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Increasing evidence indicates that the host range of primate lentiviruses is in part
determined by their ability to counteract innate restriction factors that are effectors of
the type 1 interferon (IFN-1) response. For human immunodeficiency virus type 1 (HIV-1),
in vitro experiments have shown that its tropism may be narrow and limited to humans
and chimpanzees because its replication in other non-human primate species is hindered
by factors such as TRIM5α (tripartite motif 5 alpha), APOBEC3G (apolipoprotein B mRNA-
editing, enzyme-catalytic, polypeptide-like 3), and tetherin. Based on these data, it has
been hypothesized that primate lentiviruses will infect and replicate in a new species if
they are able to counteract and evade suppression by the IFN-1 response. Several studies
have tested whether engineering HIV-1 recombinants with minimal amounts of simian
immunodeficiency virus sequences would enable replication in CD4+ T cells of non-natural
hosts such as Asian macaques and proposed that infection of these macaque species
could be used to study transmission and pathogenesis. Indeed, infection of macaques with
these viruses revealed that Vif-mediated counteraction of APOBEC3G function is central
to cross-species tropism but that other IFN-induced factors may also play important roles
in controlling replication. Further studies of these macaque models of infection with HIV-1
derivatives could provide valuable insights into the interaction of lentiviruses and the innate
immune response and how lentiviruses adapt and cause disease.
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INTRODUCTION
Early studies on primate lentiviruses identified key host cell factors
required for replication (Hatziioannou and Evans, 2012). More
recent investigations have shown that overcoming the suppressive
effects of innate restriction factors is also necessary for human
immunodeficiency virus type 1 (HIV-1) and simian immunod-
eficiency viruses (SIVs) to replicate in human and non-human
primate hosts, respectively. Viral accessory proteins play key roles
in antagonizing these inhibitory factors, which are effectors of the
type 1 interferon (IFN-1) response (Harris et al., 2012). However,
their functional activities are commonly limited to susceptible
host species, suggesting that innate immunity may be a signif-
icant barrier to transmission of lentiviruses. We, and others,
have engineered HIV-1 recombinants with minimal SIV sequences
conferring resistance to specific restriction factors and infected
macaques to experimentally test this hypothesis. Investigations
utilizing these macaque-tropic HIV-1 derivatives may lead to a
greater understanding of inter-species transmission of primate
lentiviruses as well as the development of a macaque model of
HIV-1 infection and disease.

MACAQUE AIDS MODEL DEVELOPMENT AND SPECIES
TROPISM OF PRIMATE LENTIVIRUSES
The development of non-human primate acquired immunode-
ficiency syndrome (AIDS) models provided initial insights into
the species tropism of lentiviruses. In particular, these experi-
ments demonstrated a narrow species tropism for HIV-1. Gibbons
and chimpanzees are susceptible to HIV-1 (Gardner and Luciw,
1989; Fultz, 1993). However, due to their endangered status and

maintenance cost, they are not reasonable model hosts. On the
other hand, Asian macaques, including Macaca mulatta (rhe-
sus macaques, RM) and M. fascicularis (cynomolgus monkeys,
CM) and cells from these species appear to be resistant to HIV-1
(Agy et al., 1992; Cowan et al., 2002; Munk et al., 2002), suggest-
ing genetic barriers to infection. In retrospect, these findings are
not surprising given that HIV-1 evolved from a novel recombinant
SIV infecting chimpanzees (SIVcpz; Gao et al., 1999; Bailes et al.,
2003). Uniquely, one species, M. nemestrina (pigtailed macaques,
PTM), has been found to be susceptible to transient infection but
not disease (Agy et al., 1992, 1997; Gartner et al., 1994), demon-
strating that a potent resistance mechanism(s) may indeed control
viral replication.

