore, cells were also filtered out if their percentage of
mitochondrial counts exceeded 10% of their total counts or if they expressed <1000
genes (n= 1242 cells). This preliminary analysis resulted in retaining 15,859 cells.

scRNA-seq clustering and analysis of main olfactory epithelium cells. The retained
cells were used to identify cell clusters composing the mouse main olfactory epi-
thelium (MOE). The corresponding datasets (one per mouse) were normalized and
integrated, and cell clusters were identified as described in the previous paragraph
(see scRNA-seq data filtering) with the following differences: the first 13 PCs were
used for the FindNeighbors function of Seurat and a resolution of 0.3 was used for
the FindClusters function of Seurat. This analysis led to the identification of 15 cell
clusters. Cluster identities were then determined from the DEGs in each cluster (see
above for more details). The markers described in Fletcher et al.26 were used for the
annotation of the mouse MOE cell types. From the 15 clusters, 5 corresponded to
mature OSNs based on their high expression of Omp, Cnga2, and Gng13 but not
Gap43 (Supplementary Fig. 2a) These clusters were then merged together into only
one cluster of mature OSN (Fig. 1b). To visualize the resulting 10 cell clusters on a
2-dimensional plot, the uniform manifold approximation and projection
(UMAP)63,64 plot was computed using the RunUMAP function of Seurat and the
first 13 PCs previously selected (dims= 1:13) (Fig. 1b).

Mature OSNs were selected from the main olfactory epithelium dataset for
downstream analyses (n= 10,519 cells). For each mature OSN, the detected
olfactory receptors were ordered based on their expression levels: 7025 OSNs
displayed the expression of a single olfactory receptor, 2655 OSNs displayed the
expression of two olfactory receptors and 684 OSNs displayed the expression of at
least three olfactory receptors. To remove cells that could correspond to multiplets
(among those co-expressing multiple olfactory receptors), the distribution of the
expression levels of the highest expressed receptors was analyzed using the log-

normalized data. An “is expressed” cutoff was set at three median absolute
deviations from the median of the levels of expression of the highest expressed
receptors. OSNs whose highest expressed receptor had an expression level below
this cutoff were removed from the dataset (n= 229 cells). Moreover, OSNs that
expressed more than one receptor at an expression level higher than this cutoff
were also filtered out from the dataset (n= 344 cells). Finally, roughly 1.5% of the
mature OSNs (n= 155 cells) did not show receptor expression and were also
discarded from the dataset. The OSN population identity of each of the remaining
cells (n= 9791 cells) was then determined based on the olfactory receptor that
displayed the highest expression level in that given cell. This led to the
identification of 952 OR-expressing OSN populations (n= 9741 cells) and 7
TAAR-expressing OSN populations (n= 44 cells), as well as a Gucy1b2-expressing
OSN population (n= 6 cells). OSN populations represented by at least 3 cells in the
dataset were included for clustering and downstream analyses (n= 9539 cells).

Two parallel analyses were carried out: by keeping or removing the
olfactory receptor genes from the count matrix. The corresponding datasets were
normalized and integrated, and cell clusters were identified as described above (see
scRNA-seq data filtering), but with a substantial modification in the way PCs were
chosen for downstream analyses. Rather than selecting the PCs by relying on the
visual inspection of their explained standard deviation, the KneeLocator function of
the kneed python package version 0.7.065 was used with the following parameters:
S= 1, curve= “convex”, direction= “decreasing”. This algorithm was applied on
the explained standard deviation of the top 50 PCs to detect the elbow in the
decrease of the explained standard deviation of the successive PCs (Supplementary
Fig. 3a, b, d, e). The location of the elbow was then used as a threshold to retain the
top relevant PCs for downstream processing of the datasets. The analyses described
in scRNA-seq data filtering were thus carried out with the following differences: the
percentage of mitochondrial gene counts were used as confounder variables in the
SCTransform function of Seurat (vars.to.regress= “percent.mt”); the first 14 or 15
PCs (explaining 47% and 48% of the variance calculated with the top 50 PCs,
respectively) were used for the FindNeighbors and RunUMAP functions of Seurat
for the analyses including or not the olfactory receptor genes, respectively; and a
resolution of 2.1 or 1.6 was used for the FindClusters function of Seurat for the
analyses including or not the olfactory receptor genes, respectively. These
concurrent analyses led to the identification of 29 (including olfactory receptor
genes) or 23 (not including olfactory receptor genes) cell clusters, respectively.
Cluster identities were then determined from the DEGs in each cluster (see scRNA-
seq data filtering for more details). After cluster merging, a total of 10 clusters were
retained, which were then subdivided into groups of “dorsal” or “ventral” clusters
based on their complementary expression of Nqo1 (a dorsal mature OSN gene
marker) or Nfix (a ventral mature OSN gene marker), respectively. These broad
clusters were each composed of five subclusters characterized by their expression of
specific markers genes or absence of them: Dlg2+, Calb2+, Cd55+, Cd36+ and
Dlg2−; Calb2−; Cd55−; Cd36– clusters. The clustering similarity between the two
analyses (i.e., including or excluding the olfactory receptor genes) was computed
with the normalized mutual information metric using the compare function of the
igraph R package version 1.2.6 (method= “nmi”).

