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Temporal self‑similarity 
of quantum dynamical maps 
as a concept of memorylessness
Shrikant Utagi1,2, R. Srikanth1 & Subhashish Banerjee3*

The problem of defining quantum non-Markovianity has proven elusive, with various in-equivalent 
criteria put forth to address it. The concept of CP-indivisibility and the hierarchy of stronger divisibility 
criteria going up to P-indivisibility, capture a fundamental aspect of memory in quantum non-
Markovianity. In practice, however, there can be a memory-like influence associated with divisible 
channels in the form of weakening, if not reversing, the effects of decoherence. Arguably, such a facet 
of memory relates to CP-indivisibility as quantum discord relates to entanglement. We concretize this 
weaker notion of non-Markovianity by identifying it with deviation from “temporal self-similarity”, 
the property of a system dynamics whereby the propagator between two intermediate states is 
independent of the initial time t

0
 . We illustrate this idea through examples, and propose a geometric 

quantification of temporal self-similarity, and show how our approach complements the divisibility-
based criterion of quantum non-Markovianity.

Practical quantum information processing must inevitably contend with quantum noise1–4, and in particular, 
non-Markovian effects in the noise5–10. Classical Markovianity can be defined in terms of the divisibility of a 
process into intermediate transitions, or equivalently in terms of the fall in distinguishability of two states. The 
quantum adaptation of these ideas to define quantum non-Markovianity is not straightforward, and turns to lead 
to in-equivalent concepts, essentially because the Kolmogorov hierarchy of classical joint probability distributions 
cannot be transferred to the quantum case11–15.

The classical identification of Markovianity with divisibility leads to a hierarchy of quantum divisibility 
criteria based on the positivity property of the intermediate map (the propagator of the dynamics between two 
arbitrary times) associated with a dynamical process being CP-divisible16,17 or P-divisible18, or an intermediate 
k-divisible19,20. In Ref.21 quantum non-Markovian behavior was studied from the perspective of linear response 
theory. The effort to unify all such definitions into a single framework is important and remains studied by vari-
ous authors; in this context, cf.22. It is fair to say that the question of how exactly to characterize memory effects 
in quantum processes remains a topic of active ongoing research23–25.

As a rule of thumb, quantum non-Markovianity corresponds to the influence of memory of initial conditions 
that reverses the effect of quantum decoherence. However, in certain contexts channel memory may manifest 
itself simply by weakening the effect of quantum decoherence, without actually reversing it. To illustrate this 
idea, consider Fig. 1, which shows how quantum information gets degraded in three dephasing channels: the 
Holevo bound B = S( ρ1+ρ2

2 )− 1
2 [S(ρ1)+ S(ρ2)] for a quantum dynamical semigroup channel (bottom-most 

plot), a CP-indivisible channel (oscillatory plot) and a non-QDS but CP-divisible channel. Although the last 
mentioned does not manifest recurrence, clearly it involves a memory effect in that it slows down the fall of 
distinguishability of the two initially orthogonal states ( |+��+| and |−��−| ). Here, S(ρ) ≡ −Tr[ρ log(ρ)] denotes 
the von Neumann entropy.

In the present work, we identify the origin of this memory-like effect in such divisible channels with devia-
tion from “temporal self-similarity” (TSS), which roughly refers to the idea of the intermediate map being 
oblivious of the initial time t0 . Furthermore, we prove that TSS may be identified with the quantum dynamical 
semigroup (QDS)26, the 1-parameter semigroup of maps governing the system dynamics, generated by the time-
independent linear map, namely, the Lindbladian L , corresponding to the time-homogeneous master equation 
ρ̇(t) = L[ρ(t)]27,28. Now there has been a traditional background to identifying quantum Markovianity with 
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QDS1,3,14,29. This tradition was largely based on two broad physical considerations: (a) it could be justified on 
grounds that QDS is a reasonable quantum analogue of the classical Chapman–Kolmogorov equation, (b) it is 
also favored by considerations of the system–environment interaction, such as a strong coupling with the bath, 
the correlation times of the environment being very small in relation to the system’s relaxation time or allowing 
for the Born–Markov approximation1,3.

