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The neonatal Fc receptor (FcRn) plays a central role in recycling and

biodistributing immunoglobulin G. FcRn is also involved in many

physiological immune functions as well as pathological immune responses in

cancer or autoimmune diseases. Low levels of FcRn in tumor cells and the

microenvironment is associated with poor prognosis in non-small cell lung

cancers. Among cells that are present in the tumor microenvironment,

macrophages express high levels of FcRn. Macrophages are involved in these

pathophysiological contexts by their dual differentiation states of pro- or anti-

inflammatory macrophages. However, variations in FcRn protein expression

have not been described in macrophage subtypes. In this work, we studied

FcRn expression in an in vitro model of pro- and anti-inflammatory

macrophage differentiation. We demonstrated an inverse relation between

FcRn protein and mRNA expression in macrophage populations. Autophagy,

which is involved in protein degradation and acquisition of phagocytic function

in macrophages, participated in regulating FcRn levels. Intravenous

immunoglobulin protected FcRn against autophagosome degradation in

anti-inflammatory macrophages. Our data demonstrate that autophagy

participates in regulating FcRn expression in pro- and anti-inflammatory

macrophages. This finding raises new questions concerning the regulation of

FcRn in immune functions.

KEYWORDS

FcRn, autophagy (macroautophagy), macrophages (M1/M2), differentiation, IgG,
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Introduction

Beside its role in immunoglobulin G (IgG) recycling and

transcytosis, neonatal Fc receptor (FcRn) participates in immune

functions such as phagocytosis (1), immune complex (cross)-

presentation or elimination (2, 3) and epitope spreading (4, 5),

so FcRn is a key player in innate and adaptive immune responses

(6, 7). Its participation in the host immune response against both

bacteria and viruses and more broadly in protection against

infections has led to the definition of novel therapeutics based on

the understanding of FcRn biology (7). FcRn is expressed in

numerous cell types such as epithelial and endothelial cells and

hematopoietic cells (8–10) and therefore is found in many

organs (11). It is mainly expressed intracellularly in

endosomes (> 90%) and transiently on the cell surface after

endosome fusion to the membrane (12, 13). Indeed, only 4% of

the FcRn pool is expressed at the surface, with 2% able to be

internalized by the cell and 2% not (14).

FcRn expression has long been considered ubiquitous

without quantification, but variations in FcRn levels have been

described in leucocytes of lupus patients (15), in peripheral

blood mononuclear cells of patients with pancreatic ductal

adenocarcinoma (16) and in tumor cells leading to metabolic

changes (17, 18). In colon (19) and pulmonary cancers (20), low

FcRn levels were associated with poor prognosis and disease

evolution. Consequently, FcRn has been associated with the anti-

tumor immune response (21).

Mechanisms concerning the regulation of FcRn expression

have been described at different levels. FcRn is regulated by

transcription factors such as STAT and NF-kB (22–24) or Sp1,

Sp2, Sp3, c-Fos, c-Jun, YY1, C/EBPb and C/EBPD (25, 26),

which interact in distinct regions in the promoter of FCGRT

gene encoding human FcRn. FcRn is also regulated by DNA

methylation of the promoter via Zbtb7a and Sp1 factors (27) or

by microRNA (hsa-miR-3181) (28). Besides these factors, a

polymorphic variable number of tandem repeats (VNTR) has

been linked to high expression of FcRn when expressed as three

repetitions on each allele (29). This 3/3 VNTR polymorphism is

related to good IgG recycling in patients under antibody

treatment (30, 31). At the cellular level and after transcription

factor activation, cytokines such as interferon ɣ (IFN-ɣ) and

tumor necrosis factor a (TNF-a) or Toll-like receptor ligands

have been shown to up- or downregulate FcRn expression in

monocytes and a THP-1 cell line (22, 23), so FcRn is an

interesting actor in regulating the immune response.

