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There is global evidence of a general increase in the incidence and prevalence of

respiratory diseases including allergic rhinitis and associated asthma. This increase in

turn, has been related, in part, to concurrent increases in carbon dioxide (CO2) and

temperature on pollen production and allergic disease generated from plant-based

sources of pollen. Such links to anthropogenic climate change has suggested three

significant and interrelated consequences associated with respiratory allergies or

disease. First, warmer temperatures and a longer frost-free growing season can influence

pollen season length and temporal exposure to airborne aeroallergens. Second, both

warmer temperatures and additional CO2 can increase the amount of pollen, the

seasonal intensity, from spring through fall. Thirdly, there is evidence from oak and

ragweed that rising levels of CO2 could increase the allergen concentration of the pollen

and symptom severity. However, while these outcomes are of obvious consequence,

they do not fully encompass all of the plant derived changes that could, directly or

indirectly, influence aeroallergen production, exposure, and consequences for public

health. In this overview, I will delve deeper into other plant-based links to climate/CO2 that

are consequential either directly or indirectly to allergic rhinitis and associated disease.

Such interactions range from pollen morphology to fire occurrence, from volatile organic

compounds to potential changes in pesticide usage. The goal in doing so is to provide a

broader context and appreciation for the interactions between plant biology and climate

that can also affect allergen production and human impact but which, to date, have

received little recognition or research.
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INTRODUCTION

There is wide-spread documentation that allergenic diseases have risen significantly in the last
half century (1). Clinical evidence indicates increases in the incidence and prevalence of allergenic
diseases including allergic rhinitis and asthma (2, 3).

While the basis for the upturn in respiratory diseases is multi-factorial (e.g., air pollution,
lifestyle), there is substantial evidence that plant sources of allergenic pollen are also increasing
in response to climatic change (4). An in-depth historical analysis of pollen records across the
northern hemisphere has indicated that the ongoing increase in temperature extremes (Tmin
and Tmax) might already be contributing to extended seasonal duration and increased pollen
load for multiple aero-allergenic pollen taxa (5). A recent report (6) used a range of models and
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found that climate change was the dominant driver of changes in
pollen season length and a significant contributor to increasing
pollen concentrations in North America. In addition, there is also
evidence that recent and projected levels of CO2, the primary
source of carbon for plant photosynthesis, can also increase
allergenicity of ragweed and oak pollen (7, 8).

These three aspects, pollen load, seasonality, and allergenicity
are of obvious importance. Yet, they do not represent the
full spectrum of interactions between plant biology, CO2 and
climate with respect to aero-allergen production, distribution,
and impact. Those interactions, while not as recognized, will
also have subsequent effects specific to allergic disease. The goal
of the current review is to elucidate those direct or indirect
consequences; provide, when possible, a biological basis for their
potential interactions, and to offer guidance for future research
directions and unmet needs. In this review, direct, relates
specifically to aspects of plant biology including development,
morphology, and ecology; indirect, refers to interactions with
other biotic or abiotic shifts likely to occur in conjunction with
climate change.

DIRECT EFFECTS

Height and Wind Speed
Climate and rising levels of CO2, in addition to altering pollen
production, can also influence the release and dispersion of
pollen. Plant height can be a factor in distance traveled for
pollen in anemophilous plants, but also for seed—influencing
the rate of spread of known aero-allergenic plants such as
ragweed (9, 10). Wind patterns and wind intensification are
factors expected to respond to climate change (11, 12). For
example, Zeng et al. (13) reported that winds across North
America, Europe and Asia have been intensifying since about
2010, with the global average wind speed increasing. Such an
increase will have subsequent consequences for distance and
longevity of pollen within air currents. Recently, Menzel et
al. (14) showed that pollen transport from non-native sources
could be a factor in the length, timing and severity of the
allergenic pollen season. However, climate induced changes in
wind patterns related to temporal and quantitative changes in
pollen remain largely uncategorized.