Similar to what was performed per cluster, OSN population-specific gene
markers were identified using the log-normalized UMI counts and the
FindAllMarkers function of Seurat (test.use= “wilcox”; only.pos= TRUE). In
Fig. 1g, the largest OSN population from each cluster was selected and the gene
expression levels of its cells were compared to those of all other cells from the
dataset. In Fig. 1h, the six largest OSN populations from the Dlg2-, Calb2-, Cd36−,
Cd55− ventral cluster were selected and for each of these populations the gene
expression levels of their cells were compared to those of all other cells from that
specific cluster. Only genes expressed in at least 70% of the cells of the given
population and that yielded an adjusted p value below 0.05 were considered. For
plotting, the log-normalized data was scaled and centered using the ScaleData

Fig. 5 Odorant-induced modulations of mRNA levels result from transcriptional regulation. a Schematic of the experiment. After exposure to their
cognate ligand, fluorescent neurons from Olfr151GFP/GFP and Olfr16GFP/GFP mice were FAC-sorted and total mRNA sequenced. n= 3 × 4 mice/condition. b Fold
changes observed using exonic or intronic reads of FAC-sortedOlfr151-transcribing neurons. Each gene is represented by a dot. c, d Examples of downregulated
(c) and upregulated (d) genes in Olfr151-transcribing neurons after acetophenone exposure (shown in (b)). Expression levels in exposed samples relative to
control conditions measured using exonic and intronic sequence reads. The dotted line represents the relative expression of non-exposed control samples and
each dot represents the relative expression of an exposed sample. Box limits represent Q1 to Q3, the line represents the mean. FDR adjusted p values: *p < 0.1;
**p < 0.01; ***p < 0.001, two-sided two-sample independent t test. e–g Same as (b–d) but with FAC-sorted Olfr16-expressing neurons after lyral exposure.
h Schematic describing exposure of wild typemice to ethyl isobutyrate, followed by transcriptomic (i) or in situ hybridization (j) analyses. i The downregulation
of four odorant receptor transcripts (corresponding to receptors activated by ethyl isobutyrate) was evaluated at the level of both intronic and exonic reads.
The dotted line represents the relative expression of control samples, each dot corresponds to one exposed mouse. Box limits represent Q1 to Q3, the line
represents the mean. FDR adjusted p values: *p < 0.1; **p < 0.01; ***p < 0.001, two-sided two-sample independent t test. j Left, representative images of a
control (top) and ethyl isobutyrate-exposed (bottom) olfactory sensory neurons, hybridized with an Olfr171 probe. Dashed lines delimit the nucleus, and
arrowheads point towards the site of transcription ofOlfr171. Scale bar, 10 μm. Right: fluorescence intensity within the transcription foci. Each dot represents an
ethyl isobutyrate-exposed neuron. Fluorescence intensity was divided by the mean of all control neurons, whose relative expression is represented by the
dotted line. The black bar represents the median and the error bars Q1 to Q3. **p= 0.0017, unpaired two-sided t test with Welch’s correction. All the exact p
values are provided in Supplementary Table 1. Source data are provided as a Source Data file.
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function of Seurat, and the extreme values were clipped and set to the lower and
upper limit values of the 95% confidence interval of the data using the clip.data
function of the fsbrain R package version 0.4.3 (lower= 0.025; upper= 0.975)66.