FcRn is expressed in monocytes/macrophages, which are

effector cells engaged at the crossroads between innate and

adaptive immune responses (8, 32). Monocyte-derived

macrophages are recruited in the context of inflammation (33,

34). Depending on the microenvironment, they polarize into

pro-inflammatory macrophages or macrophages involved in the
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resolution of inflammation and in pro-tumoral responses (35,

36). Granulocyte-macrophage colony-stimulating factor (GM-

CSF) and macrophage-CSF (M-CSF) are the main factors

involved in pro- or anti-inflammatory macrophage

polarization (37). In addition, this polarization is finely tuned

by many other cytokines such as IFN-g for the pro-inflammatory

subtype or interleukin 4 (IL-4), IL-10 and IL-13 for the pro-

tumoral subtype (36).

Owing to the main role played by cytokines and growth

factors in regulating cellular immune responses, this study aimed

to determine whether FcRn levels, which can be modulated by

cytokines, varies during macrophage differentiation and whether

FcRn thus participates in inflammation or the tumor

microenvironment development .
Material and methods

Blood samples

Blood samples from healthy adult volunteers were collected

according to institutional research protection guidelines

(agreement no. CA-REC-2019-188) at the E ́tablissement

franc ̧ais du sang, Centre Val de Loire, France.
Macrophage differentiation
and activation

Peripheral blood mononuclear cells were obtained from

blood samples by Ficoll density centrifugation (Eurobio

Scientific, France). Monocytes were isolated from peripheral

blood mononuclear cells by positive selection with anti-CD14

MicroBeads (Miltenyi Biotech, Germany) according to the

manufacturer’s recommendations. Monocytes were cultured in

serum-free X-VIVO-15 medium (Lonza, Switzerland) at 1x106

cells/ml. Macrophage subtypes were generated after 6 days in

culture medium containing recombinant human GM-CSF or M-

CSF (both Miltenyi Biotech) at 60 ng/ml. On day 3, the culture

medium was changed to fresh complete medium containing M-

CSF or GM-CSF at the same concentration. Intravenous IgG

(IVIG; CLAIRYG, LFB Biomédicaments, France) 0.01, 1 or 100

µg/ml was added to macrophage cultures for 6 days as indicated.

In autophagy experiments, rapamycin (MP Biomedicals, France)

100 nM was added to the culture medium on day 5 for 24 h. In

starvation experiments, cells were washed with phosphate

buffered saline (PBS), and RPMI fresh medium was added to

macrophages for 4 h. At the end of incubation, chloroquine

(Sigma-Aldrich, USA) 15 µM was added for 1 h. On day 6, cells

were harvested and used for flow cytometry, RT-qPCR or

Western blot experiments.
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Macrophage transfection