However, this historical picture was prior to the emergence of the divisibility-based criteria, and by our 
revisitation of it is show that it still holds relevance, but in light of a new perspective, which is not explicitly 
based on parameters related to the system-environment interaction, such as coupling strength, correlation time, 
etc. (though they play an indirect role, of course), but instead on memory-like effect manifested in the reduced 
dynamics . In quantum correlation theory, quantum discord is known to be strictly weaker than quantum 
entanglement30, and yet of practical relevance31. The discovery of quantum discord was rather surprising in that 
it highlighted the existence of nonclassicality in the correlation among particles that are classically correlated. 
We think it is not amiss to consider that the broader concept of quantum non-Markovianity identified here 
with deviation from TSS stands in relation to the divisibility-based concept of quantum non-Markovanity as 
quantum discord stands with respect to quantum entanglement. Just as even classically correlated systems can 
manifest quantum discord, so too even divisible maps can manifest this weaker form of memory. We clarify this 
point later below.

Results
Temporal self‑similarity.  Suppose Alice obtains states ρ(t1) and ρ(t2) by applying CP evolution E(t1, ti) and 
E(t2, ti) , respectively, to a system in initial state ρ(ti) . Here t2 > t1 > ti , and ti is the initial time. She informs Bob 
the values t1, t2 and the form of the full map E(tf , ti) , where tf  denotes the final time of the evolution. The form of 
the map could be represented as a set of Kraus operators, the Choi matrix, the dynamical map, etc. She asks Bob 
to compute the intermediate map E(t2, t1) that evolves ρ(t1) to ρ(t2) . Quite generally E(t2, ti) = E(t2, t1)E(t1, ti) . 
Assuming the invertibility of E(t1, ti) , Bob’s task is to compute E(t2, t1) = E(t2, ti)E(t1, ti)

−1 (Fig. 2).
Clearly, this map is a function of ti in general. This means that generally only if Alice supplies the value ti:=t0 

can Bob compute E(t2, t1) . This is evidently a kind of memory effect. (Alternatively, Alice also supplies ρ(t1) in 
the beginning, and asks Bob to compute ρ(t2) . In this case, she must reveal the initial state ρ(t0) , reflecting the 
history dependence of the later state.) On the other hand, if the channel is temporally self-similar, i.e., the form of 
intermediate map is the same as that of the full map, then Bob can simply compute E(t2, t1) by E(tf , ti)|tf :=t2,ti :=t1 . 
In this case, he doesn’t require the t0 information, which gives a notion of memorylessness, and which will be 
shown to be stronger than CP-divisibility. Thus, a channel E is temporally self-similar when its any intermediate 
map is oblivious of the initial time, and behaves like a full map in its own right33. We note that as a valid quantum 
channel, E should be completely positive (CP).

Assuming a constant system-bath Hamiltonian, E(t, ti) = E(t − ti) , which essentially follows from the fact 
that the CP map can be purified to a system-environment unitary U(t − ti) acting on a product state. Therefore, 
we have E(t2, t1) = E(f (t2 − ti , t1 − ti)) such that f (t2 − ti , t1 − ti) has no dependence of ti for arbitrary t2, t1 
and ti . Clearly, this holds only if f (y, x) = f (y − x) for y ≥ x . Setting r ≡ t1 − ti and s ≡ t2 − t1 , we find that 

Figure 1.   (Color online) Distinguishability of two states initially |+� and |−� with respect to time under 
a Markovian OUN (QDS), non-Markovian OUN (non-QDS but CP-divisible) and modified OUN 
(CP-indivisible) dephasing channels, quantified by the Holevo bound B (these noisy channels are described 
below). In the first case, G = 1 (red, dot-dashed curve), for the second G = 1 and g = 0.3 (blue, bold curve), 
and for the third case, a = 1 and r = 0.3 , and k = 1.5 . (orange, dashed curve), cf. Eqs. (5) and (8). The figure 
illustrates how deviation from QDS, even when it doesn’t reverse decoherence, can weaken it.
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E(r + s) = E(s)E(r) , which is the defining composition rule for QDS. Conversely, QDS satisfies temporal self-
similarity since the intermediate map under QDS is just E(t2 − t1) . We thus identify temporal self-similarity 
with QDS.