Transcriptomic, genomic, and amino acid distances
Transcriptomic Euclidean distance calculation between pairs of OSNs. To test
whether OSN populations (defined by the OR gene they express) are tran-
scriptionally dissimilar from each other, the pairwise transcriptomic Euclidean
distances between pairs of OSNs were computed on the first 15 PCs of the mature
OSN dataset devoid of OR gene counts (computed from the sctransform-
normalized and integrated count matrix; see scRNA-seq data filtering for more
details). The Euclidean distances were calculated on the PC space used for clus-
tering and UMAP representation, rather than the gene counts, to faithfully
represent and quantify the co-clustering of OSNs expressing the same receptor
observed in Fig. 1d. Note that when the analysis was performed on the mature OSN
dataset including the OR gene counts, the top 14 PCs were used (the right part of
Fig. 1e; with OR genes).

In Fig. 1e and Supplementary Figs. 5–7, pairwise Euclidean distances were
calculated between pairs of OSNs pertaining to populations represented by at least 3
cells in the dataset. These distances were sorted into two categories: distances between
pairs of OSNs expressing the same olfactory receptor (intra) or pairs expressing
different receptors (inter). To compare and measure the dissimilarity between these
two distributions of pairwise transcriptomic Euclidean distances, the Cohen’s d was
calculated between the intra and inter distributions (Fig. 1e) using the cohen.d
function of the effectsize R package version 0.8.1 with default settings67. Moreover, to
test if the difference in the distributions of Euclidean distances between pairs of OSNs
expressing the same or different olfactory receptors was not a random effect, we
generated a permuted dataset by randomly redistributing the cell identities (and
hence the corresponding OR identities) of the top 15 PCs and recalculated pairwise
distances for OSNs with identical random identities (intra perm). By iterating this
process, the random distribution was estimated from 1000 permuted datasets. As
described above, the Cohen’s d was then calculated between the intra or inter OSN
population transcriptomic Euclidean distance distributions and each of the permuted
distributions. This resulted in 1000 Cohen’s d values for each set of comparisons (i.e.,
intra versus intra perm and inter versus intra perm). The two distributions of Cohen’s
d values were then compared using the two-sample Kolmogorov–Smirnov test.When
this analysis was performed on each cluster separately, the original PC space was used
for distance calculation but only the distances between cells from that given cluster
were retained for the analysis, and the p values of the two-sample
Kolmogorov–Smirnov test were adjusted for multiple comparisons using the
Bonferroni correction method, as indicated in the figure legends.

Evaluation of the effect of PC choice on transcriptomic Euclidean distances between
pairs of OSNs. To evaluate the effect of the choice of PCs on the results obtained,
the Cohen’s d values were calculated to measure the dissimilarity between the
distributions of intra and inter OSN population pairwise transcriptomic Euclidean
distances, as described in the previous paragraph, when varying the number of top
PCs used for the analysis (Supplementary Fig. 3c, f). We found that the dis-
criminability between the intra and inter OSN population transcriptomic Euclidean
distances reaches a plateau with the top 11 PCs (or higher), and the computational
approach to select the top PCs for downstream analysis is robust and allows to
capture most of the OSN population-based variance in the dataset.

Evaluation of the effect of dataset integration on transcriptomic Euclidean distances
between pairs of OSNs. Though dataset integration corrects for batch effects found in
the data, it also alters the gene expression profile of the cells.When dataset integration
is performed, shared cell types are identified between datasets and their gene
expression profiles are “corrected” (i.e., altered) so to remove batch effects that might
hamper their co-clustering during downstream analysis. Given the differences in the
frequencies of OSN populations, dataset integration might impact differently small
and large OSN populations. For the large OSN populations, whose cells were sampled
from most if not all mice, dataset integration might only correct for batch effects
found between the individual datasets, as the search for common cell types (i.e.,
anchors) between the datasets might result in the identification of cells expressing the
same OR. This is not the case for small OSN populations whose cells are sampled
from a few of the mice used in this experiment. For example, an OSN population
formed of 3 cells can be sampled from only one mouse, and therefore none of the
datasets from the other mice would contain cells from that given population. A
byproduct of this could be the alteration of the transcriptomic profiles of two small
OSN populations so to make them more similar for dataset integration, especially
since the OR gene expression information was removed from the dataset, which could
have helped to discriminate these two populations. In other words, the neighbors of
cells from a given small OSN population sampled from a given mouse can be
identified as the cells pertaining to another small OSN population sampled from
another mouse. Hence, in this case, the search for neighbors between the datasets can
be biased towards small OSN populations. To evaluate this, OSN populations were
binned based on their size into equal frequency bins and the two extreme bins (one
formed by populations of small sizes, and the other of large sizes) were selected for
further analysis (Supplementary Fig. 7a). Subsequently, the inter OSN population
pairwise transcriptomic distances between pairs of OSNs from each of the two bins

