
Systems biology

Reactome Pengine: a web-logic API to the Homo

sapiens reactome

Samuel R. Neaves1,*, Sophia Tsoka1,* and Louise A. C. Millard2,3,4,*

1Department of Informatics, King’s College London, Strand, London, WC2R 2LS, UK, 2Population Health Sciences, Bristol

Medical School, University of Bristol, Bristol, UK, 3MRC Integrative Epidemiology Unit (IEU), University of Bristol,

Bristol, UK and 4Intelligent Systems Laboratory, Department of Computer Science, University of Bristol, Bristol, UK

*To whom correspondence should be addressed.

Associate Editor: Oliver Stegle

Received on July 21, 2017; revised on February 5, 2018; editorial decision on March 22, 2018; accepted on March 28, 2018

Abstract

Summary: Existing ways of accessing data from the Reactome database are limited. Either a re-

searcher is restricted to particular queries defined by a web application programming interface

(API) or they have to download the whole database. Reactome Pengine is a web service providing

a logic programming-based API to the human reactome. This gives researchers greater flexibility

in data access than existing APIs, as users can send their own small programs (alongside queries)

to Reactome Pengine.

Availability and implementation: The server and an example notebook can be found at https://

apps.nms.kcl.ac.uk/reactome-pengine. Source code is available at https://github.com/samwalrus/

reactome-pengine and a Docker image is available at https://hub.docker.com/r/samneaves/rp4/.

Contact: samuel.neaves@kcl.ac.uk or sophia.tsoka@kcl.ac.uk or louise.millard@bristol.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Reactome (Fabregat et al., 2016) is a web service that includes a data-

base of the molecular details of cellular processes and is a leading tool

for bioinformaticans working with biological pathways. Currently,

users access data in Reactome using either HTML (the website), a

REST API, a SPARQL API or by downloading the complete dataset

for local processing. The APIs provide a convenient way to access the

data but restrict this access to a set of predefined API calls, whereas

downloading the complete dataset means that the data can be pro-

cessed exactly as required. This work presents a tool—Reactome

Pengine—that allows the flexibility of the latter, with the convenience

of the former. This makes queries more efficient, saving both band-

width and storage space, and is achieved using the logic programming

language, Prolog. Logic programming is a paradigm for computer pro-

gramming, where knowledge is represented in a restricted form of first

order logic, as a set of facts and rules called a knowledge base

(Clocksin and Mellish, 2003). The knowledge base is interrogated

with queries, which are powerful due to inbuilt procedures that use the

facts and rules together to infer solutions. Logic programming has

much potential in bioinformatics (Angelopoulos and Wielemaker

2017; Mungall, 2009) and has been used with Reactome to build pre-

dictive models of disease (Neaves et al., 2016).

2 Implementation

Recently, a library for building web servers using SWI-Prolog

(Wielemaker et al., 2012) called Pengines (Lager and Wielemaker,

2014) has been developed. Pengines allows data providers to make

their Prolog knowledge base available to users via a web service [that

uses a web-logic API (Lager and Wielemaker, 2014)], accessed as if it

was on the user’s machine. In addition, users can send programs to

the pengine to manipulate the data as they wish. This is very different

from the traditional way of accessing data, where a user is either con-

strained to the set of queries defined in a (non-logical) web API or has

to download a dataset in bulk. Pengine services support federated

queries, similar to SPARQL, but with Turing complete programs exe-

cuting on remote services rather than SQL-like queries. See

Supplementary Material Sections 1 and 2 for more details.

The Reactome Pengine tool presented here uses the Pengine li-

brary to make a Prolog knowledge base, built on Reactome data,

VC The Author(s) 2018. Published by Oxford University Press. 2856

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 34(16), 2018, 2856–2858

doi: 10.1093/bioinformatics/bty181

Advance Access Publication Date: 30 March 2018

Applications Note

https://apps.nms.kcl.ac.uk/reactome-pengine
https://apps.nms.kcl.ac.uk/reactome-pengine
https://github.com/samwalrus/reactome-pengine
https://github.com/samwalrus/reactome-pengine
https://hub.docker.com/r/samneaves/rp4/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty181#supplementary-data
https://academic.oup.com/


available to researchers on the internet. The mainstay of the know-

ledge base are facts retrieved from the Reactome HomoSapiens.owl

Resource Description Framework (RDF) file, which contains circa

1.35 million RDF triples. In addition, we have also provided an

intuitive set of data access predicates (which are similar to functions

in other programming paradigms) that sit on top of the RDF

data. These define relations between Reactome entities and

provide a higher level abstraction of the data. Users can query

the RDF directly or use this abstraction layer (or both) or make

their own abstraction of the data. Our abstraction includes

predicates that represent reactions as nodes on a graph, with edges

between the nodes in the following two cases. First, an edge

exists when an output of a reaction is an input of another reaction.