With the absence of a susceptible non-human primate host
for HIV-1, a SIV-AIDS macaque model was developed accidently
following the discovery that Asian macaques housed with sooty
mangabeys at a US primate center had developed AIDS like disease
(Gardner, 1996; Apetrei et al., 2005). Although African mon-
key species harbor SIVs and live with high virus loads without
developing disease (Klatt et al., 2012b), SIVs isolated from sooty
mangabeys (SM, Cercocebus atys) cause AIDS at varying rates
when inoculated into Asian macaques. As a result, SIV infection
of macaques has become the most widely used model for stud-
ies of AIDS immunopathogenesis and viral fitness (Kimata, 2006;
Hatziioannou and Evans, 2012). Quite interestingly, PTMs appear
to be more susceptible to infection and disease induced by SIV
than RMs, which may be due to a higher level of immune activa-
tion and gastrointestinal immune dysfunction (Klatt et al., 2012a;
Canary et al., 2013).
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Genetic differences in reverse transcriptase and protease of
HIV-1 and SIVmac make it difficult to evaluate the efficacy of
antiretroviral drugs that target these proteins using the SIVmac-
RM model. Evaluating vaccines against HIV-1 is also impossible
since cytotoxic T cell epitopes may differ and neutralizing antibod-
ies are not cross-reactive. These shortcomings have been partially
addressed by constructing chimeric SIV/HIV-1 viruses (SHIVs)
that include certain HIV genes in the SIVmac239 backbone
(Shibata et al., 1991; Figure 1).

Aside from the obvious utility for translational studies, the
development of SHIVs revealed important clues about the func-
tional activity of HIV-1 proteins in macaques. SIVmac based
chimeras that include HIV-1 gene substitutions in env, tat, and
rev (Env-SHIV) or nef (Nef-SHIV) are pathogenic in macaques
(Li et al., 1995; Luciw et al., 1995; Reimann et al., 1996; Sinclair
et al., 1997; Alexander et al., 1999). Chimeras with HIV-1 rt sub-
stitutions (RT-SHIVs) also persistently replicate in macaque hosts
(Uberla et al., 1995; Ambrose et al., 2007). While not required, vpu
of HIV-1 enhances the pathogenicity of Env-SHIV (Stephens et al.,
2002). Thus, a significant amount of HIV-1 sequences can func-
tionally replace SIV sequences, but determinants within gag–pol
and vif of SIV appear necessary for infection of Asian macaques.

INNATE RESTRICTION FACTORS OF PRIMATE LENTIVIRUSES
Several cellular restriction factors have been identified that can
limit replication of primate lentiviruses in different species, but
whose activities are specifically inhibited or evaded (Table 1).
These include apolipoprotein B mRNA-editing, enzyme-catalytic,
polypeptide-like 3 (APOBEC3) proteins, tripartite motif 5
alpha (TRIM5α) and related TRIM5–cyclophilin A fusion pro-
teins (TRIMcyp), tetherin/BST2/CD317, and sterile alpha motif
(SAM) domain and HD domain-containing protein 1 (SAMHD1;
Thippeshappa et al., 2012). All are regulated by IFN-1, suggesting
that innate immunity plays a critical role in preventing infection
and that viral adaptations that antagonize or escape the effects
of the factors may be required for successful transmission of
lentiviruses.

The APOBEC3 (A3) proteins belong to a seven-member family
of cytidine deaminases (Jarmuz et al., 2002). A3G was identified
as a Vif-targeted inhibitory factor of HIV-1 during a screen for
cellular factors that blocked post-entry steps of infection prior to
integration (Sheehy et al., 2002). In the absence of Vif, it interferes
with viral replication by incorporating into the virion and disrupt-
ing reverse transcription or causing accumulation of deleterious
G to A mutations (Mangeat et al., 2003; Zhang et al., 2003; Bishop
et al., 2008). Hypermutated viral genomes may be degraded or
produce non-functional truncated or misfolded viral proteins that
are processed and serve as antigens for cellular immune responses
(Casartelli et al., 2010).

In virus producing cells, Vif binds A3G and links it to an
E3 ubiquitin ligase complex, thereby redirecting it for degrada-
tion by the proteasome (Conticello et al., 2003) and preventing its
incorporation into assembling virions. Interestingly, Vif function
appears to be species-specific. For example, the HIV-1 Vif antag-
onizes the human A3G protein but not A3G of other non-human
primate species. By contrast, theVif protein of SIVagm antagonizes
African green monkey (AGM) A3G but not human A3G (Mariani

et al., 2003). These findings suggest that Vif-mediated inhibition
of the A3G proteins is likely essential for transmission of a virus
to a new host species.