It is worth comparing and contrasting our invocation of initial time memory with that proposed in Ref.29. 
There, a non-Markovian quantum evolution (obtained as the reduced dynamics of a time-independent Hamil-
tonian dynamics defined on the system and an ancilla) is identified with a time-local equation for the dynamical 
map E(t, t0) with a time-homogeneous generator L(t − t0) containing a memory of t0 . This is indeed analogous 
to our identification of memory with t0 dependence of the intermediate map. On the other hand, the evolution 
described by a generalized Lindblad master equation with time-dependent generator L(t) , deviating from QDS 
but satisfying inhomogeneous composition rule, is taken to be Markovian. Thus, this approach leads to a concept 
of non-Markovianity stronger than that proposed here. The reason, essentially, has to do with the fact that the 
initial time dependence in the case of non-Markovianity occurs in the generator L via a “ t − t0 ” term in the 
case of Ref.29, whereas it occurs in the intermediate map E(t2, t1) in our case in more general functional forms 
of dependence on initial time (cf. herebelow Eq. (7) and the discussion below it).

We present a simple illustration of temporal self-similarity as below. Consider the amplitude damping channel 
(ADC), under which a quantum state ρ evolves to state ρ′ via the map EAD[ρ] →

∑

j Aj(t)ρA
†
j (t) , with the Kraus 

operators Aj(t) given by A1(t) =
(

1 0
0
√
1− �(t)

)

 and A2(t) =
(

0
√
�(t)

0 0

)

, where

is the damping factor and γ0 is the vacuum bath interaction parameter34,35.
Now, suppose that the system evolves starting at ti , going through t1 to t2 . Let the damping factor associated 

with the full map EAD(t2, ti) be � , and that with the initial map EAD(t1, ti) be µ . For EAD(t2, ti) the Choi matrix36 
is found to be17,37:

while that for the intermediate evolution map EAD(t2, t1) = EAD(t2, ti)E
AD(t1, ti)

−1 is found to be37:

Note that the matrices χ(t2, ti) and χ(t2, t1) are of the same form provided the functions 1− � and 1− µ have 
the exponential form ekt for some k. In view of Eq. (1), this is indeed the case. We thus confirm that amplitude 
damping is indeed temporally self-similar.

If the Lindbladian L(t) = L is a constant, then E(t2, t1) = e(t2−t0)Le−(t1−t0)L = e(t2−t1)L = E(t2 − t1) , i.e., we 
obtain the self-similar form. But the converse is not true. This happens essentially when suitable continuity and 
limit requirements are not met. A simple example here would be the temporally self-similar map E = I for t = 0 , 
and E(ρ) =

∑

j �jTr(ρ�j) for t > 0 , where �j is any complete set of projectors15. However, in physically moti-
vated scenarios, we can assume that the channel is continuous, satisfying the limit requirement limt→0+ E = I . 
Given these assumptions, we can identify self-similarity at the master equation level with the time-independent 
Lindbladian. Consider the integro-differential time-nonlocal representation of the master equation of the system 
dynamics in terms of the linear memory kernel map M , which makes this idea of memorylessness clearer. We 
have ρ̇(t) =

∫ t
t0
dsMt−sρ(s) =

∫ t
t0
dsMt−s[E(s−t0)E

−1(t−t0)]ρ(t) =
∫ t
t0
dsMt−s[e(s−t)L]ρ(t) . This implies 

(1)�(t) = 1− e−γ0t

(2)χ(t2, ti) =









1 0 0
√
1− �

0 � 0 0
0 0 0 0√
1− � 0 0 1− �









,

(3)χ(t2, t1) =













1 0 0
�

1−�

1−µ

0 µ−�

µ−1 0 0

0 0 0 0
�

1−�

1−µ
0 0 1−�

1−µ













.

Figure 2.   Deciding (non-)Markovianity: given the form E(t, ti) (with free variables t, ti ) and values t1 and t2 , 
the problem is to compute the intermediate map E(t2, t1) . If this computation requires initial data ti := t0 , then 
the map is non-Markovian, else it is not. (Equivalently, the original data given to Bob additionally includes 
ρ(t1) , and his task would be to compute ρ(t2) . Non-Markovianity in this case corresponds to this computation 
requiring the initial state ρ . Given this, t0 can be computed by solving ρ(t1) = E(t1, ti)ρ for ti , and then ρ(t2) 
computed as E(t2, t0)E(t1, t0)−1ρ(t1) . Note that the non-invertibility of E(t, ti) does not pose a problem to 
compute the initial time t0 given ρ(t1) and ρ32, Section IV).
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that Mt−s = δ(t − s)L , where δ(t − s) is the Dirac delta function, meaning that the dynamics remembers only 
the present time and has no influence from earlier times.

