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Abstract
Next-generation sequencing platforms are dramatically reducing the cost of DNA sequencing.With these technolo-
gies, bases are inferred from light intensity signals, a process commonly referred to as base-calling. Thus, under-
standing and improving the quality of sequence data generated using these approaches are of high interest.
Recently, a number of papers have characterized the biases associated with base-calling and proposed methodo-
logical improvements. In this review, we summarize recent development of base-calling approaches for the Illumina
and Roche 454 sequencing platforms.
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INTRODUCTION
Over the last three decades, DNA sequencing has

become a workhorse in computational biology,

comparative genomics and biology in general.

Traditionally, sequencing has been performed using

Sanger’s method [1], whose refinement over the

years culminated with long reads of up to

�1000 bp at an error rate as low as 10�5error per

base [2]. A staggering demand for cheap and fast

sequencing technology and substantial funding [3]

has lead to the development of numerous new

approaches to sequencing. Many of these approaches

have been incorporated in commercial products

including Roche 454 (Roche 454 Sequencing,

http://www.454.com/), Illumina (Illumina Inc,

http://www.illumina.com/), SOLiD (Applied

Biosystems, https://products.appliedbiosystems.

com/), Polonator (Applied Biosystems, https://

products.appliedbiosystems.com/), Helicos (Helicos

BioScience Corporation, http://www.helicosbio.

com/), Pacific Biosciences (Pacific Biosciences,

http://www.pacificbiosciences.com/) and Intelligent

Bio Systems (Intelligent Bio Systems, http://

intelligentbiosystems.com/). These next-generation

sequencing technologies improve both speed and

cost at the price of a lower accuracy and shorter

read lengths compared to Sanger sequencing.

Reducing the cost allows the exploration of new

problem domains using sequencing such as assessing

the variability of genomes [4–7]. Illumina announced

a service to sequence a human genome for less

than $20 000 (http://investor.illumina.com/phoe-

nix.zhtml?c¼121127&p¼irol-newsArticle&ID-

1434418). Ultimately pushing the price down to

$1000 will allow to sequence the genome of an

individual as a routine medical test [8].

The next-generation sequencing technologies

all rely on a complex interplay of chemistry, hard-

ware and optical sensors. Adding to this complexity

is software to analyze the sensor data to predict the

individual bases. This last step in the process is

referred to as base-calling. While the overall produc-

tion pipelines are similar across sequencing platforms,

they differ in mechanistic details which affect the

types of errors made during sequencing. The char-

acterization of errors associated with the different

sequencing platforms is of crucial importance to

downstream analysis [9]. The accuracy of sequencing

can be improved by increasing the coverage, i.e rese-

quencing the same DNA sample multiple times.
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The data is then aggregated into a consensus se-

quence with lower error rate [10]. Conversely,

more accurate base-callers reduce the coverage

required to reach a given accuracy and therefore dir-

ectly decrease the sequencing costs.

In this review, we focus on recent progress

in base-calling algorithms for the Illumina and

Roche 454 platforms. Both are well-established

next-generation sequencers for which third party

programs have been developed as alternative to the

vendor base-calling implementation. For a broader

overview of next-generation sequencing technology

and data processing pipeline, we refer to [11]. In the

next section we briefly describe the technology of

the Illumina platform with a focus on its biases. We

then review several recently published alternative

base-callers and compare their performances in

terms of accuracy and speed. We then turn to the

Roche 454 platform again focusing on the difficulties

associated with its technology. We finish this review

with a discussion on benefits and drawbacks

of the different approaches described and motivations

for future developments in this active area of

research.

ILLUMINA
The Illumina platform relies on the generation of a

single strand DNA library by random fragmentation

of a DNA sample. After addition of universal adapt-

ers to the templates, the templates are spread in an

eight lane flow cell and immobilized on glass [12].

Following in place bridge amplification, this process

generates a large number of clusters of identical

templates on the glass surface. The sequence of the

templates in the clusters is then determined using

reversible terminators chemistry [13]. In every

sequencing cycle a single fluorescently labeled,

30-blocked nucleotide is synthesized to each comple-

mentary strand. After incorporation, the fluorescent

labeling can be detected using imaging technology.

Finally, the labels and terminators are chemically

removed in order to prepare the complementary

strands for the next sequencing cycle. A more de-

tailed description of the process can be found in [14].