Pollen Morphology, Fragmentation,
Allergenicity
Warmer temperatures during anthesis can result in
morphological and anatomical changes in pollen development,
often leading to pollen sterility (15, 16). Temperature may
also have implications as to chemical composition and
structural deformity of pollen [e.g., peas, (17)]. However,
these structural changes have not been extensively evaluated
with respect to key pollen characteristics associated with
allergenicity, such as structural integrity or changes in allergenic
protein concentration.

Temperature (or CO2) induced changes in pollen structural
integrity may of particular importance during heavy rainfall
which can induce pollen rupturing into submicrometer pollen
fragments (18). These fragments can penetrate deeper into

human lungs and can persist for longer periods in the
atmosphere. Such fragments can peak during convective
thunderstorms, thunderstorms which are anticipated to increase
in frequency and strength as the climate changes. Climate or CO2

induced changes in pollen development and morphology and
the consequences for increased fragmentation and allergenicity
remain an understudied aspect of plant based aero-allergens.

Demographics
Allergenicity of pollen is a function of species. Ragweed, ryegrass,
elm, oak all illicit different responses. But the distribution and
pollen load of these species is in flux. Increasing CO2 and altered
temperature and precipitation are likely to affect allergenic weed
demography (19, 20), including establishment (21), competition
(22), distribution (23), and management (24).

For example, there is strong evidence that ragweed, a widely
recognized cause of allergic rhinitis in North America has
benefitted from climate change, and is likely to expand its
northern ranges, while contracting its southern populations (25).
For woody perennial species expansion of Juniperus species in
the United States has been noted over several decades, including
potential links with both climate change and increasing CO2

concentrations (26). Overall, demographic flux needs to be
considered in pollen monitoring. Yet in examining long-term
records of pollen at the decadal level the list of allergenic species
is often static and does not always reflect species that are new or
diminishing in population (5).

Vernalization
There are a number of studies that have shown a role of
temperature and/or carbon dioxide concentration on advancing
pollen release times for various allergenic tree species (20).
However, the temporal role of rising temperatures and additional
CO2 is also dependent on vernalization, the induction of
flowering necessitated by exposure to cold (winter) temperatures.
Warmer temperatures over winter could reduce floral initiation,
but warmer spring temperatures could accelerate floral bud
development and opening. While trees do release aeroallergens
in the spring, warmer winters may result in earlier flowering, or
flowering delays or even decreased floral numbers, depending
on the tree species’ specific need for vernalization (27). Hence,
there can be both earlier and later allergen exposures from
trees, depending on species, and location. Overall, changes in
pollen season length, allergenicity and pollen amounts have
not been well-quantified, particularly for hardwood trees with
respect to rising CO2, or CO2 and temperature. Understanding
vernalization in the context of climate change may be critical to
assess current and future trends in tree pollen production.

INDIRECT PLANT/ENVIRONMENT
INTERACTIONS

Fungal Interactions
Although the function of climate in the induction and spread of
molds is well-recognized (28), it is important to also emphasize
the role of plants as hosts in fungal biology. Of particular interest
in this regard is Alternaria alternata, an opportunistic fungal
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pathogen with hundreds of plant hosts, but whose spores are also
recognized as a significant aeroallergen source associated with
allergic dermatitis. It is interesting to note that rising levels of
CO2 and/or climate change are likely to affect Alternaria’s plant
hosts, including CO2 induced declines in the nitrogen content of
plant tissue (29). As a result it is interesting to ask whether these
changes can also alter Alternaria life cycle, with potential changes
in sporulation.

One of the most interesting studies in this regard is by Wolf
et al. (30) where the effects of rising CO2 concentration on the
quantity and quality of Alternaria fungal spores was studied
using timothy grass (Phleum pratense) leaves as the growth
medium. Here the researchers found a shift in reproductive
phenology where CO2-induced declines in leaf concentration
resulted in a earlier shift for sporulation in Alternaria. Overall, at
the higher CO2 concentrations (500 and 600 ppm), A. alternata
produced nearly three times the number of spores and more than
twice the total antigenic protein per plant relative to ambient
CO2 conditions.