This edge type we name precedes. Second, an edge exists when

an output of a reaction r1 is a control of another reaction r2, and

the particular edge type depends on how the output of r1 controls

r2 (e.g. activation or inhibition, or subtypes of these). An ex-

ample predicate that relates two reactions via a linking entity is

ridReaction_ridLink_type_ridReaction/4. We also pro-

vide predicates with indexed (therefore fast) access to a set of queries

that we expect to be useful for researchers, but that are computa-

tionally intensive (and hence slow without indexing). For example,

ridPathway_reactions/2 relates pathways to the complete list

of biochemical reaction IDs.

The Pengine library has inbuilt mechanisms to ensure the integ-

rity of the server on which it is hosted. Security is ensured by allow-

ing only ‘safe’predicates to be run on the Pengine server. Upon

running a query the service first checks that the query is safe and re-

turns an error if this is not the case. For example, sending a program

that calls shell/1 would result in an error (because a user could

for example send a shutdown command to the server). The Pengine

library also contains a number of methods to manage resource allo-

cation on the server, including restricting request execution time and

the maximum number of requests that can be executed simultan-

eously. For more details see (Lager and Wielemaker, 2014). Finally,

the service runs inside a Docker container, which isolates the service

from the underlying machine, and facilitates scaling and load bal-

ancing to meet demand.

Queries to Reactome Pengine are logged such that over time we

can augment the inbuilt predicates with the popular queries and pro-

grams and also build new indexes to improve performance and func-

tionality as the service is used. This also means we can explore the

possibility of applying machine learning on the collected programs

to automatically learn predicates that are useful for users.

Documentation describing the logical API is available at: https://

apps.nms.kcl.ac.uk/reactome-pengine/. See Supplementary Material

Section 2 for a full comparison of Reactome Pengine with existing

approaches to accessing Reactome.

3 Interfacing with the Reactome Pengine

There are two main ways to access Reactome Pengine. First, the

Reactome Pengine can be accessed using a web application, such as

SWISH web notebooks (Wielemaker et al., 2015). As with notebooks

of other languages (such as Jupyter for Python), a SWISH notebook

includes exectuable code interweaved with text explanations—ideal

when wishing to share code with other researchers or work collabora-

tively. Furthermore, accessing Reactome Pengine via a notebook

means that the researcher does not need to set up SWI-Prolog on their

machine. SWISH includes graphical renderers such as C3 for simple

chart generation and Graphviz for graph visualization. Users can also

include Javascript and R code in their SWISH notebook. For example,

the Javascript D3 library can be used to generate interactive visualiza-

tions. R can be used to perform statistical analyses and plot results. An

example notebook demonstrating these capabilities is available at

https://apps.nms.kcl.ac.uk/reactome-pengine/.

The second main way to access Reactome Pengine is within a

SWI-Prolog program running on a local machine. We can do this by

adding the directive ‘:-use_module(library(pengines)).’

and using the pengine_rpc/3 predicate. This can be useful for

writing local application pipelines that need to access Reactome

data. The output of the Reactome Pengine request can then be used

as input to the next step in the pipeline (see Supplementary Material

Section 3). This is especially useful where data cannot be processed

in the cloud due to regulatory constraints.

In addition to these two recommended Prolog-based access op-

tions, it is also possible to access the service with other languages

that support HTTP such as JavaScript Node.js. See Supplementary

Material Section 3 for details including an example JavaScript func-

tion that calls Reactome Pengine.

4 Example usage

The accompanying SWISH notebook presents a set of interactive ex-

amples illustrating how Reactome Pengine can be queried and results

presented using online tools. We now describe two particular use case

examples both using SWI-Prolog 7.7. The first example in Command

line interaction 1 shows a simple interactive Prolog session with two

queries. The first query imports the Pengine library and the second

query calls the pengine_rpc/2 predicate. The pengine_rpc/2

predicate has two arguments: (i) the server address of Reactome

Pengine and (ii) the query we wish to run on Reactome Pengine. In

this example, we issue the query rid_name(‘Protein1’, Name),

to find the common name for the Reactome identifier ‘Protein1’.