The Illumina platform suffers from numerous

biases due to imperfect chemistry and sensors

(Figure 1). During template preparation mixed clus-

ters occur whenever multiple templates are colocated

[15]. Such clusters need to be excluded from down-

stream analysis. While sequencing, a strand which

has failed to incorporate a base in a given cycle

will continue to lag behind. This is referred to as

phasing. On the other hand, if multiple bases are

synthesized in a single cycle, this is called pre-

phasing. Phasing, pre-phasing and the decay of

signal intensity from one cycle to another, again

due to imperfect chemistry, result in an increase of

base-calling errors towards the end of reads.

Furthermore, in early chemistries (e.g. FC-104-

100x), an accumulation of Thymine (T) due to in-

complete cleavage of the T-dye has been reported

[15]. Yet other biases are due to the limitations of the

optical detection. The emission frequency spectra

corresponding to the four dyes partly overlap. As a

result, the intensity quadruples detected at each

cycles show some positive correlation. This effect,

commonly referred to as cross-talk, has been found

to be cycle dependent [16]. Finally, due to optical

effects, the intensity is uneven across each tile, with

lower intensity toward the edges [17].

BASE-CALLING
The Illumina sequencing platform is shipped with

GApipeline, which implements image analysis

(Firecrest), base-calling (Bustard) and alignment to

reference sequences. Bustard applies a cycle inde-

pendent correction for cross-talk, followed by the

correction of phasing and pre-phasing. After these

corrections have been applied the base with the

highest intensity is chosen. For quality control, a

sample of the bacteriophage fX174 genome is

usually included in one of the eight lanes of the

flow cell. A more detailed description of the

base-calling algorithm implemented in Bustard can

be found in [19].

Within the last 2 years, numerous papers have

been published which improve upon the native

base-calling implementation. The first among them

which was Alta-Cyclic. Alta-Cyclic uses a parametric

model for dephasing and then corrects for cross-talk

using a cycle dependent cross-talk matrix. Support

Vector Machines (SVM) are used to determine the

base based on the four intensity values. To account

for signal decay and cycle dependent cross-talk

Alta-Cyclic uses a different SVM for every cycle.

In order to optimize the SVMs and phasing param-

eters supervised learning is used. Alta-Cyclic per-

forms a grid search to find phasing parameters for

which the SVMs can optimally predict the bases in

a reference sequence, which requires training the
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SVMs at every grid point. The model is optimized

for every run of the Illumina platform independent-

ly. This procedure is not only computationally ex-

pensive but it also requires resequencing part of a

reference genome in order to generate enough train-

ing data. The fX174 control lane can be used for

training.

Another approach is implemented in a package

called Rolexa [17]. Like Bustard, Rolexa first applies

a cycle dependent linear transform accounting for

cross-talk between the different bases, before using

a binomial distribution for dephasing. Finally, it can

be observed that due to optical effects clusters near

the center of each tile appear brighter than those near

the edges. Rolexa corrects for these optical effects by

fitting a two dimensional Lowess model to the inten-

sities of each tile. After applying these three correc-

tions Rolexa uses a clustering algorithm based on

Gaussian mixtures for base-calling. From this a meas-

ure of uncertainty can be computed which is used

to call the most likely bases as well as reporting

IUPAC codes. IUPAC codes are used to encode

ambiguities in the base-calling process through

additional letters. For instance, S stands for either C

or G. However, since all other implementations

report Phred scores [20] [the log probabilities of

an error: �10 log10 P(true base 6= called base)]

