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Universal mechanism for hybrid
percolation transitions
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Hybrid percolation transitions (HPTs) induced by cascading processes have been observed in diverse
© complex systems such as k-core percolation, breakdown on interdependent networks and cooperative
Accepted: 7 June 2017 . epidemic spreading models. Here we present the microscopic universal mechanism underlying those
Published online: 18 July 2017 * HPTs. We show that the discontinuity in the order parameter results from two steps: a durable critical
. branching (CB) and an explosive, supercritical (SC) process, the latter resulting from large loops
inevitably present in finite size samples. In a random network of N nodes at the transition the CB
process persists for O(N*3) time and the remaining nodes become vulnerable, which are then activated
in the short SC process. This crossover mechanism and scaling behavior are universal for different HPT
systems. Our result implies that the crossover time O(N'?) is a golden time, during which one needs to
take actions to control and prevent the formation of a macroscopic cascade, e.g., a pandemic outbreak.
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Percolation is a prototypical model of disorder, which is often used to illustrate the emergence and the resilience
of a giant cluster as links between individuals are added and deleted one by one, respectively’. A giant cluster at
a transition point in the mean field limit is to good approximation a critical branching (CB) tree with unit mean
number of offspring 3. The giant cluster of recovered nodes at a transition point of a simple epidemiological
model, the so-called susceptible/infective/removed (SIR) model? one of such percolating clusters grown in the
CB processes. Percolation transition is known as a robust continuous transition®.

In a number of systems, however, the situation is more complex: Hybrid percolation transitions (HPTs) occur
showing features of both second and first-order phase transitions at a transition point®=. In these transitions, the
order parameter m(z) exhibits the behaviors simultaneously as

0 for z < z,,
m(z) = 4
my + r(z — z.)” for z> z, (1)

where m; and r are constants and /3 is the critical exponent of the order parameter, and z is a control parameter.
Examples include the k-core percolation®'?, and the cascading failure (CF) model on interdependent networks!*-'¢.
In those systems, as nodes or links are removed one by one above the transition point, the order parameter, the
relative size of the giant component decreases continuously, approaches a nonzero value in a critical way at the
transition point, where it finally collapses to zero: A HPT occurs. Is there a universal mechanism behind this
phenomenon? Can it be formulated in terms of branching processes? Even though these questions are simple and
fundamental, there has been no clear answer yet.

Recently we showed on the example of the CF model that there are two kinds of critical phenomena related
to the HPT". One is carried by the behavior of the finite cascades and the other one by the order parameter (the
relative size of the giant cluster). We have to distinguish between “finite” and “infinite” avalanches (the latter hav-
ing the size of the giant cluster). Once an infinite avalanche occurs, the order parameter falls into an absorbing
state. Therefore, occurrence of an infinite avalanche is a distinct feature of a HPT, whereas such infinite avalanche
is absent for a second-order percolation transition. Thus we need to investigate what happens in the system while
an infinite avalanche proceeds.

We recall the results of previous studies on k-core percolation'? and in interdependent networks'® about the
temporal evolution of the giant cluster. The order parameter decreases rapidly in the early time regime, exhibits a
plateau for a long time in the intermediate time regime, and decreases rapidly in the late time regime. Moreover, it
was found that infinite avalanches proceed in the form of a CB process for a long time, followed by a supercritical
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process. There has been considerable effort to explain the mechanism leading to this scenario for specific models's-2°.

In particular, refs 19 and 20 pointed out the importance of large loops in the creation of the supercritical process
for an epidemic model. However, it is still unclear whether there is a universal mechanism, which explains why,
how and when such SC processes occur in the late time regime. Here we address these questions and show that
there indeed exists such a universal mechanism, which governs the generally observed crossover behavior in a
large class of HPT models.

In this paper, we first investigate the mechanism of the crossover behavior from the CB to SC processes using a
simple epidemic model with two-step contagion processes®! that exhibits a HPT. After explaining the mechanism
of the HPT on this model, we will show that the same mechanism occurs in other models. We will consider k-core
percolation, the threshold model, and the CF model on interdependent networks.