The result obtained is the variable Name, bound to ‘Rnf111’.

The second more advanced example shows how to send a pro-

gram (alongside a query that calls the program) to Reactome

Pengine to be computed remotely. For instance, a bioinformatician

can use Reactome Pengine to explore paths of reactions through the

human reactome. Code block 1 shows an example Prolog program

that can be used for this purpose (available on Github at https://

github.com/samwalrus/reactome-pengine). This program includes

two core elements. First, the predicate path_program/1 retrieves a

list of clauses that themselves define a program that will be sent to

the Reactome Pengine. Second, the predicate path_from_to/3 is

the main predicate that a bioinformatician would use to query the

Reactome for paths in a variety of ways (without downloading the

entire dataset to their machine). For instance, a researcher can use

this predicate to (i) establish whether a path exists from a particular

reaction to another, (ii) retrieve all paths from a reaction or (iii) re-

trieve all paths to a reaction. The path_from_to/3 predicate first re-

trieves the Reactome Pengine server address (line 25) and the

program (specified in path_program/1 lines 4-23 and called on line

26) and then sends this program alongside a specified query to

Reactome Pengine 2857

https://apps.nms.kcl.ac.uk/reactome-pengine/
https://apps.nms.kcl.ac.uk/reactome-pengine/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty181#supplementary-data
https://apps.nms.kcl.ac.uk/reactome-pengine/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty181#supplementary-data
https://github.com/samwalrus/reactome-pengine
https://github.com/samwalrus/reactome-pengine


Reactome Pengine (lines 27-29). Command line interaction 2 shows

example commands that use this program. Furthermore, notebook

examples 6 and 7 show additional refinements to this program, such

as further constraints for properties of reaction paths.

5 Summary

The Reactome Pengine is a web service that provides a simple way

to logically query the human reactome on the web. It can be ac-

cessed by both local Prolog programs and web notebooks such as

SWISH. The Pengine technology allows the user to send the ‘small’

program to the ‘large’ data. Increasingly more (and larger) biological

datasets are becoming available online. While we have presented a

Pengine web service for Reactome, it is possible to build these for

any other online biological dataset. This is potentially very power-

ful, as researchers will not have to download and manage these

datasets but can build pipelines that consist of a set of programs sent

to these pengine web services.

Funding

LACM is funded by the UK Medical Research Council [grant no.

MC_UU_12013/8] and a University of Bristol Vice-Chancellor’s Fellowship.

Conflict of Interest: none declared.

References

Angelopoulos,N. and Wielemaker,J. (2017) Accessing biological data as

Prolog facts. In: Proceedings of the 19th International Symposium on

Principles and Practice of Declarative Programming (PPDP 2017). pp.

29–38. ACM, Nemur, Belgium.

Clocksin,W.F. and Mellish,C.S. (2003) Programming in PROLOG. Berlin,

Heidelberg, Springer Science & Business Media.

Fabregat,A. et al. (2016) The Reactome pathway Knowledgebase. Nucleic

Acids Res., 44, D481–D487.

Lager,T. and Wielemaker,J. (2014) Pengines: web logic programming made

easy. Theor. Practice Logic Programm., 14, 539–552.

Mungall,C. (2009) Experiences Using Logic Programming in Bioinformatics.

Springer, Berlin, Heidelberg, pp. 1–21.

Neaves,S.R. et al. (2016) Using ILP to identify pathway activation patterns in

systems biology. In: Inoue,K. et al. (eds) Inductive Logic Programming. ILP

2015. Lecture Notes in Computer Science, Springer, Cham, 9575, pp.

137–151.

Wielemaker,J. et al. (2012) SWI-Prolog. Theor. Practice Logic Programm., 12,

67–96.

Wielemaker,J. et al. (2015) SWISH: SWI-Prolog for Sharing. In:

Ellmauthaler,S. and Schulz,C. (eds) Proceedings of the International

Workshop on User-Oriented Logic Programming (IULP 2015). pp.

99–113.

Code Block 1. Bold text indicates the program sent to Reactome Pengine. In

this example, the program is a list of terms, where each term is a clause that

will be interpreted by Reactome Pengine. Adapted from https://stackoverflow.

com/questions/30328433/definition-of-a-path-trail-walk/30595271#30595271

2858 S.R.Neaves et al.

https://stackoverflow.com/questions/30328433/definition-of-a-path-trail-walk/30595271#30595271
https://stackoverflow.com/questions/30328433/definition-of-a-path-trail-walk/30595271#30595271