rather than IUPAC codes, this approach is difficult

to compare. An advantage of Rolexa is that it does

not depend on supervised learning, thereby

Figure 1: Illustration of the commonly modeled biases in base-callers for the Illumina platform. f: Phasing can be
observed as leading (gray arrow) and lagging (black arrows) signal increase before and after each intensity peak.
This is illustrated by the averaged intensities of the cytosine channel when sequencing GCAGTAGTGTTGGTT
CTGTAGTGGAATGTGCGGTTGTTGAGAATTCAGTA. Cross-talk correction and normalization have been applied
and the first cycle has been omitted. d: Signal decay is illustrated by the intensity signal of sequencing the micro sat-
ellite sequence ACACAC . . . Shown are the averaged intensities of cytosine (red) and adenine (blue) after crosstalk
correction and normalization. Again, the first cycle is not shown. m: Mixed clusters occur whenever more than
one template collocate on the tile. o: The image shows local averages of the fluorescence intensities across the
area of a tile.Due to optical effects, stronger intensities are measured toward the center of the image. �: The inten-
sity quadruples of the four bases are not orthogonal. Shown is the projection of measured intensities of the first
sequencing cycle of the phiX174 data onto the axes corresponding to A and C. �: In past chemistries the
T-fluophore was not washed away efficiently and hence accumulated with growing number of cycles.The illustration
shows the intensity values for one tile of a 51-cycle PhiX 174 RF1 run after correction by Bustard. Shown is the
95th percentile for the signal intensities in each channel and cycle. Figure credits: f, d from [16]; o, � from [17];
� from [18].
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eliminating the need to resequence known templates

for training and thereby increasing overall yield.

BayesCall [19] and Seraphim [21] implement

more complex, fully parametric models. In addition

to cross-talk, phasing and pre-phasing, they also

explicitly model the signal decay. Furthermore

Seraphim accounts for differences in the PCR amp-

lification step for each read [21] and BayesCall adds

parameters that model other residual effects which

are propagated from one cycle to the next [19].

For BayesCall [19] the complete model is cycle de-

pendent which dramatically increases the number of

parameters. The parameters are estimated using an

expectation maximization procedure. As in the clus-

tering approach used in Rolexa [17], expectation

maximization does not rely on supervised learning

and therefore eliminates the need for training data.

In both papers the base with the maximum posterior

probability is called. Since the probabilities of the

other bases can be readily computed, it is straight-

forward to report meaningful quality metrics.

A faster version of BayesCall is naiveBayesCall [22].

naiveBayesCall makes use of the same model as

BayesCall and also uses the same algorithm for par-

ameter estimation. During base-calling approximate

algorithms improve speed by orders of magnitude

while only slightly sacrificing accuracy [22].

A completely different approach was taken in Ibis

[18]. Rather than modeling every potential source of

errors, multi class SVMs are applied directly to the

raw intensity signal. Using simulation, it was inferred

that under a simple model of phasing, pre-phasing

and T accumulation, most information is contained

in the intensities of the previous, current and next

cycle. Hence the SVMs use the intensity values of

the current cycle, its predecessor and successor as

input. In order to train the cycle dependent SVMs

a known sequence has to be included or when

resequencing a genome it is also possible to use the

reference genome for training.

The intensity data needs to be extracted from the

raw images before any of the above can be used. This

image processing step is usually performed using

Bustard’s Firecrest module. BING [23] and Swift

[15] are alternative implementations of the complete

data processing pipeline. Both image processing

algorithms differ in many mechanistic details from

Bustard. With BING, one has the option of base-

calling each pixel in the image tile independently

rather than first identifying clusters of the same tem-

plates. During base-calling, both implementations

rely on serial corrections, similar to Bustard, and

do not implement elaborate statistical procedures.

As with Bustard, Swift gives access to the post-image

processing data and hence could also be used in

conjunction with one of the base-callers described

above.

A summary of all implementations and the

respective statistical methodologies is shown in

Table 1. On a practical note, all base-callers reviewed

here support the longer reads introduced with

Illumina’s Genome Analyzer II.

Table 1: A summary of the available applications used for base-calling on the Illumina platform

Name Statistical
approach

Biases
explicitly
corrected

Training
data
required

Quality
score

Practical notes References

Bustard Parametric Model �, f, d No Phred Not freely retrievable
Alta-Cyclic Mixed Parametric

and SVM
�, f, d Yes Phred No longer maintained; requires

a Sun Grid Engine cluster
environment

[16]

Rolexa Parametric Model �, f, o No IUPAC No longer maintained [17]
Swift Parametric Model �, f, m No Phred No longer maintained [15]
BayesCall/

naiveBayesCall
Parametric Model �, f, d No Phred [19, 22]

Seraphim Parametric Model �, f, d No Phred We did not succeed installing it [21]
Ibis Fully empirical SVM (n/a) Yes Phred [18]
BING Parametric Model �, f No None Not freely retrievable; requires

own image processing as input
[23]

Wegive a shortdescription of the statistical approachusedby each application.Next, the biases explicitlymodeled and correctedby the application
are reported (see Figure1 for details). Alta-cyclic and Ibis rely on supervised learning and require training data. Finally uncertainty measurements
or sequencing quality is either reported as Phred scores or using IUPAC codes.For details, please refer to themain text.
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PERFORMANCE COMPARISON
The rapid and at times simultaneous emergence

of new base-calling approaches makes it difficult

to assess their relative performance. Though com-

parative studies reported by authors of individual

packages must be interpreted with caution, they

can provide us with some insights. Kircher et al.
[18] reported that Ibis outperforms Alta-Cyclic and

Rolexa which in turn are more accurate than

Bustard. However, note that Rolexa was forced to

not make use of IUPAC codes in this comparison.