Results

Two-step contagion model. We consider the epidemic model introduced in ref. 21, which is a generaliza-
tion of the so-called susceptible (symbolized as S)-infected (I)-removed (R) (SIR) model by adding a weakened
state (W) between susceptible and infected states. This model is referred to as the SWIR model. Various aspects of
the model were studied in refs 22-26. Besides the usual reactions S+1— 2I and I — R of the SIR model we have
the additional reactions: S+ I — W+1Iand W+1— 2I. The reaction rate from W to I is larger than the rate from
Sto I. Specifically, we start the dynamics on Erdds-Rényi (ER) random graphs of N nodes with all nodes in state S
but one node that is in state I. At time step #n, a node in state I (denoted as I,, where subscript represents genera-
tion) is selected randomly, the states of all its neighbors are checked one by one. If the state of a neighbor is S, then
this state changes either i) to I, , with probability & or ii) to W with probability p. If the state of a neighbor is W,
then the state W changes to I, with probability v. We repeat the above process for all nodes in state I, and then
the state I, changes to R for each associated node. Then all dynamics at time step # are completed and we move to
the next time step n+ 1. This dynamics continues until the system reaches an absorbing state in which no more
infectious nodes remain in the system. The order parameter m(r) is defined as the fraction of nodes in state R.

Under the given reaction probabilities, a HPT occurs if the mean degree z > 2/(y/ 1* + 4uv — 1) and otherwise
a continuous transition occurs. This condition is the same as that obtained in ref. 27. The transition point is
k.= 1/z. The detailed derivations of the transition point and the condition for the HPT are presented in
Supplementary Information.

At the transition point £, a single infected node can trigger an infinite avalanche of size O(N) with a certain
probability P_.. With the remaining probability, finite avalanches occur and their sizes are o(N). When an infinite
avalanche occurs, as shown in Fig. 1(a), the order parameter remains almost zero (o(N)) for long time up to
the characteristic time n(N), beyond which it increases rapidly and reaches its final, O(N) value in a short time
period. To see how an infinite avalanche proceeds at a microscopic level, we trace an infection dynamics in the
view of branching processes as shown schematically in Fig. 2. At the step n=0, a single infectious seed is present.
At each time step, infected and weakened nodes are generated following the aforementioned rule. Because the
probability to generate an infectious node per each edge is 1/z and the mean number of edges outgoing from the
infected parent node is z, a single infected node can be generated on average. There is some probability that a
weakened node is created. Thus a CB tree of recovered nodes is generated. We notice that, although during the
CB process many W nodes are created, there are very few nodes produced from them in state I (consequently
nodes in state R) through the reaction W+ I— I+ I as shown in Fig. 1(b). However, as the dynamics proceeds and
approaches n,(N), the reaction W+ I — I+ I occurs more frequently and the branching ratio to generate a node in
state I through this reaction becomes non-negligible.

In order to determine the crossover point between CB and SC we recall that the size of the largest cluster at
the critical average degree z, of ordinary percolation of the ER graph is O(N??)?%2°, The giant cluster at critical-
ity has the topology of a CB tree such that the branching process persists up to the steps O(N'?) beyond which
finite-size effects appear in the form of short-range and long-range loops?® (see also Supplementary Information).
In the epidemic models on ER networks the average degree is above the percolation threshold (z > z,, otherwise
global spreading would be trivially impossible), however, the reaction probability x, = 1/z assures just the critical
branching probability by which the infection proceeds. Thus the growing cluster of R nodes can be considered as
if a critical ER cluster would develop on the ER supercritical graph. In accordance with this picture the probability
distribution of the generation at which a loop is formed in CB processes shows a peak at a characteristic gener-
ation n,(N) ~ O(N'?) (Fig. 3). This means that long-range loops begin to form mostly when a CB tree is grown
up to n(N). Based on this, we conclude that before n, the I-state nodes are almost entirely generated through
the CB tree and the W-state nodes accumulate to an extent of O(N*?) because the number of W-state nodes is
proportional to that of I-state nodes. Around #.(N) the loops become important, and due to the long range links
the reaction W+ I —I+1 occurs over the entire system, with W-state nodes having been generated at all times
to O(N'?) (see Supplementary Information). The accumulated population of W-state nodes and the possibility of
long-range loop formation lead to an increase of the number of infected offspring above the critical value result-
ing in the SC process and eventually in the jump of the order parameter. We remark that up to the characteristic
generation n,(N), the population of recovered nodes in state R is less than or equal to O(N*?), sublinear to the
system size O(N), whereas beyond n.(N), the population suddenly increases to O(N). Thus, we regard the charac-
teristic generation n(N) as the so-called golden time, during which one needs to take some actions to control and
prevent a pandemic outbreak. We also remark that the formation of long-range loops needed for a discontinuous
percolation transition was first observed and conjectured in a model of two interacting epidemics'*?°. However,
the connection between the length scale of long loops and finite-size scaling of the ordinary percolation was miss-
ing, so that the scale of golden time could not be predicted.
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Figure 1. Evolution of the fractions of nodes in each state and of each reaction type. (a) Plot of the fraction