It is important to stress that this notion of memory as a dependence on the initial time (or, equivalently, 
break-down of temporal self-similarity of the map) shows up at the level of maps, and is not obvious at the 
level of generators. If the intermediate map E(t2, t1) is NCP, then it follows that E(t2, ti) is not QDS, and thus 
computing E(t2, t1) requires knowledge of ti . Thus, TSS corresponds to a stronger concept of memorylessness 
than CP-divisibility.

We may expand on our analogy in the context of quantum correlations, where it is useful to invoke a result 
due to Sudarshan et al.38. It is known that (a subset of) entangled states turn negative under partial transpose, 
which can serve as a witness of entanglement39. Discordant states that are separable are necessarily positive under 
partial transpose. Now, CP-indivisible maps are associated with an intermediate matrix A(t +�t, t) that under 
an involution operation (cf “Methods”) yields the intermediate B map or Choi matrix, which can be negative. 
That this negativity can be a witness to CP-indivisibility is precisely the RHP criterion16. By contrast, non-TSS 
states that are CP-divisible yield positive matrices under this involution of the intermediate map. Therefore, in 
the scheme of this analogy, CP-divisibility corresponds to separable states, whilst TSS to non-discordant states. 
On this basis, we may regard CP-indivisibilty as representing a fundamental non-classical aspect of memory 
in quantum non-Markovianity, whilst deviation from TSS can include a “classical-like” aspect of memory in 
quantum non-Markovianity.

Examples: application to OUN and PLN.  As a particular instance of divisible noisy channels that mani-
fest this sort of memory effect, we mention two quantum channels, namely Ornstein–Uhlenbeck noise (OUN) 
and power-law noise (PLN), that were traditionally introduced as non-Markovian based on certain physical 
arguments, but are Markovian in the CP-divisibility sense. The OUN model was developed in40 in the context of 
the effect of non-Markovian evolution on the dynamics of entanglement. The model used was that of Gaussian 
noise with a colored auto-correlation function, modeling random frequency fluctuations and has its roots in the 
modern development of statistical mechanics41. In the limit of infinite noise bandwidth, this reduced to the well-
known white noise which is Markovian in nature. PLN is a non-Markovian stationary noise process. The name 
Power Law points to the functional relationship between the spectral density and the frequency of the noise. It is 
a major source of decoherence in solid state quantum information processing devices such as superconducting 
qubits and has a well-defined Markovian limit42.

The canonical Kraus representation for these channels has the form E(ρ) ≡
∑

j=I ,Z KjρK
†
j  with 

KI (t) =
√

1+p(t)
2 I and KZ(t) =

√

1−p(t)
2 Z , corresponding to the Choi matrix, χ ≡ (E ⊗ I)(|00� + |11�) given by:

where I and Z are Pauli operators, and

Here G is the inverse of the effective relaxation time, while g and 1/g are related to the noise band width, for the 
OUN and PLN noises, respectively.

The corresponding master equation in its canonical form43 is ρ̇ = γ (t)(−ρ + ZρZ) where γ (t) = − ṗ(t)
2p(t)

32 is 
the decoherence rate. It follows from Eq. (5)

showing that γ (t) remains positive for all t in both these cases. Thus, neither of them is CP-indivisibe44.
According to the system-environment criterion, OUN (resp., PLN) have their Markovian limit by setting g 

(resp., 1/g) → ∞ , in Eq. (5). In this limit, we may replace Eq. (5) by p∗(t) = e−Gt/2 (for OUN) and p∗(t) = e−Gt 
(for PLN). The corresponding rate γ ∗ ≡ −ṗ∗/(2p∗) becomes a positive constant, G4  and G2  , respectively, in which 
case the master equation corresponds to the strict (i.e., time-homogeneous) Gorini–Kossakowski–Sudar-
shan–Lindblad (GKSL) equation26,45. Hence this would correspond to the QDS-limit. For the general case, 
satisfying Eq. (5), the decoherence rate is time-dependent, implying that the dynamics corresponds to the time-
inhomogeneous GKSL master equation.

The Choi matrix of the intermediate map that evolves the system from time t1 to t2 is given by (cf. the “Meth-
ods” Part, where it is derived via the formalism of dynamical maps A and B38):

(4)χ(t, 0) =







1 0 0 p(t)
0 0 0 0
0 0 0 0

p(t) 0 0 1






,

(5)p(t) =







exp
�−G

2

�

g−1[exp(−gt)− 1] + t
��

case of OUN ,

exp
�

−Gt(gt+2)

2(gt+1)2

�

case of PLN .