In the report of Kao et al. [19], BayesCall was shown

to outperform Alta-Cyclic. In terms of the Phred

quality scores, both Ibis and BayesCall have been

shown to report more accurate scores than

Alta-Cyclic, which itself improves upon Bustard

[18, 19]. With respect to the running time, Kircher

etal. [18] reported the following timings. Bustard was

clearly the fastest implementation tested, requiring

50 min on a single processor for parameter estimation

and base-calling of the complete control lane of a

51 cycle data set. Ibis required 3 times, Rolexa

21 times and Alta-Cyclic 73 times more computa-

tional resources than Bustard. Alta-Cyclic was run on

a cluster, reducing the effective time for base-calling.

For BayesCall and Seraphim, no direct comparison is

available. From the timings reported in the respective

publication, it appears that BayesCall requires

roughly 20 h for parameter estimation and 6 h to

call 1 million bases for a 76 cycle data set. Thus,

without parallel computing, it takes several days

to process a single lane. However as discussed

above, a significantly faster version of BayesCall,

called naiveBayesCall [22], was recently published.

As for Seraphim, the reported time for base-calling

and mapping reads on the control lane is under 2 h

on a 15 node cluster, including parameter estimation.

We sought to compare all base callers reviewed

here on the same data set and hardware. However,

this proved very difficult, as many of the packages are

either not freely retrievable, no longer maintained or

fraught with practical problems (Table 1). Despite

considerable efforts, we did not succeed in obtaining,

installing or running Bing, Seraphim and Swift. The

other base callers could be assessed using a data set

of 286 847 reads of length 51 from the phiX174

control lane, obtained using V1 chemistry (Figure

2A). With the exception of Rolexa, all base callers

show a clear improvement upon Bustard. Ibis per-

forms best, closely followed by naiveBayesCall and

Alta-cyclic.

Regarding computational cost, we measured

separately training/parameter estimation time and

base-calling time for the four packages that we

could run on our benchmark linux computer: Ibis,

BayesCall, naiveBayesCall and Rolexa (Figure 2B).

For training time, Ibis was an order of magnitude

faster than (naive)BayesCall, while Rolexa did not

require any distinct parameter estimation phase at

all. But in practice, most time is spent calling bases.

With this respect, Ibis is by far the fastest of the four

packages. The efficiency improvements afforded by

naiveBayesCall over its predecessor are very signifi-

cant, and make it usable in practice. Remarkably,

the two most accurate base callers also happen to

be the fastest ones.

The quality score reported differs among the

software packages: Phred scores are reported by

Ibis; an Illumina specific encoding is used by

Bustard and AltaCyclic, and the error probability is

returned by BayesCall and naiveBayesCall. In order

to compare these different measures we converted all

of them to Phred scores. We then compare the re-

ported Phred scores with the Phred scores computed

from the observed error rate of bases with the re-

spective Phred score (Figure 2C). In this comparison,

Bustard significantly deviates from the optimal line,

AltaCyclic shows overestimation of the Quality

for high quality base-calls, and BayesCall and

naiveBayesCall consistently overestimate the quality

of their calls, except for very low quality base-calls.

We note that this effect is less pronounced for

naiveBayesCall. Due to the smoothness of the

curve obtained from (naive)BayesCall, it might be

possible to find a simple and effective correction

for the respective quality scores. Overall, the base

caller closest to the optimal line is Ibis.