Macrophages (1x106 cells/ml) were plated in serum-free X-

VIVO-15 medium (Lonza) before transfection on day 3. An

amount of 20 mMFcRn siRNA (Origene, USA) or siRNA control

(Eurogentec, Belgium) was diluted in 200 ml Opti-MEM (Gibco,

France) containing 1 ml Lipofectamine RNAiMAX (Thermo

Fisher Scientific, USA). After 20-min incubation at room

temperature, 40 nM siRNA complexes were added to cells for

4 h. Then medium was removed and fresh complete medium

containing M-CSF or GM-CSF 60 ng/ml was added. Seven

independent transfections were performed. FcRn gene

extinction efficiency was measured by quantitative real-time

PCR (RT-qPCR) and macrophage differentiation markers were

studied by flow cytometry.
Flow cytometry analysis

Labeling was performed in PBS, EDTA 2 mM, fetal calf

serum 5% at 4°C in 105 cells. After the Fc receptor blocking step

(FcR Blocking Reagent, Miltenyi Biotech), cells were stained

with mixtures of monoclonal antibodies at the optimal

concentration determined in our laboratory. A first fixation

step was performed with 4% paraformaldehyde and a second

with FoxP3/Transcription Factor Fixation Buffer (R&D Systems,

USA). Intracellular FcRn expression was measured with A488

conjugated-FcRn antibody (Clone #937508 R&D Systems) by

using the FoxP3/Transcription Factor Permabilization and

Wash Buffer kit (R&D Systems) according to the

manufacturer’s instructions. The following antibodies were

used: anti-CD14 (PerCP-Vio 700, Miltenyi Biotech), anti-

CD163 (PE, Miltenyi Biotech), anti-CD206 (PE-Vio 770,

Miltenyi Biotech) and anti-CD16 (APC, Beckman Coulter,

USA). Cell viability/apoptosis was detected using the APC

Annexin V Apoptosis Detection Kit with 7-AAD (#640930,

Biolegend, USA). Fluorescence was measured with a Cytoflex

cytometer (Beckman Coulter). Data were analyzed with

FlowLogic (Miltenyi Biotech). Flow cytometry analysis was

performed in singlicate.
RT-qPCR

Total RNA was isolated from macrophages by using the

NucleoSpin RNA Plus XS kit (Macherey-Nagel, France). RT-

qPCR assays involved using the GO Script Reverse Transcription

System kit (Promega, USA). Real-time PCRwas carried out on the

QuantStudio3 (Thermo Fisher Scientific) with a master mix

(PowerTrack SYBR Green, Thermo Fisher Scientific) according

to the manufacturer’s instructions and with the following primer

pairs: Actin forward: ATTGGCAATGAGCGGTTC reverse:

CGTGGATGCCACAGGACT , GAPDH f o rw a r d :
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C A G A G T T A A A A G C A G C C C T G G T , F C G R T

f o rw a r d : CCCTGGCTTTTCCGTGCTT , r e v e r s e :

TGACGATTCCCACCACGAG. Each sample was analyzed in

triplicate. FcRn mRNA levels were normalized to the geometric

meanofActin andGAPDHmRNA levels. FcRnmRNAexpression

was then reported according to the expression of our control,

consisting of monocytes pooled from 3 healthy donors.
Cytokine assays

On day 5, macrophages were stimulated with 200 ng/ml

lipopolysaccharide (In vivoGen, USA) for 16 h. The supernatants

were collected on day 6 to measure cytokine/chemokine

concentrations. Concentrations were quantified in duplicate by

flow cytometry with the Cytoflex cytometer (Beckman Coulter)

and fluorescence-encoded beads (LEGENDplex, BioLegend,

USA) within the Human Macrophage/Microglia Panel

(#740503, 13-plex) for IL-12p70, TNF-a, IL-6, IL-4, IL-10, IL-
1b, arginase, TARC, IL-1RA, IL-12p40, IL-23, IFN-g, interferon-
gamma-inducible protein [IP-10]).
Western blot analysis

Cells were washed with PBS and lysed in Laemmli buffer

(Invitrogen, USA) containing 50 mM DTT. Lysates from 2x105

cells were analysed in singlicate by 15% SDS-PAGE, and proteins

were transferred to nitrocellulose membranes. The membranes

were blocked with 5% non-fat milk in PBS and incubated with

the antibodies anti-FcRn (Santa Cruz Biotechnology, USA sc-

271745), anti-ATG5 (Cell Signaling Technology, USA, #12994)

and anti-LC3-I/II (Cell Signaling Technology, #4108S). Anti-b-
actin (Santa Cruz Biotechnology, #sc-47778) or anti-GAPDH

(Santa Cruz Biotechnology, # sc-365062) was a loading control.

The membranes were developed with an enhanced

chemiluminescence Western blot detection reagent (Thermo

Scientific, USA). Uncropped Western blot and replicates are

presented as Supplemental Figure S1 and S2 respectively.

Densitometry of the bands was quantified by using ImageJ.