were subsampled to include the distances between 1/3 of the OSNs from each
population, and the subsampled distances were compared to each other and to all
intra OSN population distances using Cohen’s d as described above (see Tran-
scriptomic Euclidean distance calculation between pairs of OSNs). This process was
repeated 10,000 times, hence resulting in 10,000 Cohen’s d values for each set of
comparisons (i.e., inter small versus inter large, inter small versus intra, and inter
large versus intra) (Supplementary Fig. 7b, c).

In parallel, the analysis detailed in Transcriptomic Euclidean distance calculation
between pairs of OSNs was also performed for each mouse without dataset
integration (Supplementary Fig. 6). Following PC selection using the kneed python
package described above, the analysis was computed on the top 14 PCs for mouse
1, the top 12 PCs for mouse 2, the top 10 PCs for mouse 3, and the top 14 PCs for
mouse 4.

Transcriptomic Euclidean distance calculation between OSN populations. To com-
pare the transcriptomic Euclidean distances between OSN populations with the
genomic or phylogenetic distances between the olfactory receptors they express,
population transcriptomic distances were calculated on the same PC space used for
clustering and UMAP representation (i.e., top 15 PCs of the mature OSN dataset
without OR gene counts). To this end, OSN population centroids were estimated
on the PC space and the distances between the centroids were used as a proxy for
the distances between pairs of OSN populations (Fig. 2e–g and Supplementary
Fig. 8d). To reduce small sample biases in centroid estimations, this analysis was
restricted to OSN populations represented by at least 10 cells in the dataset.

Functional OR gene identification and OR phylogeny. The functional OR phylogeny
was partly built from the same sequence set as used in von der Weid et al.25. To
constitute this set, OR coding sequences were identified de novo in the mouse
genome assembly GRCm38 using TBLASTN searches with previously annotated
mouse OR protein sequences as queries. The hits were manually curated to filter
out putative non-functional receptors. The criteria to consider an OR to be
functional was the conservation of evolutionary constrained residues68, the integ-
rity of the seven transmembrane domains and the absence of intron within the
coding sequence69, resulting in a set of 1141 putatively functional OR. After this
filtering, 11 filtered out ORs were retrieved as they were found to be expressed in a
monoallelic fashion in one or more OSNs, in our scRNA-seq data. For these ORs,
we used coding sequences as annotated in Ensembl version 102. Notably, 8 of these
11 ORs have their coding sequence spanning two exons, with most of the coding
sequence (covering the seven transmembrane domains) included in the last exon.

A multiple sequence alignment including the resulting OR protein sequence set
was obtained with Clustal Omega v1.2.470, using the—full and—full-iter options.
The resulting alignment was trimmed to keep the sites between the most conserved
start methionines and the last position with less than 90% of gaps.

The maximum likelihood phylogeny of the mouse functional ORs was
calculated with Phyml version 2012041271 using the following parameters: -d aa -m
JTT -f e -v e -c 4 -a e -s BEST -o tlr. The resulting tree was rooted on the node at
the origin of class I and class II ORs. For display of transcriptomic identities of
associated OR in Fig. 2a, each OSN population was assigned to the transcriptomic
cluster to which the majority of cells belong. In case of equivalences, we assigned
the transcriptomic cluster randomly. Branch tips were colored according to the
assigned transcriptome cluster identity of OSNs expressing the corresponding OR.

Genomic distances and gene cluster definition. Pairwise genomic distance between
OR genes was measured as the distance in base pairs between start codons of OR
genes. For the 8 OR genes that have their start codon on another exon, we instead
used the first position of the last coding exon. Genomic distances were only
obtained between genes in the same chromosome.