For the practical use of the base-callers, their per-

formance on more recent chemistry is of high rele-

vance. We assessed Ibis and naiveBayesCall, which

have the lowest error rates on V1 (FC-104-100x)

chemistry, on a V4 (FC-103-300x) chemistry data

set with 217 904 reads of length 81. For the V4

chemistry, we obtained an error rate of 1.02% for

naiveBayesCall, while Ibis achieves an error rate as

low as 0.97%. The absolute error rate is markedly

lower than with the older chemistry, a remarkable

achievement given that the read length is �60%

longer. In line with the results obtained on V1

chemistry, Ibis also outperforms naiveBayesCall in

terms of the reported quality scores on the V4 chem-

istry (data not shown).
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BASE-CALLING FORROCHE 454
LIFE SCIENCES
The Roche 454 platform starts by constructing an

adaptor flanked single strand DNA sequence library.

The sequence fragments are bound to beads and

amplified on the beads by emulsion PCR in order

to increase the downstream signal intensity. Ideally,

during this process a single template is attached to

each bead leading to uniform clusters on each bead.

The beads are then deposited onto an array of

picoliterscale wells [24] such that each well contains

a single bead. After these preparatory steps, the actual

sequencing begins using the pyrosequencing method

[25]. In every sequencing cycle, a single species of

nucleotides is introduced. In wells where the nucleo-

tides are incorporated, this results in the release of

pyrophosphate which eventually leads to a burst of

light. The light is detected using a CCD sensor and

software detects wells containing template DNA.

This step includes image analysis and base-calling.

Figure 2: Comparison of Base-Callers for the Illumina Platform. (A) Error rate of base callers for Illumina
Platform (FC-104-10xx). The test data consists of 286 847 reads (length 51, chemistry FC-104-10xx) from the
phiX174 control lane, provided by Martin Kirchner, who also provided the results for Bustard 1.95 and Alta-cyclic.
The method used here is identical to that of [18]. (B) Time required on a 2GHz AMD Opteron with eight cores
for training (blue) and base-calling (green). For Ibis, training was performed on a set of 1.15 million reads disjoint
from the test set. For (naive)BayesCall, an unsupervised learning method, parameter estimation was performed on
the test data set itself (the base caller randomly selects 250 reads for this purpose). For Rolexa, for which there
was no clear separation between a parameter estimation phase and a base-calling phase, all time was attributed
to base-calling. Note that training only needs to be performed once, but base-calling on a full lane involves about
40 times more reads than in our test set. (C) Phred score accuracy. Deviation from the 45-degree line indicate
either underestimation (curve above the line) or overestimation (curve below the line) of the quality of the base
called.We only report data for quality scores with at least 20 000 bases.
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For a more detailed description we refer to the ori-

ginal paper [24].

A number of sources of errors have been described

[9]. Firstly, there is a risk of mixed clusters, caused by

the binding of different DNA fragments to a single

bead. In such a case, it will be impossible to detect

a clear signal and the acquired data from the wells

containing such beads has to be excluded. Secondly,

in every cycle there is a slight chance of incomplete

synthesis of the complementary DNA strand which

leads to phasing. Similarly if the reagent of a previous

cycle was not perfectly removed, it is possible that

multiple different bases are incorporated, resulting in

pre-phasing [24]. The main source of errors is, how-

ever, due to thresholding. Thresholds are needed

to determine whether a base was incorporated

or not. The thresholds necessary to determine the

lenghts of homopolymers are even more delicate.

Homopolymers are consecutive runs of the same

base. Since all bases of a homopolymer are included

in a single cycle, the length of the homopolymer has

to be inferred from the signal intensity. Incorrect

prediction of homopolymer lengths leads to inser-

tions and deletions which are by far the most fre-

quent errors associated with the pyrosequencing

technology [26].

In the original 454 paper, wells containing tem-

plates are identified by detecting the key sequence

‘TCAG’ at the start of the sequence [24]. The

number of incorporated bases is determined from

the intensity of the emitted light. It is shown that

the intensity is linear with the lengths of the homo-

polymer, thus allowing for easy classification. A prior

on the homopolymer lengths of 1=4n is used. In

order to compensate for an incomplete extension

rate of 0.1–0.3% and a carry forward rate

(pre-phasing) of 1–2% a detailed physical model is

proposed. If, frequent ambiguous intensity levels are

detected for a given read, that read is filtered out as a

low quality read. This allows to exclude wells con-

taining multiple templates. Finally, a Phred like qual-

ity score [20] is assigned to every called base. This

quality score corresponds to the log-probability that

the base was not an overcall, that is, the predicted

homopolymer length was not too long.