FcRn, ATG-5 and LC3-I/II expression was normalized to b-
actin or GAPDH expression.
Statistical analysis

All statistical analyses involved using GraphPad Prism 8.0

(GraphPad Software, USA). Differences between groups were

determined by paired two-tailed Wilcoxon test and were

considered significant at p < 0.05. Results are expressed as

mean ± SD. The level of significance is indicated in the figures

as: ns = not significant, ∗p ≤ 0.05 and ∗∗p ≤ 0.01.
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Results

FcRn mRNA and protein show opposite
expression in M-CSF– versus GM-CSF–
differentiated macrophages

Monocytes from healthy donors were purified and cultured

for 6 days in the presence of 60 ng/ml M-CSF or GM-CSF to

obtain M-CSF macrophages (M-Mf) and GM-CSF

macrophages (GM-Mf), respectively. According to the

literature, the expression of CD14, CD163 and CD16 was

significantly greater in macrophages after differentiation with

M-CSF than GM-CSF, and we also found greater expression of

CD206 in GM-Mf than M-Mf (Figure 1A) (38, 39). We also
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measured IL-12p70, TNF-a, IL-6, IL-4, IL-10, IL-1b, arginase,
TARC, IL-1RA, IL-12p40, IL-23, IFN-g, and IP-10 in culture

supernatants of M-Mf and GM-Mf on day 6 by flow cytometry

after lipopolysaccharide stimulation. Consistent with expected

data in this differentiation model, levels of pro-inflammatory

cytokines such as IL-12, TNF-a and IL-1b were higher in GM-

Mf than M-Mf supernatants (Figure 1B). Altogether, CD14,

CD163, CD206, CD16 expression markers and cytokine/

chemokine profi les attest to consistent macrophage

differentiation toward pro- or anti-inflammatory macrophage

subtypes. Then, we measured FcRn mRNA by RT-qPCR in

differentiated M-Mf and GM-Mf (Figure 2A). FcRn mRNA

levels was higher in M-Mf than GM-Mf and monocytes

(Figure 2A). In parallel to differentiation markers and FcRn
B

A

FIGURE 1

CD163, CD14, CD206 and CD16 analysis by flow cytometry during macrophage differentiation in GM-CSF or M-CSF. Human monocytes were
cultured with 60 ng/ml M-CSF or GM-CSF for 6 days. (A) CD163, CD14, CD206 and CD16 expression was assessed by flow cytometry on day 0
in monocytes (MO) and day 6 in M-Mf and GM-Mf. Data are mean fluorescence intensity (MFI) from eight independent experiments (mean ±
SD, N=8). (B) Results of flow cytometry of cytokine secretion in M-Mf and GM-Mf after lipopolysaccharide stimulation represented as a
heatmap (mean ± SD, N=9). Mo, monocytes; M-Mf, M-CSF–induced macrophages; GM-Mf, GM-CSF–induced macrophages. ns = not
significant, *p ≤ 0.05 and **p ≤ 0.01.
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mRNA levels, we measured intracellular FcRn protein levels in

monocytes and in M-Mf and GM-Mf by flow cytometry. In

contrast to mRNA analysis, FcRn protein levels were higher in

GM-Mf than M-Mf (mean 5.72 and 2.15) and monocytes

(Figure 2B). This observation was confirmed in Western blot

experiments, with FcRn protein levels greater in GM-Mf than

M-Mf (Figure 2C). FcRn protein levels in M-Mf and monocytes

did not significantly differ. We also examined cell-surface FcRn

expression by flow cytometry in M-Mf and GM-Mf
(Figures 2D, E). The low levels of FcRn were significantly

higher on the GM-Mf than M-Mf cell surface (4.3% vs 2.1%),

according to intracellular FcRn variation.
Expression of FcRn affects macrophage
phenotype