Of the innate restriction factors, only TRIM5α was initially dis-
covered as an inhibitory factor of HIV-1 in Old World Monkeys
(OWMs; Stremlau et al., 2006; Grutter and Luban, 2012). TRIM5α

blocks a post-entry stage of HIV-1 replication through an inter-
action with the capsid protein. It belongs to the tripartite family
of proteins, and contains a RING finger, B-box2, and coiled coil
domain, which are responsible for E3 ubiquitin ligase activity and
higher order self-association. It also has a B30.2/SPRY domain that
detects the incoming viral capsid proteins, linking the viral core to
an ubiquitin-proteasome-dependent pathway. This disrupts the
preintegration complex, thereby blocking reverse transcription.
However, in cases where the proteasome pathway is inhibited,
nuclear entry of viral DNA is impaired. Recent studies also estab-
lish TRIM5α as an innate immune sensor of the retroviral capsid
(Pertel et al., 2011). Sequence variation in B30.2/SPRY of TRIM5α

and amino acid variations in the viral capsid are responsible for
species-specific restriction and evasion, respectively (Nakayama
et al., 2005; Sawyer et al., 2005). Additionally, allelic variation
in TRIM5 influences transmission and modulates disease pro-
gression in SIV-infected RM (Kirmaier et al., 2010; Lim et al.,
2010b; Reynolds et al., 2011). Interestingly, PTMs do not express a
TRIM5α isoform, partially explaining their unique susceptibility
to HIV-1 (Brennan et al., 2007).

Novel TRIMcyp also interfere with post-entry steps in HIV/SIV
infection. First identified in New World Owl Monkeys (Sayah et al.,
2004), the fusion protein appears to have arisen via line-mediated
retrotransposition of the cyclophilin A gene into the TRIM5 locus.
Subsequent studies have also identified TRIMcyp fusion proteins
in RM, CM, and PTM that evolved independently (Brennan et al.,
2008; Newman et al., 2008; Virgen et al., 2008; Wilson et al., 2008;
Dietrich et al., 2011). Allelic variation in the cyclophilin A domain
of the macaque TRIMcyp proteins affects recognition and inhibi-
tion of HIV-1 and 2 and SIVagm but not SIVmac. Interestingly,
RMs and CMs are polymorphic for TRIM5α alleles and TRIMcyp,
although geographically distinct CM populations show different
frequencies of TRIMcyp. PTMs, on the other hand, are homozy-
gous for TRIMcyp, again demonstrating a unique genotype for
PTMs in comparison to other Asian macaques (Brennan et al.,
2008; Newman et al., 2008; Kuang et al., 2009; Dietrich et al., 2011;
Saito et al., 2012).

Tetherin or BST2 is interferon inducible type II membrane pro-
tein that interferes with the release of HIV-1 progeny virions from
the surface of infected human T cells and also functions as an
innate immune sensor of viral infection to promote inflamma-
tory responses (Neil et al., 2008; Van Damme et al., 2008; Galao
et al., 2012). Initially, it was discovered that the HIV-1 protein Vpu
inhibits tetherin and is required for the efficient release of progeny
virions (Neil et al., 2008; Van Damme et al., 2008). Subsequent
studies have shown that primate lentiviruses that do not encode
Vpu evolved other strategies to antagonize tetherin. For example,
HIV-2 and SIV use Env- and Nef-dependent mechanisms to coun-
teract the restrictive effect of tetherin (Jia et al., 2009; Le Tortorec
and Neil, 2009), respectively. Additionally, the effects of the viral
antagonists are specific for the host species in which they evolved.
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FIGURE 1 | Genetic organization of HIV-1, SIV, and HIV-1/SIV chimeric proviruses. HIV-1 sequences are in white. SIV sequences are shaded gray.
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Table 1 | Restriction factors and primate lentivirus infection.

Restriction

factors

Mechanism of inhibition Inhibitory activity in different species

TRIM5α Binds viral capsid and blocks infection at or

before reverse transcription; innate immune

sensing of retroviral infection

TRIM5α blocks HIV-1 infection of Asian macaques, except PTM, which do not

express TRIM5α; Allelic variation in TRIM5α influences control of SIVs in RM;

viral capsid mutations confer resistance to TRIM5α

TRIMcyp RM and PTM TRIMcyp do not inhibit HIV-1; variation in CM TRIMcyp influences

inhibition of HIV-1, HIV-2, and SIVagm, but not SIVmac; viral capsid mutations

enable evasion in susceptible hosts

APOBEC3 family

proteins

Introduce G to A mutations, reduce infectivity,

interfere with reverse transcription

Blocks HIVs and SIVs in the absence of Vif in non-human primates and humans;

