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Removal of SARS-CoV-2 bioaerosols using ultraviolet air filtration
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Abstract

Engineering controls play an important role in reducing the spread of severe acute respiratory coronavirus virus 2 (SARS-CoV-2).1 Established
technologies such as air filtration, and novel approaches such as ultraviolet (UV)-C light or plasma air ionization, have the potential to support
the fight against the coronavirus disease 2019 (COVID-19) pandemic.2 We tested the efficacy of an air purification system (APS) combining
UV-C light and high-efficiency particulate air (HEPA) filtration in a controlled environment using SARS-CoV-2 as test organism. The APS
successfully removed the virus from the air using UV-C light by itself and in combination with HEPA air filtration.
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Methods

Testing was performed at the Battelle Biomedical Research Center
(Columbus, Ohio) using 3 test groups: (1) inactive test unit (control);
(2) APSwithUV-C light; (3) APSwithUV-C light andHEPA filter in
place. The 10-minute test runs in each group were repeated 5 times.

The APS consisted of a UV-C photolytic chamber, which incor-
porated 4 low-pressure UV-C germicidal lamps operating at the
254-nm wavelength at a total irradiance of 177.8 μw/cm2 and con-
taining ˜2,400 transparent quartz tubular elements oriented ran-
domly in the chamber (Aerobiotix, Dayton, OH). Air filtration
was provided by a commercial-grade 99.97% efficacy HEPA filter
(Aerobiotix, Dayton, Ohio).

The APS was placed inside a single-pass air-testing unit (ATU;
30-cm× 30-cm [12-inch× 12-inch] cross section) within a biologi-
cal safety level 3 cabinet (Fig. 1). The ATU consisted of a pre-APS
chamber, an APS chamber, and a post-APS chamber. Airflow was
controlled by fans in the ATU, and recirculation occurred at 588–
623 L per minute. A 6-jet Collison nebulizer (BGI, Waltham, MA)
generated a SARS-CoV-2 aerosol from liquid suspension using
HEPA and carbon capsule prefiltered air (Pall, Port
Washington, NY). In total, a 1.57× 107 50% tissue-culture infective
dose (TCID50) of SARS-CoV-2 was nebulized into the pre-APS
chamber at 0.4 mL per minute for 10 minutes and was mixed
by baffles inside the chamber. The mixing air volume was 567 L
per minute. This setup represents a pre-APS chamber air concen-
tration of 2,760 units/L, assuming full dissemination efficiency. An
air-particle sizer (APS model 3321 with aerosol diluter model
3302A; TSI, Shoreview, MN) measured the aerodynamic particles
at 0.25 L/minute for 10 seconds at 5 minutes into the control run.
Impinger samples (model 7541, Ace Glass) were taken in the pre-
and post-APS chambers during the control runs at 6.0±0.5 L per
minute for 10 minutes each and from the post-APS chamber for all

subsequent runs. Temperature and humidity during all tests were
68–69°F and 48%–49% relative humidity, respectively.

The SARS-CoV-2 virus was propagated by the American Type
Culture Collection (ATCC) from BEi Resources NR-52281 lot
70034262 (ATCC, Manassas, VA) and concentrated to 1.24 × 107

TCID50/mL in minimum essential medium (Sigma cat. no. 5 l 416C;
Sigma-Aldrich, St Louis, MO) þ penicillin-streptomycin (Sigma cat.
no. P4333;)þ 5% fetal bovine serum (Sigma cat. no. F4135).

Samples were quantitated using VERO E6 cell culture (ATCC
C1008 E6 cat. no. NR596) to determine cytopathological effects
(CPEs), which included cell rounding, fusion, or lysis and were
expressed as present or absent in the cell culture. The analysis of
these results was performed using the Fisher–Boschloo test.

Results

In the control group, particle counts increased from 20 (in the pre-
APS chamber) to 54 particles (in the post-APS chamber) after the
introduction of the SARS-CoV-2 aerosol. A similar yet less pro-
nounced increase was observed in the second run. In the APS with
UV-C light, particle counts increased from 79 in the pre-APS
chamber to 101 in the post-APS chamber. Placing a HEPA filter
into the airflow reduced the particle count significantly, from 79
to 5 particles. The mass mean aerodynamic diameter over all runs
ranged from 0.80 to 1.17 μm, consistent with the Collison nebulizer
particle dispersion characteristics.3

For the viral culture tests, 3 of 5 runs collected from the pre-APS
chamber samples and 2 of 5 runs collected in the post-APS cham-
ber showed CPEs in the control group. No CPEwas observed in the
post-APS chamber samples for either the APS with UV-C light
activated or the APS with UV-C light and HEPA filtration. The
1-sided Fisher–Boschloo test revealed a P value of .0386.

In conclusion, the emergence of SARS-CoV-2 has accelerated the
development and adoption of air purification technologies.4-7 In this
study, viable virus was detected in the control runs without UV-C
light activation orHEPA filtration. Using anUV-C light systemwith
and without HEPA filtration eliminated SARS-CoV-2.
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This study has several key advantages. Virus was detected by direct
culturing, which depicts the presence of viable virus, unlike genomic
studies. The closed single-pass design assured that bioaerosols were
contained in the sealed test unit, reducing environmental effects such
as decreased viability of the aerosolized virus through temperature
and humidity and adherence to chamber walls.8 Airflow was maxi-
mized to challenge the APS, which resulted in a SARS-CoV-2 pre-
APS chamber air concentration of 2,760 TCID50 units/L, assuming
full dissemination efficiency. Even accounting for inefficiencies, the
pre-APS chamber air concentration compared favorably to published
SARS-CoV-2 air concentrations in samples from active COVID-19
patient rooms (6–74 TCID50 units/L).9

This study has several limitations. Maximizing airflow resulted in
rapid dilution of the aerosolized virus. Therefore, although the presence
of viable virus through CPE could be detected, quantification could not
be performed. However, these findings were significant and are consis-
tent with prior testing of the same device using MS2 virus.10

To date, we are unaware of any APS having been directly chal-
lenged with SARS-CoV-2 bioaerosols.4-7 The APS successfully
eliminated the virus within closely defined parameters reaching
significance. Future studies should address the impact of APS
on SARS-CoV-2 transmission in a clinical environment, consider-
ing challenges from virus emissions by patients to airflow patterns.
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Fig. 1. Schematic of testing setup.
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