To investigate whether FcRn expression could affect

macrophage differentiation, we knocked down expression with

siRNA at day 3 of culture. We first checked whether monocytes

were engaged in differentiation at this time by analyzing the

expression of CD163, CD14, CD206 and CD16 markers by flow

cytometry. The results confirmed the M-Mf and GM-Mf
phenotypes (Figure S3A). FcRn level on day 3 was close to

that on day 6, with more FcRn in GM-Mf than M-Mf (mean

2.61 vs 2.08) (Figure S3B). M-Mf or GM-Mf were then

transfected with an FcRn siRNA, which led to a decrease of 70

± 19% and 45 ± 25% FcRn mRNA levels on M-Mf and GM-Mf,
respectively (Figure 3A). The consequence of the decrease in

FcRn levels was an increase in CD163 expression (significant in

M-Mf) and a significant decrease of CD206 expression on M-

Mf and GM-Mf (Figure 3B). Neither macrophage subtype

showed a significant variation in CD14 and CD16 expression,

except for increase, although not significant, for CD16. In total,

the reduced FcRn expression in M-Mf consolidated their

phenotype while turning GM-Mf toward the M-Mf phenotype.
Opposite expression of FcRn and
autophagy markers in M-Mf and GM-Mf

To investigate the discrepancy between FcRn mRNA and

protein levels in M-Mf versus GM-Mf, we investigated

autophagy, a mechanism involved in protein degradation (40).

Also, autophagy is a conserved intracellular mechanism required

for macrophage polarization and acquisition of phagocytic

function (41–43). A recent paper described that FcRn could

interact with autophagosomes (44). We examined the expression

of autophagy-related 5 (ATG5) and light chain 3 I/II (LC3-I/II)

autophagy markers by Western blot analysis (Figure 4A).

Although FcRn protein levels were, as expected, higher in
Frontiers in Immunology 05
GM-Mf than M-Mf, ATG5, which is expressed during the

early stage of autophagy, was downregulated in GM-Mf versus

M-Mf. These data suggest higher levels of autophagosome

formation in M-Mf versus GM-Mf. LC3-II protein, widely

used to monitor autophagy, followed the same protein level

profile as ATG5 (Figure 4B), which indicates the presence of a

larger number of autophagosomes in M-Mf versus GM-Mf,
opposite to findings for FcRn levels.
Autophagy regulates FcRn expression in
M-Mf and GM-Mf

We wondered whether FcRn expression was regulated by

autophagy. To investigate this, macrophages were incubated on

day 5 with or without rapamycin for 24 h to activate autophagy

(Figure 5A). As indicated, chloroquine was added to culture

medium at 1 h before the end of rapamycin treatment to block

autophagy flux and quantify FcRn levels and autophagy markers

by Western blot analysis. Morphological changes in M- and

GM-Mf following autophagy treatment are documented in

Figure S4. Rapamycin incubation for 24 h decreased FcRn

levels, which were more pronounced in GM-Mf than M-Mf.
The addition of chloroquine with rapamycin restored FcRn

levels in GM-Mf. The addition of chloroquine alone, a late-

stage inhibitor of autophagy that inhibits autophagosome/

lysosome fusion, increased FcRn levels in these cells, with no

effect in M-Mf. At the same time, LC3-II levels and LC3-II/LC3-

I ratios confirmed the autophagy process induced by rapamycin

in GM-Mf. Another way to activate autophagy process is cell

starvation. We applied this treatment to macrophages for 4 h on

day 6. FcRn levels were downregulated under starvation

conditions with or without chloroquine in both GM-Mf and

M-Mf (Figure 5B). As compared with the induction of

autophagy by rapamycin, starvation resulted in a total

disappearance of LC3-I/II forms, thus reflecting a strong

induction of autophagic flux. Moreover, the addition of

chloroquine , which al lows for the degradat ion of

autophagosomes and thus LC3, confirmed this induction.

However, the addition of chloroquine did not rescue FcRn

levels under starvation conditions, which suggests an early

degradation of the latter from the beginning of the process.