of nodes in states R (blue, solid curve), W (green, dashed curve) and I (red, dotted curve) as a function of
generation n. Inset: Plot of the maximum slope of the curve R(n) vs N (o) (left vertical axis). The maximum
slopes are independent of N. Plot of the characteristic time n(N) vs N (A) (right vertical axis). The fitted straight
line has slope 0.35. (b) Plot of the branching ratios as a function of generation n for several types of reactions.
Here A (B) represents the mean number of offspring that change their state from S to I (W) by the their parents
in state I each reaction S+1— 2I (S+I— W+1I). C represents the mean number of offspring that change their
state from W to I by the reaction W+ I— 2I. For both (a,b), data are obtained from a single realization of an
infinite avalanche on an ER network with mean degree z=38 of system size N=5.12 x 10° using the coefficients
k=1/8, p=1/16 and v=10.9.

k-core percolation. k-core percolation is known as a prototypical model that exhibits a HPT. The k-core
subgraph is identified on a graph (here the ER graph with mean degree z) as follows. One starts with removing
all nodes that have degree less than k. These removals may decrease the degrees of remaining nodes. If degrees
of some nodes become less than k, then those nodes are removed as well. This process is repeated until no more
node is removed. For z > z,, a k-core subgraph remains after the pruning process and its size is O(N). The order
parameter is the relative size of the k-core subgraph.

Here we remove a randomly chosen node from the k-core subgraph and repeat the pruning process once
again. Near z,, this process can remove all nodes (infinite avalanche of size O(N)) or a fraction of nodes (finite
avalanche of size o(N)) from the k-core subgraph, each of which contributes to a discontinuous or continuous
change of the order parameter in the thermodynamic limit, leading to a first-order or second-order transition,
respectively®. As it was shown earlier in ref. 30 the critical exponents of the k-core percolation model are of two
kinds: those associated with the order parameter and those with finite avalanches. This is the typical behavior at
hybrid percolation transitions induced by cascade dynamics.

We focus on the infinite avalanches at z, from the perspective of branching processes. Let us consider a k-core
subgraph configuration at z, in which each node has at least k degree and the deletion of node i leads to the col-
lapse of the entire system. The node i is regarded as an infectious seed node (I). We check the degrees of neighbors
of the node i. If a neighbor of i has degree k, it is regarded as a susceptible node (S), and changes its state to I
because it will be deleted after node i gets deleted. If a neighbor has degree £ > k, then it is regarded as a general-
ized weakened node and denoted as W,_,. Now its state changes to W, ;. The subscript £ — k refers to the
threshold and decreases as the neighbors of that node are deleted. When it becomes zero during an avalanche, the
state W,_, becomes W and the node has the same role as weakened nodes in the SWIR model. This node gets
infected when it contacts an I-state node once more. In analogy with the process in the SWIR model the infective
state in the #-th generation or branching step is denoted by I,. Once the dynamics in #-th step is completed, the
nodes in state I, are deleted. A schematic illustration for a specific example of the avalanche dynamics is presented
in Supplementary Information.