Pairwise distances between adjacent genes were used to aggregate OR genes in
cluster. For this, the sorted distances were split into two groups using the Jenks
natural break optimization for k= 3. In that manner, the middle break is used to
separate unbiasedly two categories of distances: the smaller distances representing
the intracluster distances and the longer distances representing the intercluster
distances. Next, we calculated the mean and the standard deviation of the
intracluster distances and defined the clustering threshold as the mean plus 3 times
the standard deviation. Finally, gene clusters were obtained by aggregating
neighboring genes whose genomic distance was closer to each other than the
clustering threshold.

Amino acid difference metric. Pairwise amino acid difference was measured on the
protein alignment that was used for the phylogenetic reconstruction. For a given
pair of aligned sequences, each substitution was scored according to the Miyata
amino acid replacement matrix72. Insertions were scored as the mean replacement
scores of each additional amino acid. The sum of these scores gave the pairwise
amino acid difference.

Evaluation of genomic proximity and sequence identity as determinants for tran-
scriptome identity. In Fig. 2f, we defined thresholds of genomic distance and amino
acid difference to attribute pairs of OSN populations as being close in terms of
genomic proximity between the OR genes they express or in terms of sequence
identity between their respective OR. For genomic proximity, we evaluated all
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intergenic distances between neighboring ORs belonging to the same cluster and
chose the 95th percentile of this distribution as the threshold value for a pair to be
considered close. For sequence identity, we evaluated all pairwise amino acid dif-
ferences between ORs belonging to the same class and chose the 5th percentile of
this distribution as the threshold value for a pair to be considered close. For Fig. 2g,
a pair was considered distant in terms of genomic proximity when the corre-
sponding OR genes were located in different OR gene cluster. A pair was con-
sidered distant in terms of sequence identity when the amino acid difference
between their corresponding ORs was higher than the threshold used to identify
the close pairs.

Chemicals. Odorants were directly purchased from Sigma-Aldrich, ethyl iso-
butyrate (W242802), acetophenone (42163). Lyral was obtained as a generous gift
from Dr. Christian Margot (Firmenich).

Odorant exposure. For all odorant exposures, on the day preceding the odorant
exposure mice were isolated and single-housed in a standard type II long cage.
Exposure assays started at 8:00 a.m. and lasted 5 h. For the exposed condition, a
cotton swab was imbibed with 200 µL of 5% odorant in a DMSO solution and was
placed in the cage, while for the control condition, a cotton swab was imbibed with
200 µL of DMSO only and was placed in the cage.

FACS-seq
Cell isolation, sorting, and sequencing. 7 weeks old Olfr16GFP/GFP and Olfr151GFP/GFP