Due to the crosstalk between autophagy and apoptosis, we

performed Annexin V/7AAD apoptosis analysis after

autophagy induction. Rapamycin had no effect on GM-Mf
apoptosis while it induced autophagy flux and decreased FcRn

levels. In M-Mf, rapamycin led to 15% of apoptosis coupled to

the same consequences on autophagy and FcRn levels. The same

effects were observed after starvation even if apoptosis in both

macrophage subtypes was more elevated (10% in GM-Mf and
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B C

D E

A

FIGURE 2

FCGRT mRNA and FcRn protein quantification in M-Mf and GM-Mf. Human monocytes were cultured with 60 ng/ml M-CSF or GM-CSF for 6
days. (A) FCGRT mRNA was assessed by RT-qPCR and relative expression levels were normalized to ACTIN and GAPDH mRNA (mean ± SD,
N=6). (B) Results of flow cytometry of intracellular FcRn expression in monocytes on day 0 and M-Mf and GM-Mf on day 6. Data are MFI of
anti-FcRn monoclonal antibody and isotype MFI ratio (mean ± SD, N=8). (C) Western blot analysis of protein extracts purified from monocytes
(Mo) on day 0 and M-Mf and GM-Mf on day 6. (D) Flow cytometry of membrane FcRn levels expressed as percentage of positive cells.
Histograms of one representative experiment on day 6 is presented for M-Mf and GM-Mf. (E) Mean percentage expression of FcRn cell-surface
expression on M-Mf and GM-Mf (mean ± SD, N=8). Mo, monocytes; M-Mf, M-CSF–induced macrophages; GM-Mf, GM-CSF–induced
macrophages; MFI, mean fluorescence intensity. ns = not significant, *p ≤ 0.05 and **p ≤ 0.01.
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20% in M-Mf) (Figure S5). Chloroquine had no effect on cell

apoptosis. These data suggest that apoptosis may not be

responsible for FcRn variation levels through autophagy

between M- and GM-Mf. On flow cytometry after incubation

with rapamycin, CD16 expression did not vary, which suggests

that the induction of autophagic flux specifically degraded FcRn

(Figure S6). Altogether, rapamycin and starvation effects attested

to the participation of autophagy in regulating FcRn expression.
Frontiers in Immunology 07
FcRn expression and autophagy
upregulated by IVIG in M-Mf

IgG is one of the two main ligands of FcRn. Thus, we

wondered whether IgG could regulate FcRn expression during

macrophage differentiation. Polyclonal IgG 0.01, 1 and 100 µg/

ml was added to M- and GM-CSF macrophage cultures from

day 0 to day 6. FcRn protein levels were upregulated about 50%
B

A

FIGURE 3

FcRn mRNA and differentiation marker expression after FcRn siRNA transfection. M-Mf and GM-Mf were transfected with FcRn siRNA on day 3
for 24 h. (A) Transfection efficiency was assessed by RT-qPCR. Relative expression of FCGRT was normalized to that of actin and GAPDH. Data
are relative FcRn levels to siRNA control (mean ± SD, N=7). (B) Flow cytometry of CD163, CD14, CD206 and CD16 expression after transfection
in M-Mf and GM-Mf. Data are normalized MFI fold change to siRNA control (mean ± SD, N=7). M-Mf, M-CSF–induced macrophages; GM-Mf,
GM-CSF–induced macrophages; MFI, mean fluorescence intensity; ns, not significant. ns = not significant and *p ≤ 0.05.
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in M-Mf with 1 and 100 µg/ml IgG but not in GM-Mf
(Figure 6A). This increase in M-Mf FcRn levels was associated

with elevated LC3-II protein levels, with no significant effect

detected in GM-Mf (Figure 6B), which again suggests a link

between FcRn levels and autophagy.
Discussion

FcRn expression has long been described as ubiquitous, with

no information on its expression. However, in cancer, FcRn is

downregulated in some tumor cells and the tumor

microenvironment (17, 19, 20, 45), and mechanisms leading to

the low FcRn expression are unknown. In this study, we found

that autophagy, a well-characterized process in cellular

physiology, regulated FcRn levels during macrophage

polarization toward the pro- or anti-inflammatory phenotype.