This is an indirect effect relative to plant biology per se; it
illustrates the role of rising CO2 on qualitative changes in plant
tissue, which in turnmay have significant global interactions with
respect to fungal sporulation. However, at present, the extent of
the interaction between CO2 stimulation, changes in leaf tissue
chemistry and fungal sporulation capacity has not been well-
characterized.

Air Quality and Allergenic Pollen
Air pollution has been associated with increased permeability and
easier penetration of pollen allergens into airways of susceptible
subjects (31). Exposure to ozone for example may increase
sensitization to outdoor aeroallergens (32), including plant based
pollen (33); and there are projections that climate change could
increase near-surface ozone concentration in urban areas (34).

But there is also an additional plant biological aspect that is
of interest. Plants release volatile organic compounds, or VOCs,
into the air when attached by insects. These VOCs in turn are
detected by other plants who can increase their production of
VOCs to ward off herbivory. And it is those VOCs that are
also a source of air pollution—a chemical determinant of ground
level ozone.

One of themost prominent plant sources of VOCs, specifically
isoprene, is kudzu, an invasive vine found extensively throughout
the southeastern U.S., but is also migrating northward (35).
Kudzu is such a powerful VOC source that extensive kudzu
invasion can lead to an increase in the number of high ozone
events (above 70 ppb) of up to 7 days each summer for some
regions (36). Rising CO2 has also been shown to stimulate
kudzu growth (37, 38), but specific interactions with CO2

and temperature on isoprene release, ozone intensification and
potential synergy with aero-allergens remain to be determined
(39) (Figure 1).

This illustrates the complexity of botanical responses to
rising CO2 and a warming climate; changes in VOCs could
also increase ground level ozone, potentially exacerbating the
impact of allergenic pollen in a public health context. Conversely,
additional ozone could limit tree growth and pollen production,

although, interestingly, supra-ambient ozone levels appear to
have little effect on ragweed (40).

In addition to ozone, another air quality aspect that deserves
additional consideration relative to allergic rhinitis is wildfire.
Wildfire smoke contains a complex mixture of carcinogenic and
respiratory substances including VOCs, ozone and particulate
matter (PM). In addition to VOCs and ozone, there are a
number of epidemiological studies confirming the association
of PM with allergic respiratory diseases [e.g., (41)]. Particulate
matter, in turn, is associated with fire, and fire acreage and
intensity are changing in response to warming temperatures and
shifting precipitation patterns (42). Interactions between climate
induced changes in fire frequency / intensity and climate/CO2

increases in seasonal aeroallergens have not been extensively
investigated (43).

Here too there is an additional botanical aspect. Plant material
is the primary fuel for wildfires. As such, can rising CO2 levels
and/or climate change alter plant tissue and combustibility,
flammability or smoke quality? It can be argued that such changes
would, in turn, also affect fire dynamics and allergenic sensitivity.

Cheatgrass (Bromus tectorum), is an invasive grass species
found throughout much of Western North America. It can
grow and thrive on little water, leaving dense continuous
mats of flammable vegetation with subsequent increases in fire
frequency. Interestingly, different cohorts of cheat-grass grown
under atmospheric CO2 levels (from 270 to 420 ppm at 50
ppm intervals) suggested that recent increases in CO2 may have
contributed to cheat-grass productivity and fuel load as well as
increased combustibility (44). Additional information as to the
role of CO2 and/or climate change on plant tissue composition
related to fire dynamics are needed; however, interactions
between CO2 and climate change with respect to wildfires, smoke
characteristics (e.g., PM size) and seasonal allergen exposure are
deserving of additional research to determine potential synergies
(Figure 1).

Pesticide Usage
Health studies directed to agricultural workers indicate a
significant association between pesticide application and allergic
rhinitis (45). Farm and ranch safety survey data from 11,210 farm
operators indicated that 40% used pesticides, 30.8% had lifetime
allergic rhinitis and ∼5% currently suffered from asthma (46).
Sensitivity may also vary by pesticide category; for example Slager
et al. (46) noted that the herbicides glyphosate and petroleum
oil were associated with current rhinitis and increased rhinitis
episodes. Although additional data is needed to clarify the
dose-response relationship between pesticide use and negative
respiratory health effects, it is clear that insecticide and herbicide
use are significantly associated with lifetime allergic rhinitis and
existing asthma (47).