Vif inhibitory activity against APOBEC3 proteins is limited to virus-adapted host

species

BST2/tetherin Restricts release of virions from the cell

surface; innate sensing of infection and

promotion of inflammatory responses

Inhibits virion release from human and non-human primate cells; HIV-1 Vpu, SIV

Nef, and HIV-2 Env antagonize tetherin only in virus-adapted species

SAMHD1 Reduces dNTP pool required for cDNA

synthesis

SAMHD1 proteins from different non-human primate species and humans inhibit

HIV and SIV infection of myeloid derived cells and resting T cells; Vpx and Vpr

proteins from some SIVs direct proteasome-mediated degradation of SAMHD1

of virus-adapted non-human primate species and humans; HIV-1 does not

antagonize SAMHD1

The HIV-1 Vpu evolved to overcome the activity of human teth-
erin, but it is ineffective against tetherin from chimpanzees, RM,
AGM, and mustached monkeys (Jia et al., 2009; Sauter et al., 2009;
Lim et al., 2010a; Yang et al., 2010). Despite the close related-
ness of HIV-1 and SIVcpz, Vpu of SIVcpz does not antagonize
chimpanzee tetherin. Instead it uses Nef to downregulate chim-
panzee tetherin expression like other SIVs, which also exhibits
species-specific activity (Jia et al., 2009; Zhang et al., 2009).

SAMHD1 is a restriction factor that inhibits HIV-1 infection of
myeloid cells (Hrecka et al., 2011; Laguette et al., 2011). Although
its exact biological function is unclear, mutations in SAMHD1
can result in Aicardi Goutieres syndrome whose symptoms mimic
that of a viral infection (Rice et al., 2009). Vpx protein from either
HIV-2 or the SIVsm lineage inhibit human SAMHD1, resulting
in its degradation through the proteasome. It has been noted that
Vpx expression or SAMHD1 depletion increases the amount of
dNTP’s in macrophages, which suggests that SAMHD1 decreases
the dNTP pool required for viral cDNA synthesis (Lahouassa
et al., 2012). Structural studies also indicate that SAMHD1 is a
dNTP triphosphate triphosphohydrolase (Goldstone et al., 2011).
Interestingly, SAMHD1 only restricts infection of HIV-1 in non-
dividing cells such as macrophages and resting T cells but not
activated proliferating T cells (Baldauf et al., 2012; Descours et al.,
2012). New data also indicate that phosphorylation may regulate
SAMHD1’s restriction activity (Cribier et al., 2013; White et al.,
2013).

Like the other restriction factors, Vpx appears to antagonize
SAMHD1 in a species-specific manner since human and gib-
bon SAMHD1 can be degraded by Vpx proteins from HIV-2rod,
SIVmac, and SIVsm but not by Vpx from SIVrcm and SIVmnd2.

However, Vpx proteins from different SIV and HIV-2 strains can
induce degradation of RM and SM SAMHD1 (Laguette et al., 2012;
Lim et al., 2012). Interestingly, some SIVs inhibit SAMHD1 of their
natural hosts via Vpr. Thus, targeting SAMHD1 appears critical
for replication and persistence of SIVs in OWMs. It is therefore
interesting that HIV-1 does not have a mechanism to antagonize
SAMHD1 in human cells. One hypothesis is that this may help the
virus avoid immune sensing.

Other innate restriction factors such as interferon inducible
transmembrane proteins (IFITM), and 2′,3′-cyclic-nucleotide 3′-
phosphodiesterase (Lu et al., 2011; Wilson et al., 2012) have been
shown to interfere with early and late stages of the viral life cycle,
respectively. However, whether these factors have species-specific
activity against primate lentiviruses is unknown.

ENGINEERING MACAQUE-TROPIC HIV-1 DERIVATIVES
The species-specific effects of innate restriction factors and
requirement for particular SIV sequences for replication compe-
tent SHIV chimeras suggested that engineering macaque-tropic
recombinant viruses consisting of mainly HIV-1 sequences may
be possible as long as the virus can evade or antagonize key host
restriction factors (Figure 1). Hatziioannou et al. (2006) generated
the initial HIV-1 chimera with minimal SIV sequences that could
replicate in RM peripheral blood mononuclear cells (PBMCs;
stHIV-1sca-sv). The virus included ca and vif substitutions from
SIVmac in order to escape restriction by RM TRIM5α and A3G,
respectively. In other studies, a macaque-tropic HIV-1 derivative
with the SIV vif gene and a short 21 base pair segment corre-
sponding to the HIV-1 cyclophilin A binding loop from SIV was
constructed (NL-DT5R; Kamada et al., 2006; Igarashi et al., 2007).
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The virus showed increased infectivity in both CM and PTM T
cells. However, only after passaging in a CM T cell line was the
virus able to replicate efficiently in CD8+ cell-depleted PBMCs
from either PTM or RM. While these HIV-1 derivatives infected
PTM, they were rapidly controlled and did not cause disease. Addi-
tional studies selected gag variants better able to escape restriction
by CM TRIMcyp (e.g., MN4-5S), but replication only modestly
improved in CMs (Kuroishi et al., 2009; Saito et al., 2011).