We used a minimal model of macrophage differentiation
Frontiers in Immunology 08
consisting of the addition of GM-CSF or M-CSF to minimize

cytokine implication. This model allows for the differentiation of

macrophages with typical pro- or anti-inflammatory features

(46, 47). The production of cytokines after lipopolysaccharide

activation confirmed the differentiated phenotypes of

macrophages. Under these conditions, we found FcRn mRNA

levels higher in M-Mf than GM-Mf. This phenotype is acquired
as soon as 3 days of differentiation. Moreover, knockdown of

FcRn in M-Mf deepened the M-Mf phenotype and induced a

mild reversion of the GM-Mf in the M-Mf, which confirms

the link between FcRn expression and macrophage

polarisation subtypes.

The results concerning FcRn mRNA levels in macrophage

subtypes agree with transcriptomics data (47). By studying the

regulatory networks associated with the GM-CSF or M-CSF

signalling pathways, genes contributing to the establishment of

an inflammatory program consecutive to monocyte activation

were classified. Among the genes differentially transcribed
B

A

FIGURE 4

Western blot analysis of protein levels of ATG5, ATG7 and LC3-I/II involved in autophagy and FcRn expression in macrophages. Human
monocytes were cultured with 60 ng/ml M-CSF or GM-CSF for 6 days. (A) Proteins were extracted from M-Mf and GM-Mf on day 6. One
representative blot is presented. (B) Quantification of FcRn, ATG5 and LC3-I/II expression normalized to GAPDH expression (mean ± SD, N=6).
M-Mf, M-CSF–induced macrophages; GM-Mf, GM-CSF–induced macrophages. *p ≤ 0.05.
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during macrophage polarization with GM-CSF or M-CSF that

we identified in Supplementary Data from this study (47),

FCGRT gene was expressed more in M-Mf than monocytes or

GM-Mf. To deepen this information, we examined FcRn

protein expression by flow cytometry and Western blot

analysis in our in vitro model. We showed an opposite FcRn

protein expression as compared to its mRNA levels, with higher

FcRn protein levels in GM-Mf than M-Mf.
Among mechanisms that could explain these data, we

explored the autophagy route because of its participation in

protein degradation and in cell physiology, especially during

monocyte/macrophage differentiation (48). Inhibition of

autophagy during this process leads to the blockage of

differentiation and impaired phagocytic functions of

macrophages (42, 43). Knowing the role of FcRn in
Frontiers in Immunology 09
phagocytosis (1), the recent participation of ATG7

autophagy gene in albumin transcytosis in renal tubule

epithelial cells via FcRn (44) and the well-described FcRn

expression in early and late endosomes (13, 14, 49),

examining the role of autophagy in FcRn expression seemed

obvious. After 6 days of culture, the higher levels of proteins

involved in autophagy in M-Mf than GM-Mf favored greater

autophagic capacity and could be responsible for the lower

FcRn levels in M-Mf than GM-Mf. Indeed, early and late

endosomes can fuse with autophagosomes to form new

complexes called amphisomes (50). Then, amphisomes fuse

with lysosomes to lead to protein and organelle degradation/

recycling. This phenomenon could then be responsible for

FcRn degradation. The high FcRn mRNA levels in M-Mf
contrasting with the low FcRn protein levels could be
B

A

FIGURE 5

Autophagy activation with rapamycin or starvation modulates FcRn expression. (A) M-Mf and GM-Mf were treated on day 5 with rapamycin for
24 h and with chloroquine for the last hour. (B) M-Mf and GM-Mf were starved on day 6 for 4 h and chloroquine was added for the last hour.
In A and B, levels of FcRn and LC3-I/II were examined by Western blot analysis and quantified. Values indicated on the bottom were normalized
to GAPDH against the CTL. One representative blot in three experiments is presented for each treatment. M-Mf, M-CSF–induced macrophages;
GM-Mf, GM-CSF–induced macrophages; CTL, control; RAPA, rapamycin (100 nM); CQ, chloroquine (15 µM); Stv, starvation.
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explained by a high turn-over of FcRn protein due to its

degradation by the autophagic process.