(6)γ (t) =
{

1
4G

(

1− e−gt
)

case of OUN ,
G

2(gt+1)3
case of PLN ,

(7)χ(t2, t1) =











1 0 0
p(t2)
p(t1)

0 0 0 0
0 0 0 0

p(t2)
p(t1)

0 0 1











.
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From Eq. (5), we have for PLN that p(tj) = exp
(

−G[tj−t0](g[tj−t0]+2)

2(g[tj−t0]+1)2

)

 . From this, we readily find that the deco-

herence term p(t2)p(t1)
 in Eq. (7) does not simplify to a form that is independent of t0 . A similar argument holds for 

OUN. Thus, even though these two channels are CP-divisible, they carry a memory of the initial time t0 , which 
is required to construct the propagator between any two arbitrary instances.

On the other hand, for the QDS-limit rates, we find p(t2)p(t1)
= e−

G
2 (t2−t1) and e−G(t2−t1) , respectively, for OUN 

and PLN, showing that the intermediate map is oblivious of t0.
This brings us to the important issue of empirical or practical implication of such weaker-than-CP-indivisible 

memory-like effect. Two examples may be pointed out. In the OUN model, this effect was made use of40 to study 
its impact on the prolongation of the time to entanglement sudden death (ESD); while in37, the analogous nature 
in the OUN and PLN models is shown to counteract decoherence for quantum walks. In both these examples, 
the weaker-than-CP-indivisible effect acts as a memory resource.

In the context of Fig. 1, we introduce a non-Markovian noise, which is a modification of non-Markovian OUN 
inspired by the random-telegraph noise (RTN), by introducing the time-dependent mixing parameter given by

and call it modified NMOUN. Here k is some real number. Modified OUN (or, modOUN) has a QDS limit when 
r → ∞ . It is CP-indivisible if k  = 1.

Quantifying deviation from temporal self‑similarity.  The above considerations suggest that the non-
Markovianity in this weaker sense may be geometrically quantified by the minimum distance of an evolution E 
from a QDS form either at the level of maps or of generators. In the discrete-time case, only the former is pos-
sible. In practice, this approach can be computationally complicated to realize, given the non-convex nature of 
set of CP-divisible (including QDS) maps29. Typically, for physically well motivated channels, we may assume 
that the channel satisfies time-continuity and the above-mentioned limit assumption. Accordingly, as one pos-
sibility to quantify non-Markovianity in this sense, one may consider minimizing the distance �E(t)− eL

∗t� for 
arbitrary maps, where L∗ is a time-independent Lindblad generator. But here again one must contend with the 
non-convexity issue, noted above.

To circumvent this difficulty, we propose here to realize this geometric measure at the level of generators, 
instead of maps. We require to define a suitable measure that quantifies |L(t)− L∗| . To this end, we consider the 
infinitesimal intermediate map δE of the given channel E , evolving the system of Hilbert space dimension d from 
time t to time t + dt . We have (δE)ρ(t) = T exp

(

∫ t+dt
t L(s)ds

)

ρ(t) = (1+ L(t)dt)ρ(t). By the Choi-Jami-
olkowski isomorphism, for any map E acting on a d-dimensional system, we can associate the unique d2 × d2 
Choi matrix Ê(t) ≡ d(E ⊗ I)|�+���+| , where |�+� ≡ d−1/2

∑

j |j, j� is the maximally entangled state. The Choi 
matrix of the infinitesimal intermediate map defined above is thus (d|�+���+| + L̂(t)dt) . Here, the uniqueness 
means that the Choi matrix is insensitive to the unitary freedom in the representation of the generator, and in 
particular, is independent of whether the generator has been represented in its canonical form. Let δE∗(t) be the 
infinitesimal intermediate map of a QDS channel, and L∗ the corresponding generator. Then the difference 
between the two infinitesimal intermediate maps is �L ≡ δE(t)− δE∗(t) = (L(t)− L∗)dt , from which we have:

where �A� = Tr
√
AA† is the trace norm of a matrix A.