Because of the absence of a post-entry block to HIV-1 infec-
tion and potential for more rapid AIDS progression, PTMs were
hypothesized to be the most susceptible to macaque-tropic HIV-
1 derivatives. Indeed, substituting vif in HIV-1 with alleles from
SIVmne (HSIV-vif) or SIVmac or HIV-2 (stHIV-1) is sufficient
for HIV-1 to replicate in PTM CD4+ T cells (Hatziioannou et al.,
2009; Thippeshappa et al., 2011). Infection of PTMs with mtHIV-1
resulted in acute infection and viremia that was controlled within
25 weeks post-infection. Interestingly, replication of HSIV-vif in
PTMs extended for over 90 weeks post-infection, although plasma
viral loads were low. Moreover, one animal demonstrated a steep
drop in CD4+ T cell counts, persistent but low viremia, and
opportunistic infections after three years of infection (unpub-
lished observations). It will be important to reisolate variants from
this animal and examine the genetic and phenotypic changes that
have occurred during infection. Since the different variants of
HIV-1 and SIV used in these studies seem to make a difference in
persistence and disease, other variants should be considered for
future in vivo infection experiments.

What accounts for virological control in the PTMs remains
unclear. There is suggestion from CD8+ cell-depletion studies
that cellular immune responses may be limiting replication of
the macaque-tropic HIV-1 clones (Hatziioannou et al., 2009).
Additionally, the IFN-1 response might restrict viral replication.
IFNs are upregulated during HIV-1 and SIV infections (Neil and
Bieniasz, 2009; Thippeshappa et al., 2012). Thus, these viruses
must be able to overcome the induction of restrictive interferon-
stimulated genes (ISGs) in order to replicate to high levels and
cause disease. Indeed, new studies demonstrate that the proto-
type macaque-tropic HIV-1 derivatives are inhibited by IFNα in
PTM cells. By contrast, pathogenic SIVmne and SIVmac clones are
highly resistant to IFNα-induced inhibition (Bitzegeio et al., 2013;

Thippeshappa et al., 2013). Interestingly, suppression of replica-
tion of the HIV-1 derivatives by IFNα may not be due to the
induction of known restriction factors such as tetherin, TRIM5α,
TRIMcyp, A3G, or SAMHD1, indicating that other ISGs may be
responsible for potently blocking replication of macaque-tropic
HIV-1 in PTMs. Furthermore, IFNα resistance may be acquired
by mutations in env, enabling escape from an early block in repli-
cation (Thippeshappa et al., 2013). Infection of PTMs with this
variant could provide insight into whether evasion of IFNα is
critical for viral replication in the host.

SUMMARY AND CONCLUSIONS
The engineering of macaque-tropic HIV-1 derivatives has shed
light on the significance of counteracting or escaping restriction
factors of the innate immune response for cross-species trans-
mission. Macaque models have provided experimental in vivo
systems to demonstrate the importance of Vif-mediated antag-
onism of A3 proteins and evasion of TRIM5 isoforms. Indeed,
in the absence of inhibitory TRIM5α or TRIMcyp alleles in the
PTM, Vif-mediated inhibition of A3G is necessary and sufficient
for transmission and persistence of HIV-1 in PTMs. However, the
SIV Vif is not sufficient for robust replication of macaque-tropic
HIV-1 chimeras in PTMs because these viruses fail to adequately
overcome the IFNα-induced antiviral state. Additional adapta-
tions like those we have identified in an env sequence may be
necessary for HIV-1 to replicate to high levels in the PTM or other
macaque hosts. What other restriction factors might play a role
in controlling HIV-1 replication in OWMs like Asian Macaques
is unclear, but the IFNα resistance mutations may help identify
new mechanisms of escape. Finally, it is curious that lentiviruses
of OWMs target SAMHD1 for degradation via Vpx or Vpr, and
that Vpx enhances transmission and pathogenesis of SIV in PTMs
(Hirsch et al., 1998; Belshan et al., 2012), but HIV-1 did not evolve
a mechanism to inhibit this protein in humans. Macaque-tropic
HIV-1 derivatives provide a way to test whether antagonizing
the activity of SAMHD1 is necessary for replication in OWM
species.
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