male mice were used to isolate single fluorescent OSN populations from the whole
MOE. Mice were exposed as described above to lyral and acetophenone, respectively.
Control mice from each transgenic line were exposed to DMSO only. For each
condition, there were 3 samples, where each sample was constituted by a pool of 4
mice. After odorant exposure, mice were euthanized by intraperitoneal injection of
pentobarbital (150mg/kg), the whole MOE was extracted and OSNs were dissociated
by adapting the protocol described in Kaur et al.73. Briefly, the collected epithelia were
minced inside a tube containing a dissociation buffer (D-csyteine-HCl 1M, EDTA
100mM, Papain 0.3U/µL, DNAse I (Ambion) 2 U/µL and DNAse I 10× buffer
(Ambion), dissolved in freshly prepared and oxygenated cold aCSF). The aCSF
composition was the following: 118 mM NaCl, 25mM NahCO3, 10mM D-glucose,
2 mM KCl, 2 mM MgCl2, 1.2mM NaH2PO4, 2 mM CaCl2. Samples were then
placed at 37 °C for a total of 25min allowing enzymatic dissociation of the tissues,
during which they were subjected to a trituration step every 5min using polished
glass pipettes. At the end of the dissociation, each sample was filtered through a 20 µm
Nylon filter (Falcon), and centrifuged for 5 min at 200G. The supernatant was dis-
carded and replaced with ice-cold aCSF. Before FAC-sorting, samples were incubated
at 37 °C for 20min with Hoechst 33,342 (1mg/mL) to label live cells. Cell-sorting was
performed on an AriaII (BD Biosciences) cell-sorter, gated on Hoechst and GFP
fluorescence. Cells were collected directly in lysis buffer from the Qiagen RNeasy plus
micro kit. For the Olfr16GFP/GFP mice, 100 cells were collected per individual,
resulting in 400 cells per biological pool. For the Olfr151GFP/GFP mice, 50 cells were
collected per individual, resulting in 200 cells per biological pool. The difference in the
total number of cells collected per experiment derives from the original respective
OSN population sizes in the epithelium74. The RNA extraction was performed
according to the Qiagen RNeasy plus micro kit protocol. The SMARTer™ Ultra Low
RNA kit from Clontech was used for reverse transcription and cDNA amplification
(12 PCR cycles) according to the manufacturer’s specifications, starting with a total
volume of 9.5 µL per sample as total RNA input. 200 pg of cDNA were used for
library preparation using the Nextera XT kit from Illumina. Library molarity and
quality was assessed with the Qubit and Tapestation using a DNA High sensitivity
chip (Agilent Technologies). Libraries were pooled at equimolarity and loaded at 11
pM for clustering on a Single-read Illumina Flow cell for the Olfr16GFP/GFP experi-
ment. Reads of 50 bases were generated using the SBSHS v3 chemistry on an Illumina
HiSeq 2500 sequencer. Deep sequencing of the Olfr16 dataset yielded a mean of
37.2M (±1.3M) short single-reads for the control condition, and a mean of 35.4M
(±4M) short single-reads for the exposed condition. For the Olfr151 experiment,
libraries were loaded at 2 nM for clustering on an Illumina HiSeq 4000 sequencer.
Deep sequencing of the Olfr151 dataset yielded a mean of 58.5M (±1.5M) short
single-reads for the control condition, and a mean of 62.1M (±1.3M) short single-
reads for the exposed condition.

FACS-seq mapping and counting. STAR (v.2.7.0)57 was used to map the generated
reads on the Ensembl Mus musculus genome primary assembly ref. 38 (GRCm38)
that included the IRES-tau-GFP sequence. Gene expression quantification was
carried out using featureCounts version 1.6.375.

FACS-seq data filtering. To filter out lowly- and non-expressed genes for each OSN
population (Olfr16 and Olfr151), a count threshold was determined to exclude all
genes with expression values below this threshold across either the 3 control or 3
exposed samples. Briefly, the density distribution of gene counts was used to cal-
culate the local minimum and this value was set as the threshold.

FACS-seq gene expression analysis. The DESeq2 package (v.1.30.1) was then used to
perform differential expression analysis. After fitting a negative binomial

generalized linear model (GLM), the Wald test (two-tailed) was used to test for
significance of gene expression at a log2 fold-change threshold of 0.5. To control
the false discovery rate, the Wald test p values were adjusted for multiple com-
parisons using the Benjamini–Hochberg procedure76. Fold changes of DEGs were
estimated using the apeglm R package version 1.16.0.

Gene Ontology enrichment analyses. All GO enrichment analyses were performed
testing GO terms mapped to the DEGs common to both analyzed OSN populations
(Olfr16 and Olfr151) against a background of GO terms mapped to all other genes
commonly expressed in both OSN populations. DEGs were analyzed for GO
enrichment by the topGO package using the runTest function with the “classic”
algorithm and the Fischer statistics. To control the false discovery rate, the p values
were adjusted for multiple comparisons using the Benjamini–Hochberg
procedure76. The result of the GO terms analysis were then plotted with the
ggplot2 function in R.

Bulk RNA-seq. The raw data generated in this experiment was previously pub-
lished in von der Weid et al.25.

Bulk RNA-seq mapping and counting. The mapping and counting of bulk RNA-seq
data was performed exactly as described for FACS-seq data above (FACS-seq
mapping and counting, data filtering and expression analysis).