This measure of non-Markovianity has the following desirable properties. There is an inherent normalization, 
whereby ζ = 0 iff the channel is QDS and ζ > 0 otherwise. The measure is easily computable since the general 
numerical optimization problem of Eq. (9) can be implemented in d2 − 1 dimensions efficiently. The Lindblad-
ians can be represented in their canonical forms, and those with positive Lindblad terms will form a convex set. 
Furthermore, for specific examples we consider, the minimization over the Lindbladian reduces to the problem 
of minimizing over a single parameter. The measure respects continuity, which we illustrate with a few examples. 
It is basis-independent, and has the operational meaning of non-Markovianity as deviating from the property 
of self-similarity and thus requiring memory of the initial time t0.

A similar geometric approach to quantifying non-Markovianity is considered in46, namely minimizing the 
distance �E(t = 1)− eL

∗� for arbitrary maps. They consider the distance of a map (snapshot of an evolution), 
whereas we consider the evolution over a finite period of time. The problem with considering a snapshot is that 
there can be infinite number of evolutions passing through the map at that instant. For example, the map Eq. 
(4), with a fixed p(t = T) , has an infinite number of ways to assign values to the pair (g, G).

The measure Eq. (9) is now applied to a number of well-known channels. Immediately below, we consider 
the CP-divisible channels of OUN and PLN to quantify their non-Markovianity in the present approach. For 
dephasing channels, we find Lρ = γ (−ρ + ZρZ) . Thus, L̂(t)− L̂∗ = (γ ∗ − γ )(|�+���+| − |�−���−|) , where 
|�−� is the Bell state with even parity and negative phase.

For  example ,  for  OUN,  i t  fo l lows  f rom their  canonica l  master  equat ion that 
ζ = minc

1
T

∫ T
0

∣

∣

1
4G

(

1− e−gt
)

− c
∣

∣dt where c is the rate of a QDS dephasing channel. The minimization may 
be determined numerically and would in general depend on T. For OUN and PLN, it is simpler to consider an 
estimate of c to be the family’s natural QDS limit, as may be found from the decoherence rates and p∗ , given 

(8)p̃(t) = exp

[

−a

2

(

e−rt − 1

r
+ t

)

(

sin2( tr )

k
+ cos2(

t

r
)

)]

,

(9)ζ = min
L∗

1

T

∫ T

0
�L̂(t)− L̂

∗�dt,
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below Eq. (6). The corresponding plot (Fig. 3) may be considered as giving an upper bound on the weak memory 
effect. Similarly for the modified NMOUN case, Eq. (8), for which the corresponding plot appears in Fig. (3).

Application to stronger manifestations of non‑Markovianity.  Although the quantity ζ has been 
motivated to explore the idea of memory weaker than CP-indivisibility, one would expect it to be applicable to 
such stronger manifestations of non-Markovianity, since in those cases, the deviation from the QDS form would 
be greater. For completeness, we shall consider a few representative examples, one that is P-divisible but CP-
indivisible, another that is P-indivisible, involving both unital and non-unital maps. We present detailed analyses 
of these in the following.

Eternal non‑Markovian channels.  An example of a model noise which is non-Markovian in the sense of CP-
indivisibility but BLP Markovian18 (i.e., P-divisible), is the interesting model called “Eternally non-Markovian” 
(ENM) Pauli channel, proposed in44, with the decay rate γ3(t) being negative for all t > 0 , whence the name ‘eter-
nal’. The canonical form of master equation for the evolution of qubit under this noise is the dephasing channel 
ρ̇ =

∑3
j=1 γj(p)(σjρσ

†
j − ρ), with γ1 = γ2 = 1 and γ3(t) = −tanh(t).

The measure Eq. (9), in this case is found to be ζ = minc
1
T

∫ T
0 | − tanh(t)− c|dt , for which optimal QDS 

channel is clearly the dephasing channel with γ1 = γ2 = 1 and γ3 = c , and c = 0 . Setting T ≡ 1 , the degree of 
non-Markovianity here is 

∫ 1
0 tanh(t)dt = log[cosh(1)] ≈ 0.433.