In Pyrobayes, Quinlan et al. [26] proposed to im-

prove the above procedure by adapting an empirical

prior on the homopolymer lengths and by using a

classifier based on an empirical measure of the signal

intensity. This challenges the validity of a simple

linear classifier. As they illustrated in their report,

using this more empirical approach does not reduce

the total error rate. However, Pyrobayes clearly out-

performs the native base-caller in substitution error

rate and in the accuracy of the Phred quality scores.

Thus, they argued that Pyrobayes is superior in the

context of single nucleotide polymorphism (SNP)

prediction.

DISCUSSIONANDOUTLOOK
The advent of next-generation sequencing platforms

during the past few years has lead to a recent burst in

base-calling software. We have reviewed base-calling

methods for Illumina and Roche 454, the two lead-

ing platforms, with most of the efforts concentrated

on the former.

The various base-callers differ in the statistical

methodologies used to infer the correct base and in

the way they report uncertainty. At this point, it

remains to be seen which approach will ultimately

achieve highest accuracy: a mechanistic model such

as in BayesCall or Seraphim, a strictly empirical ap-

proach such as in Ibis, or some intermediate solution

such as in Alta-Cyclic. Currently, the two most ac-

curate base-callers, Ibis and naiveBayesCall, have dia-

metrically different methodological approaches and

yet achieve close accuracy. As we suggested above,

models that avoid supervised learning have the ad-

vantage of a potentially increased yield in the case of

de novo sequencing since they do not require rese-

quencing of a known reference sequence for train-

ing. Furthermore, the parameters of mechanistic

models have a clear interpretation and can give

valuable insights to sources of noise in the underly-

ing technology. For instance, estimates of the

pre-phasing and phasing rate can be obtained [19].

This information could drive future improvements

of the technology. On the other hand, the SVM

used by Ibis [18] are advantageous when adapting

the applications to future releases of the Illumina

platform or an entirely different platform because

only very few assumptions about the type of biases

are made. These assumptions are more likely to hold

true for different technologies than the numerous

assumptions made by mechanistic models.

When reporting uncertainty for bases called, most

base-calling implementations relies on Phred scores

rather than IUPAC encoding used by Rolexa [17].

In principle, reporting the probabilities of all four

bases would provide downstream analyses with the

complete information derived by the base-calling
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algorithms. Whether summarizing this information

using Phred scores or using IUPAC codes is pref-

erable cannot be decided independently from the

subsequent analysis tools. However, Phred scores,

as opposed to IUPAC codes, are more widely used

and hence there is a wealth of tools which can handle

them [21].

The approaches also differ significantly in com-

putational resources required, ranging from

Bustard, which is reported to be the fastest [18], to

Alta-Cyclic and BayesCall, which requires orders of

magnitudes more computational resources. On the

other hand Ibis requires only about three times more

resources than Bustard while also being very com-

petitive in terms of accuracy. In this case, the gained

accuracy may well justify the increased computa-

tional costs.

It is anticipated that in the future next-generation

sequencing technologies will continue to improve

rapidly. By improving accuracy, read length and

quality score, base-callers have the potential to

reduce costs, increase yield and simplify downstream

analysis. Designing and updating near optimal

base-callers not only for Illumina and Roche 454

but also for other next-generation platforms will

continue to be an important research task. A first

third party base-caller for the SOLiD system [27]

has recently been developed and, as for Illumina

and Roche 454, significant improvements are re-

ported. Further research in this area can contribute

toward closing the gap between the time required

for sequence data generation and analysis [28].

Key Points

� Base-calling, the inference of DNA sequences from physical
signals, is a crucial step of the sequencing process.

� Improving the accuracy of base-calling decreases coverage
requirements and costs, and is therefore of high interest.

� For both Illumina and Roche 454, the leading next-generation
sequencing platforms, several alternatives to the vendor
base-caller have been recently proposed, which correct various
types of systematic errors.

� Some base-callers explicitly model the biases, while other rely
on reference sets to train general purpose classifiers; as we
discuss in the main text, both approaches have their pros
and cons.
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an improved base caller for SNP discovery in pyrose-
quences. NatureMethods 2008;5(2):179–81.

27. Wu H, Irizarry RA, Bravo HC. Intensity normalization
improves color calling in SOLiD sequencing. Nature
Methods 2010;7(5):336–7.

28. Mcpherson JD. Next-generation gap. NatureMethods 2009;
6(11 Suppl.):S2–5.

Next-generation sequencing platforms 497