Exon-intron split analysis. Using the STAR read aligner tool (v.2.7.0)57, reads
from the FACS-seq and 8 weeks old male RNA-seq experiments were mapped to
theMus musculus Ensembl transcriptome reference (GRCm38 from Ensembl). The
annotation file used for this analysis only contained protein coding gene annota-
tions. Gene expression quantification was carried out using featureCounts75 ver-
sion 1.6.3. To quantify intronic reads for a specific gene, we subtracted the reads
mapped on the exon from the reads mapped to the entire transcript. For data
shown in Fig. 5c, d, f, g, for each gene and feature counted (i.e., exonic or intronic
reads), the DESeq2 normalized counts of the exposed samples were normalized by
the mean DESeq2 normalized counts of the control samples. Hence, each dot on
the plot corresponds to an odorant-exposed sample. The values on the y-axis are
raw fold-change values, but the scale of the y-axis is in log 2. For Fig. 5i, given the
low amount of intronic reads in OR genes, we only show OR genes with more than
14 intronic read counts. To this list, we added Olfr171, as it was described in Fig. 5j.
Transcriptional downregulation of intronic and exonic features in exposed mice
was tested by a two-sample independent t test using a linear model in R. P values
were adjusted using the FDR method. To represent the raw data of the exon-intron
split analysis prior to fold-change calculation (shown in Supplementary Fig. 12), we
centered and scaled (i.e., z-scored) the DESeq2 normalized counts of all samples
per gene and features counted (i.e., exonic or intronic reads).

In situ hybridization. C57BL/6 J adult male mice were exposed to odorants for 1 h
(four mice exposed to ethyl isobutyrate, four mice exposed to DMSO only), after
which they were euthanized. Heads were placed in 10% formalin, purged of gas, left
overnight at 4 °C, transferred to 15% sucrose for 12 h, followed by 30% sucrose for
12 h. They were embedded in OCT and frozen. The main olfactory epithelium was
cut in 16–18 μm coronal sections with a cryostat-microtome. Slides were conserved
at −80 °C until use. RNA probes were designed to have a maximum identity with
aspecific targets of 80% over a 100-bp window. Primers to amplify the probe for
Olfr171 were: AGTGCCTTCTCTTGGCAGT (forward) and GAGTGTGGGTGT-
CAGGATGG (reverse). The probe was transcribed with fluorescein-labeled UTP
using the Roche RNA Labeling Kit and In-Vitro Transcription Kit (Roche, ref.
11175025910) following the manufacturer’s protocol. Slides were post-fixed in 10%
formalin for 15 min, and washed for 3 min in PBS. Slides were incubated in 0.1%
H2O2 for 30 min and then washed twice in PBS for 3 min. Slides were then treated
with 10 μg/ml proteinase K in TE for 5 min, followed by an incubation in 10%
formalin for 10 min and washed in PBS for 3 min. 0.2 M HCl was then added to the
slides for 10 min, followed by a 3 min PBS wash. Then the slides were pre-
incubated in 0.1 M triethanolamine HCl, pH 8 for 1 min and incubated in 0.1 M
triethanolamine HCl with acetic anhydride for 10 min, followed by a 3 min PBS
wash. Probes were denatured for 7 min at 70 °C and diluted 1:400 in 50% for-
mamide, 10% dextran sulfate, 1 μg/μl tRNA and 1× Denhardt’s solution in
nuclease-free water. Slides were incubated in the hybridization buffer for 14–18 h at
65 °C. Slides were washed 2 × 30 min at 65 °C and 1 × 30 min at 20–25 °C in 1×
SSC, 50% formamide, 0.1% Tween-20, H2O DEPC. They were then pre-incubated
30 min with 1× MABT with 2% Blocking Reagent (Roche, ref. 001,11,096,176).
Roche Anti-Fluorescein POD Fab fragments (Roche, ref. 11426346910) was diluted
1:200 in pre-incubation mix and slides were covered with the antibody solution for
30 min. Slides were washed 3 × 5min in TNT (150 mM NaCl, 100 mM Tris, HCl to
pH 7.5 in 10 L, 0.05% Tween-20), treated with PerkinElmer Biotinylated Tyramide
1:50 in Amplification Diluent for 30 min, and washed 3 × 5min in TNT. Finally
they were treated with Alexa-488-labeled Streptavidin (Life Technologies) 1:100 in
PerkinElmer Amplification Diluent for 30 min, washed 3 × 5min in TNT and then
incubated with PBS. Fluorescence intensity was assessed by measuring the total
fluorescence of a disk with an area of 1.8 μm2 in diameter that comprised the
transcription foci using the ImageJ software. Fluorescence intensity ratios were
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calculated by dividing the fluorescence level of each exposed neuron to the mean
fluorescence of control neurons that had been processed in parallel.