Random telegraph noise (RTN): P‑indivisible dephasing.  As our next example, we consider random telegraph 
noise (RTN), which is a very well studied pure dephasing process, known to be non-Markovian according to 
information back-flow and CP-divisibility criteria37,47. The Kraus operators characterizing this process has a 
functional form similar to that of PLN and OUN with the function p(t) in Eq.  (5) having the form 
p(t) = exp{−gt}

(

cos(gωt)+ sin(gωt)
ω

)

, with ω =
√

(
2γ0
g )2 − 1 . Here g is the spectral band width, which is the 

inverse of environmental correlation time scale τ , and γ0 defines the coupling strength between the system and 
the environment. The decay rate is found to be γ (t) = 2γ 2

0

g

(

1+
√

4γ 20
g2

−1 cot

(

gt

√

4γ 20
g2

−1

)) , which vanishes in the limit 

g ≫ 2γ0 and represents the QDS limit of the family. In the limit g > 2γ0 , the process is described by a master 
equation with time-dependent all-time-positive decay rate γ (t) , and hence CP- and P-divisible. This would cor-
respond to Markovian behavior from the divisibility perspective, but from the present point of view would be 
non-Markovian due to deviation from QDS. In the limit g < 2γ0 , the process becomes non-Markovian in the 
sense of CP-divisibility and γ (t) oscillates between negative and positive values, giving rise to intervals of break-
down of CP-divisibility and even P-divisibility. As g → 0 , the noise becomes more colored, hence non-Marko-
vian. Setting γ ∗ = 0 for this noise, an upper bound for the measure of non-Markovianity Eq. (9), for channels in 
this family parametrized by x ≡ 1

g is depicted in Fig. (3).

Figure 3.   (Color online) Upper bound on the non-Markovianity measure ζ for CP-divisible and CP-indivisible 
channels, with T ≡ 1 [Eq. (9)]. Here, x ≡ g−1 for OUN, NMAD and RTN and x ≡ g for PLN. The value of 
parameters used are: G = 0.6 for both PLN (bold, red curve) and OUN (dashed, blue), and γ0 = 0.3 for NM-AD 
(dot-dashed, orange) and γ0 = 0.6 for RTN (dotted, purple). The curve (bold, dark green) is an upper bound on 
the non-Markovianity of modified NMOUN with k = 1.5 and a = 0.6 , and x ≡ r−1.
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Non‑Markovian amplitude damping.  The above method, considered so far for unital channels, can straightfor-
wardly be extended to the non-unital case. As a specific example, we may consider the non-Markovian (P-indi-
visible) amplitude damping (AD) as an example of non-unital channel, the NM-AD channel.

Consider a qubit interacting dissipatively with a bath of harmonic oscillators, whose spectral density is given 
by the Lorentzian

where g is the width of the spectral density function, centered at a frequency detuned from the atomic frequency 
ω0 by an amount � , and the rate γ0 quantifies the strength of the system-environment coupling. If we assume 
� = 0 (no detuning) i.e., when the qubit is in resonance with the central frequency of the bath, then the GKSL-
like time-dependent master equation, with the rotating wave approximation, is given by

where γ (t) = −2R[ Ġ(t)G(t) ] is the time-dependent decoherence rate, and G is the decoherence function given by

with l =
√

g2 − 2γ0g  and σ± are the standard atomic raising (lowering) operators. This is the time-dependent 
AD channel and the decay rate is given by

Now, the expression Eq. (1) for the damping factor of the ADC is replaced by �(t) = 1− |G(t)|214. In the limit 
g < 2γ0 , the decay rate (12) oscillates, and becomes negative for certain intervals giving rise to non-Markovian 
evolution. In the limit g > 2γ0 , the dynamics is time-dependent Markovian. (The point g = 2γ0 , however, cor-
responds to a point at which the time-local master equation lacks a perturbation expansion.) One readily sees 
that in the limit g ≫ 2γ0 , the decay rate γ (t) = γ0 , i.e., it becomes time-independent, corresponding to a QDS 
evolution, the standard AD channel.

The measure Eq. (9) is found to be ζ = minγ ∗ 1
T

∫ T
0 |γ (t)− γ ∗|(1+

√
2)dt . Once again, an upper bound of 

non-Markovianity parameter ζ , can be obtained by choosing γ ∗ to the QDS limit of the family of non-Markovian 
AD channels. As in the dephasing case, we find that the general optimization of the measure reduces to mini-
mizing over a single parameter γ ∗ , which can be done numerically and is depicted in Fig. (3). The measure Eq. 
(9) can be suitably adapted through a renormalization procedure to handle the scenario wherein the generator 
has singularities, cf.48.