The use of activators and inhibitors of autophagy in our

experiments confirmed that FcRn levels depended at least in part

on autophagy. This process could occur in parallel to an

endoplasmic reticulum-associated degradation of FcRn

involving ubiquitin enzymes as described in human
Frontiers in Immunology 10
cytomegalovirus infection (51). Starvation conditions of

culture were more efficient than rapamycin treatment in

showing the participation of autophagy in the regulation of

FcRn in macrophages. Moreover, chloroquine was of particular

interest by showing that when autophagy was inhibited at the

autophagosome/lysosome fusion stage, FcRn levels increased in

cells. This is clearly seen in GM-Mf with high FcRn levels.
B

A

FIGURE 6

IVIG effect on FcRn expression and autophagy during macrophage differentiation. M-Mf and GM-Mf were cultured with IVIG 0.1, 1 and 100 µg/
ml during differentiation. Western blot analysis of fold change in protein expression for FcRn (A) and LC3-II (B) quantification and normalization
to GAPDH expression (mean ± SD, N=7). M-Mf, M-CSF–induced macrophages; GM-Mf, GM-CSF–induced macrophages; IVIG, intravenous
immunoglobulin G. ns = not significant and *p ≤ 0.05.
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Moreover, amphisomes can fuse with the plasma membrane

before fusion with lysosomes (52). This phenomenon could

explain the greater elevated cell-surface levels of FcRn

observed in GM-Mf than M-Mf.
The addition of IgG, one of the main ligands of FcRn, in the

culture during macrophage differentiation was also able to

modify FcRn expression in macrophages. In M-Mf, FcRn and

autophagy were both upregulated by IgG. These results could be

explained by modifications in FcRn subcellular localization,

which is, in this case, engaged in recycling endosomes with

IgG protecting against degradation and also by the increase in

IgG endocytosis/phagocytosis explaining the high levels of

autophagy. In GM-Mf, the IVIG addition did not modify

FcRn expression probably because of the lower phagocytic

capacity of these cells. Recently, Das et al. showed that IVIG

induced autophagy in pro-inflammatory but not anti-

inflammatory macrophages (53). These discordant results

might be explained by the differences in the two models: IVIG

was present during the whole culture from day 0 to day 6 and in

lower concentrations (up to 100 µg/ml) in our study as

compared with the Das et al. study, in which IVIG was added

at day 6 in a high concentration (10 mg/ml).

Autophagy participates in the pathophysiology of a wide

number of diseases such as inflammatory or autoimmune

disorders and cancer. In cancer, autophagy plays a dual role

inhibiting benign tumor growth but promoting advanced cancer

growth (54). The increased autophagic activity described in

aggressive cancers could explain the low FcRn levels found in

cancer with poor prognosis (19, 20). Conversely, a defective

autophagy process is associated with inflammatory or

autoimmune diseases by avoiding the degradation of

dysfunctional or cytotoxic cellular components (55, 56), which

suggests that modulation of autophagy could be beneficial to

ameliorate the diseases. Among treatments applied in these

disorders, IVIG is used for its anti-inflammatory effects (57).

The mechanisms of action are multiple, in particular the role on

the immune response via FcgR (58). Modulation of macrophage

differentiation toward a pro- or anti-inflammatory immune

response with FcRn expression via autophagy could account

for a new immunomodulatory effect of IVIG.

Altogether, these data implicating autophagy in regulating

FcRn expression raise new questions concerning the role of FcRn

in immune functions but also in IgG and therapeutic antibody

pharmacokinetics and pharmacodynamics. The situation in

other cell types expressing FcRn and with or without

phagocytic properties needs to be explored to appreciate the

importance of such cooperation between autophagy and FcRn.
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