RNAscope in situ hybridization. 5-weeks-old male and female Olfr16GFP/GFP mice
were exposed to odorants for 5 h (n= 3 mice exposed to 5% lyral in DMSO, n= 3
mice exposed to 5% acetophenone in DMSO and n= 6 mice exposed to DMSO
only). Exposure to the two odorants took place on different days, each time with a
control group. Lyral is a known ligand for Olfr16, while acetophenone is known
not to activate this receptor25. Mice were euthanized and heads were fixed in
freshly prepared 4% PFA overnight at 4 °C. Tissue was sequentially immersed in
10% sucrose for 18 h, 20% sucrose for 8 h and 30% sucrose for 8 h, always at 4 °C.
Heads were embedded on OCT, frozen in liquid nitrogen and stored at −80 °C
until sectioning. The main olfactory epithelium was cut on a cryostat microtome in
16 μm coronal sections. For each mouse, 2 sections were used for RNAscope ISH.
Endogenous GFP signal was used to select section with a high number of OSNs
expressing Olfr16. RNAscope staining was performed according to the manu-
facturer’s protocol (RNAscope™ Multiplex Fluorescent V2 Assay, ref. 323136,
Advanced Cell Diagnostics). Pretreatment was performed according to guidelines
for fixed-frozen tissue and included post-fixation, de-hydration, hydrogen peroxide
treatment, 5 min target retrieval and 5 min Protease III treatment. Sections were
labeled with probes for Mustn1 and Olfr16 (Mm-Mustn1, ref. 568751, Mm-Olfr16-
C3, ref. 538841-C3, both from Advanced Cell Diagnostics). Probes were visualized
with Opal fluorophores (OpalTM 570, ref. FP1488001KT, OpalTM 690, ref.
FP1497001KT, Akoya biosciences). Sections were counterstained with DAPI and
mounted with ProLongTM Gold antifade (ref. P36935, Invitrogen).

Slides were imaged with a Zeiss LSM800 confocal microscope equipped with
405, 555, and 639 nm laserlines, using a 40 × 1.3 NA oil-immersion objective. Cells
of interest were identified based on the expression of Olfr16. Images of 5 Z stacks
were acquired and exported as orthogonal projections for analysis. Images were
analyzed using the CellProfiler software, version 4.2.177. with the Speckle Counting
pipeline. As the cell-density within the main olfactory epithelium does not allow for
automated cell segmentation, the contour of Olfr16-positive cells was manually
drawn based on the Olfr16-labeling and DAPI staining (IdentifyObjectsManually).
Then, the number of Mustn1-positive puncta were counted automatically within
this ROI. The same settings for probe detection were used for all images pertaining
to the same experiment, including both exposed and control mice. As Olfr16 is a
highly expressed gene (always > 15 puncta/cell) the number of fluorescent spots per
cell can not be quantified78, we recorded the total number of labeled pixels and the
total intensity of pixels within each Olfr16-positive cell. These are arbitrary units
and do not reflect absolute transcription values, but allow us to estimate changes in
transcription between control and exposed mice.

Statistics and reproducibility. Statistical tests and data representation were
computed in R version 4. Data points were represented in the graphs when the
number of dots was <10, otherwise the distribution of dots were represented in
violin plots. All statistical tests were performed considering a two-sided alternative
hypothesis. Continuity correction was applied to Wilcoxon rank sum tests. Sig-
nificance was assessed for p values < 0.05. Detail of all statistical tests are shown in
Supplementary Table 1.

For transcriptional quantification by RNAscope, the experiment was performed
once for each odor and included non-exposed mice in both experiments. Each
experiment included several independent biological samples from each condition.
For transcriptional quantification by standard in situ hybridization, the
experiments was repeated four times and included both control and exposed
samples in each experiment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The FACS-seq and single-cell RNA-seq data generated in this study have been deposited
in the NCBI GEO database under accession code GSE185168. The two custom
annotations of the mouse genome GRCm38 that were used for scRNA-seq, FACS-seq
and bulk RNA-seq as well as the OR protein phylogeny have been deposited in figshare
[https://doi.org/10.6084/m9.figshare.c.5957625]. Source data are provided with
this paper.

Code availability
All original code used to analyze data reported in the paper are provided at the GitHub
repository [https://github.com/irlabgenev/DREAM_pt2].
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