Discussion
Over the last decade, the concept of what constitutes quantum non-Markovianity has been debated and studied 
in depth. Here we pointed out that even when the system’s dynamical map is divisible, there can be a kind of 
memory of the initial time t0 encoded into the form of the intermediate map, causing the dynamics to deviate 
from “temporal self-similarity” (TSS). Operationally, this memory effect may simply show up as a mitigation 
of decoherence, rather than a reversal of decoherence. We identify this concept of memorylessness with the 
quantum dynamical semigroup (QDS), and quantify it, providing a number of examples. We argue that this 
weaker concept of quantum non-Markovianity stands in relation to the standard divisibility based definition 
of quantum Markovianity, as quantum discord stands with respect to entanglement. Of practical importance is 
that this measure would be applicable in scenarios where the map is divisible, and yet a memory-like effect is 
seen to counter decoherence caused, for e.g., by modifying the frequency spectrum of the interacting bath or 
broadening the memory kernel of the dynamics. To illustrate this, we studied various examples, among them 
the well known channels of OUN and PLN.

A number of new directions are opened up by the present work. In49 it is shown how maximally non-Marko-
vian system dynamics can arise without backflow of information from the system to the environment modelled 
via classical degrees of freedom. While QDS was historically motivated, but not defined, by considerations of the 
system-bath interaction, another concept of Markovianity that explicitly relies on such considerations is the quan-
tum regression formula (QRF), which is based on the system’s two-point or higher-order correlation functions50. 
Its relation to divisibility-based criteria for non-Markovianity have been studied by various authors12,15. In light of 
these observations, one might ask what the most general system-environment correlations are that lead to devia-
tion from TSS, and also how to reconcile the two different (but related) viewpoints on non-Markovianity, based 
on the system dynamics vs that based on knowledge of the system-environment interaction and correlations.

In51, the authors consider a resource theory of non-Markovianity wherein the Choi matrices corresponding 
to small-time divisible maps constitute the free states. Our work suggests the possibility of constructing a more 
relaxed resource theory of small-time maps, wherein resourceful states would correspond to maps of processes 
deviating from temporal self-similarity. Earlier, we noted the instances where the memory-like signature of the 

I(ω) = γ0g
2(2π(ω0 +�− ω)2 + g2)−1,

(10)
dρs(t)

dt
= γ (t)[σ−ρs(t)σ+ − 1

2
{σ+σ−, ρs(t)}],

(11)G(t) = e−
gt
2

(

g

l
sinh

[

lt

2

]

+ cosh

[

lt

2

])

,

(12)

γ (t) = − 2

|G(t)|
d|G(t)|

dt

= 2R





γ0
�

1− 2γ0
g coth

�

1
2 gt

�

1− 2γ0
g

�

+ 1



.
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OUN model, as characterized here, helps to prolong the time to ESD40 and also counteracts decoherence in 
quantum walk37. This should pave the way for more such examples which could have an impact on broadening 
the scope of memory in quantum phenomena.

In19, studying the positivity of the propagator between two arbitrary times in an extended Hilbert space (divis-
ibility), the authors defined a non-Markovianity degree, as the analogue of Schmidt number in quantum entangle-
ment, such that the analogue of maximally entangled states are maximally non-Markovian quantum dynamics. 
It would be interesting to study how channels weaker than CP-indivisible fit into this hierarchy, in particular, 
whether they could be considered as the analogues of separable states with non-vanishing quantum discord.

Methods
Sudarshan A and B matrices for PLN‑OUN.  The intermediate dynamics can be studied by way of the 
dynamical map A introduced by Sudarshan et al.38. The map A represents the noise superoperator as a d2 × d2 
matrix on a vector, obtained by vectorizing the density operator, i.e., ρ′ = A(t1, t0) · ρ . Thus, ρ′

j′k′ =
∑

j,k Aj′k′;jkρjk . 

Here d is the system’s Hilbert space dimension. Given a qubit density operator 
[

ρ00 ρ01
ρ10 ρ11

]

 , the channel (4) can be 

represented as:

where p(t) is given by the corresponding probabilities p∗(t) when temporal self-similarity holds, and by Eq. (5) 
in the general case.

Unlike the Choi matrix36, the map A can be composed directly by matrix multiplication: thus 
ρ(t2) = A(t2, t1) · A(t1, t0)ρ(t0) . The intermediate dynamical map A(t2, t1) can thus be directly computed as 
A(t2, t1) = A(t2, t0) · A(t1, t0)−1 , where the inverse is the matrix inverse and assumed to be non-singular. For 
Eq. (13), one readily finds that

By re-shuffling the terms of the A-matrix according to an “involution map” given by Bj′j;k′k = Aj′k′;jk38, from Eq. 
(14), one obtains the corresponding B-matrix, which is just the Choi matrix.
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