Figure 4(a) shows the branching ratio as a function of branching step # for an infinite avalanche of k-core
percolation. We find again that the CB process continues up to the characteristic step #n.(N) when it changes to
the SC process. By the crossover time 7, large number of nodes get their degrees reduced to k so that they become
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(a) (b)

Figure 2. Schematic picture of the epidemic spreading process in the SWIR model. (a) The process begins from
an infectious node. (b) It can infect a susceptible node among its neighbors and change the state thereof from S
to I and can also change the state of another neighbor from S to W. This type of process persists for a long time
and the critical branching tree is constructed. After a long O(N'?) time passes, an infectious node can contact a
node in state W that was created much earlier and change its state from W to I'in (d). In addition, (d) the I-node
in (c) infects a susceptible neighbor and changes its state to I. Thus, a SC process occurs, leading to the jump in
the order parameter.
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Figure 3. Distributions of loop lengths for different system sizes. Scaling plot of the probability P, of the
generation n;at which a loop is formed in critical branching processes on ER networks. Data for different
system sizes are well collapsed onto a single curve with the scaling form of B, N 13 a5 a function of n,/N'3, Data
are obtained from ER network with mean degree z=8 far away from the transition pointz,=1.
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Figure 4. Evolution of each reaction type for several models. (a) For k-core percolation with k=3, plot of the
branching ratios as a function of generation n for each type of reactions during an infinite avalanche. A
represents the ratio of removed nodes with original degree z= 3 (z>> 3), which corresponds to the reaction

S+ I— 2I for the SWIR model. B does the ratio of the reaction W;_;.o+I— W+ I, which corresponds to the
ratio of generating weakened nodes denoted by W. C does the ratio of nodes changing their degrees to z=k=3
(W+1—2I). A+ Crepresents the total branching ratio of I. Data are obtained from a network with

N=5.12 x 10° at a transition point. (b) For the threshold model, a similar plot. A and B represent the mean
number of Iand W offsprings generated by the reactions $+1—2Iand W, , m, + 1 — W + I, respectively. C
does the ratio of nodes of I by the reaction corresponding to W+1—2I. e sum of the mean I offspring from
A and C represents the total branching ratio of I. Data are obtained from a network with N=5.12 x 10° ata
transition point. (c) For the CF model, a similar plot. A represents the ratio for S+ I— 2I. B is the mean number
of new W-state nodes (k4 or kg becomes unity for the first time). C is the mean number of I-state nodes
transformed from W nodes (W +I— 2I). A+ C represents the total branching ratio of I. Data are obtained from
a network with N=5.12 x 10° at a transition point.

W-nodes. The SC process is again driven by the meeting of an old W node with a new I node, W+1— I+ 1. Such
areaction sets up the rapid SC process and the entire collapse of the k-core subgraph.

The threshold model. The threshold model was introduced in ref. 31 for understanding the spread of fads,
cultural traits, the diffusion of norms, and innovations, on social networks. In this model, each node i is assigned
its threshold value g; and exists in one of two states, either active or inactive state. An inactive node i with m, active
neighbors among k; total neighbors (degree) becomes active when its fraction of active neighbors, m;/k; exceeds
its threshold value g,. This threshold model is known to exhibit a hybrid phase transition when mean degree z
is sufficiently large. Here we show that the mechanism underlying this hybrid phase transition is the same as we
observed in the previous instances.

To illustrate how the universal mechanism works in the threshold model, we reconsider the rule of the thresh-
old model in the perspective of the SWIR model in the following way: We match up active nodes in the threshold
model with either infectious I or recovered R nodes in the SWIR model. Among the active nodes, an I-state node
is the node that becomes active at the preceding step. The other active nodes are regarded as R-state nodes.
Inactive nodes are matched up with either susceptible S or weakened W nodes in the SWIR model: (i) A node
satisfying k;q; < 1 from the beginning is regarded as susceptible node. (ii) A node satisfying k,q; > 1 is regarded as
a generalized weakened node and denoted as W ka 51m11arly to the k-core percolation case. Then the dynamics

proceeds following the same way as in the k-core percolatlon
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We performed simulations with a single threshold value m;=0.16 for all nodes on ER networks with mean
degree z, = 7.47707 which is the transition point for the given threshold value. At this point, the cascade dynamics
becomes critical, so that the avalanche size distribution follows a power law.

We obtain the branching ratios as a function of dynamic step (generation) # for several types of reactions for
the threshold model, which is shown in Fig. 4(b). Here we also find a crossover from a CB to SC process similar to
that of the SWIR model. Again the accumulation of a sufficient number of weakened nodes during the CB process
and their activations through long-range loops are the underlying mechanism of the SC behavior.