There is an additional plant biology aspect to this association.
Decreases in the efficacy of different pesticides, including
herbicides, has been detected under climatic changes associated
with rising temperature and CO2 enrichment (48–50). Such
declines may prompt increases in pesticide application
(concentration and timing), already a concern due to high
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FIGURE 1 | Illustration of individual and synergistic impacts related to plant based aeroallergens in the context of rising levels of carbon dioxide and/or temperature.

levels of selection pressure and increased resistance imposed by
herbicides (the most frequently applied pesticide category).

The effect of rising CO2 and temperature on pests, particularly
weeds, may result in additional pesticide applications,
exacerbating responses related to plant aero-allergen production.
However, to date, there are no studies that have considered their
potential interaction.

UNKNOWNS AND CHALLENGES

Increasing levels of CO2 and rising temperatures are a
ubiquitous aspect of global climate change. The extent of
climatic change and the associated uncertainty are anticipated
to have wide-spread negative impacts on human systems (51),
threatening to negate years of progress in public health. Such
impacts focus, understandably, on direct physical consequences
on human health, such as hurricanes, floods, fires; sudden
environmental shifts related to hypothermia or cardiovascular
function; biological consequences can include increased risk of
vector borne diseases such as malaria, dengue fever and west Nile
virus (52).

And there are botanical consequences, aside from crop
systems and food availability, that are also deserving of attention.
In this regard there is increasing consensus that plant-based
aeroallergens are likely to be significantly altered directly by rising
CO2 and/or climate, with earlier pollen initiation, greater pollen
loads, greater allergenicity, and longer seasonal exposure.

Although there is a merited focus on negative affects with
respect to pollen and allergenicity, other effects which could
reduce pollen spatially or temporally also deserve consideration.
For example, climate change may limit suitable habitat for
known allergenic tree species, such as birch (53). Warming
winter temperatures may also delay anthesis in winter-flowering
species or alter the vernalization requirement for other tree
species (54). Temperature influences on masting in oak, or
other climatological influences on temporal flowering could,
potentially, affect pollen seasonality or pollen load (20),
with potential differences between perennial and herbaceous
species (55).

To fully understand health consequences related to
aero-allergens requires a more fundamental appreciation of
the complexity of plants and plant systems. Climate and CO2

will directly alter core aspects of plant development, from
height to vernalization to their geographic distribution, all
characteristics that will modify pollen production, allergenicity
and airborne retention times, but remain, overall, overlooked
with respect to aero-allergen impacts. Similarly, there are
biological interactions that deserve additional scrutiny, from
CO2 induced changes in plant chemistry and subsequent
effects on fungal aero-allergen production; to CO2 induced
increases in VOCs, and potential synergy between ozone and
aero-allergens; to climate/CO2 changes in plant flammability that
could alter smoke characteristics and aero-allergen sensitivity.
These examples are of interest but are not the only potential
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interactions that could occur. For example, there is very
preliminary information that rising CO2 could increase allergen
content in some peanut lines (56); if food allergies are in fact,
altered by CO2/climate, what are the ramifications for other
allergies, including aeroallergen, sensitivity?

The occurrence of allergic rhinitis globally is estimated at
around 500 million (57). A recent seminal review by Beggs
(58) indicates that the increase in allergic rhinitis and associated
asthma and aeroallergens is increasing significantly, and it is clear
that the research and collaborations that have been conducted to
examine climate and CO2 have been critical in establishing the
botanical links to spatial and temporal trends in aero-allergens.

But it is also clear that there is more to discover. The
research topics that have been illustrated here are important,
but they are reflective of my own botanical bias. Other work,
from understanding the role of climate change to indoor and
outdoor allergen trends and interactions, to urban heat island

macro-environments, to synergism of aeroallergens with other
environmental triggers, to clinical responses that document
respiratory health effects, are also essential, critical. Overall, in
examining the role of climate change on public health as it
pertains to plant based aeroallergens, there is both recognition
of what has been accomplished, and how many challenges
still remain.
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