The CF model on interdependent networks. We consider here ER interdependent networks in the sin-
gle layer representation of ref. 32. In this picture we have a single ER graph but with two types of links (A and
B), for each having the average degree z. The order parameter is the relative size of the giant mutually connected
cluster (GMCC), in which every pair of nodes are connected following each type of links. The CF model exhibits
a HPT at the transition point z.!>1.

As with k-core percolation, the removal of a node from the GMCC can induce further removal of nodes from
the GMCC. This avalanche can be infinite or finite, each of which contributes to the discontinuity of the order
parameter or the critical behavior of the HPT, respectively!”. Here we focus on the infinite avalanches at z, which
leads to the collapse of the entire GMCC.

We consider the avalanche process in the view of a branching process of removed nodes'®. To describe the
avalanche process in terms of the SWIR model, we determine the effective degrees k,(j) and kz(j) of each node j
for each type of links. The effective degree k,(j) (kz(j)) is defined as the number of A-type (B-type) of links of the
node j following which one can reach O(N) nodes. Each node in the GMCC has k, > 1 and k> 1. We explain how
to determine the effective degrees of each node in simulations in Supplementary Information.

The cascading dynamics proceeds in the following way: An avalanche is initiated by removing a node chosen
randomly from the GMCC. During an avalanche, we identify removed nodes at each time step, then the effective
degrees of the neighbors may decrease. As a result one or both type of the effective degrees of some neighbors can
become zero. Then, they are removed from the GMCC at the next time step, i.e., they are infected and removed
at the next time step. Such avalanche process propagates to all neighbors of those infected nodes recursively until
no more node is removed.

If a node is removed at a time step, it is regarded as an I-state node and it becomes R-state node at the next time
step. If one or both effective degrees of a node is unity from the beginning, the node is regarded as a S-state node
because it can be infected (i.e., removed) by contacting an infected node (i.e., losing the unit effective degree). If
one or both effective degrees of a node become unity during an avalanche, we identify the state of that node as W
because the node became vulnerable as a result of contacting infected nodes. This view enables us to understand
the correspondence between the cascading dynamics of the CF model and the dynamics of the SWIR model. A
specific example of the avalanche dynamics is presented in Supplementary Information.

Figure 4(c) shows the branching ratio as a function of branching steps # for an infinite avalanche of the CF
model. We find that a CB process persists and the generating ratio of the weakened nodes is constant with some
fluctuations. The number of infected offspring from weakened nodes is negligible up to the characteristic step
n.(N), beyond which it increases rapidly. Thus the generation ratio of infected offspring exceeds unity beyond
n(N): a collapse of the giant MCC takes place.

Discussion

We disclosed the universal mechanism of the HPT induced by cascade dynamics on ER networks. We have shown
that during the CB processes, the order parameter sustains up to the time step of O(N'?), and W-state nodes accu-
mulate to an extent of O(N*?). In the SWIR model the nodes are in W state if they have already got into contact
with infected node but only partial infection (or weakening of the immune system) took place. The corresponding
(generalized) weakened state in k-core percolation is that of a node, which has already lost some neighbors but
the number of alive neighbors is still above k. In the CF model the nodes with reduced effective degrees (but larger
than zero) correspond to the generalized weakened nodes. Finally, for the threshold model the nodes having
infected (active) neighbors but less than required by the threshold criterion are the weakened ones. Those nodes
may be thought of as powder keg in explosive percolation. After the CB processes, those W-state nodes change
their state to state I in the way of a SC process. Such reactions are achieved along long-range loops of length
O(N'?) presented in finite systems. As a consequence, infected nodes are generated abundantly in a short time,
leading to a discontinuity of the order parameter. This explains that the SWIR model and k-core percolation do
not exhibit discontinuous transitions in low dimensional Euclidean space because of the absence of long-range
connections in such space. Moreover, we showed that the mechanism is universal for diverse systems such as the
multi-stage contagion models including the SWIR model and the threshold model, k-core percolation and the
CF model on the interdependent networks. We expect more models also to belong to this category. Finally, we
regarded the characteristic generation n,(N) ~ O(N'?) as the golden time during which one can control a pandemic
outbreak of macroscopic disaster, using for instance the explosive percolation idea®. Because, for n < n(N), the
number of damaged nodes is sublinear as O(N*?) to the system O(N), while for n > n (N), it is linear as O(N).
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