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Abstract: The task to develop a mechanism for predicting the hemodynamic parameters values
based on non-invasive hydrocuff technology of a pulse wave signal fixation is described in this
study. The advantages and disadvantages of existing methods of recording the ripple curve are
noted in the published materials. This study proposes a new hydrocuff method for hemodynamic
parameters and blood pressure values measuring. A block diagram of the device being developed
is presented. Algorithms for processing the pulse wave contour are presented. A neural network
applying necessity for the multiparametric feature space formation is substantiated. The pulse wave
contours obtained using hydrocuff technology of oscillation formation for various age groups are
presented. According to preliminary estimates, by the moment of the dicrotic surge formation, it is
possible to judge the ratio of the heart and blood vessels work, which makes it possible to form an
expanded feature space of significant parameters based on neural network classifiers. This study
presents the characteristics accounted for creating a database for training a neural network.

Keywords: blood pressure; pressure; pulse wave; hemodynamic parameters; hydrocuff technology;
feature selection algorithm; multiparameter feature space; machine learning

1. Introduction

The development and implementation of information technologies into medical prac-
tice has made it possible to expand the diagnostic prospects for hemodynamic parameters
analysis for the purpose of cardiovascular system pathological conditions early diagnosis
and adequate therapy conducting. Currently, it is possible to measure more than twenty
indicators characterizing the blood through the vessels movement and the cardiovascular
system general state.

The researchers refer to the primary hemodynamic parameters as heart rate (HR) and
blood pressure (BP), while the extended hemodynamic parameters include stroke volume
(SV), cardiac output (CO), total peripheral resistance (TPR), and a number of others [1].

The neural networks implementation for diseases diagnosis is an interesting and
promising direction. Recent achievements in the field of laboratory diagnostic equipment
and the use of computer modeling methods open new possibilities for cardiovascular
system (CVS) monitoring. Interest in this topic is growing every year. Research in this field
published in scientometric citation databases: Pubmed, Scopus, and Web of Science focus
on such aspects as: mathematical modeling of human CVS activity [2–5], biomedical image
processing [6,7], medical decision support systems [8–10], and diseases diagnosis [11–13].
The main idea of this kind of research is to show the relationship of blood flow hemody-
namic parameters with the vascular wall stiffness, which in turn, characterizes the CVS
functional state and allows to identify pathological changes in the vessels.

Sensors 2022, 22, 4229. https://doi.org/10.3390/s22114229 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114229
https://doi.org/10.3390/s22114229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8512-6865
https://doi.org/10.3390/s22114229
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114229?type=check_update&version=1


Sensors 2022, 22, 4229 2 of 13

The problem of hemodynamic parameters monitoring in emergency medicine was
successfully solved with the use of resuscitation bedside monitors [14]. If it is necessary
to confirm the primary diagnosis, ultrasound examination [15] or magnetic resonance
imaging [16] is indicated. The problem of early diagnosis and systematic monitoring of
therapy dynamics for cardiovascular system diseases remains unresolved.

Researchers are attempting to solve the task of blood pressure parameters daily moni-
toring and hemodynamic values by using oscillator-type devices using an air occlusive cuff
and photoplethysmography (PPG) [17,18]. Recently, these methods have been severely crit-
icized by researchers, doctors, and engineers, so in [19] the disadvantages of these methods
are presented in detail. Despite the low accuracy, the PPG method has not lost popularity,
this is due to the simplicity of implementation and the lack of alternative measurement
methods for wearable devices.

The artificial neural networks and machine learning technologies implementation for
the diseases diagnosis is an interesting and prospective direction [20–24]. Deep learning
artificial neural networks have recommended themselves well in many diagnostic medicine
fields. Research in the field of predicting blood pressure parameters by applying deep
recurrent neural networks is a new direction in cardiovascular system diagnosis. The
studies published by Su et al., 2018 [25], which raised the problem of the need for frequent
calibration of the model for estimating blood pressure based on PPG in order to maintain
accuracy at a sufficient level for a long time, should be noted. A synchronously recorded
PPG and electrocardiosignal were used as input data for training the neural network, which
in turn complicates the process of data collection and its subsequent processing.

In the paper by Choudhury et al., 2020 [26], an extensive review of world research
in the field of PPG collection and processing with machine learning applying was made.
In this study, a new approach in recording the contour of the pressure pulse wave is
proposed. This study raises the question of the need to form a multiparametric feature
space for training a neural network in order to increase the accuracy of prognostic data on
the presence and dynamics of the cardiovascular system pathologies development.

The article structure is presented as follows: Section 2 introduces materials and meth-
ods, where the authors emphasize factors influencing the multiparametric feature space for
the operation of a neural network for the purpose of predicting hemodynamic parameters.
Section 3 presents a block diagram of the «Hemodin1» hydrocuff device, as well as the
results of field experiments, with a preliminary review. Section 4 discusses the results and
possibilities of forming a multiparametric feature space for the functioning of a neural
network in order to predict hemodynamic parameters, Section 5 completes the work and
reflects the prospects for further research in the field of hydrocuff technology application
for measuring blood pressure and hemodynamic parameters.

2. Materials and Methods

The process of assessing systolic blood pressure (SBP) and diastolic blood pressure
(DBP) with various types of devices is associated with a significant influence of factors that
reduce the reliability of the values obtained, these primarily include anatomical features.

One of the reasons for the need to modernize existing methods for assessing hemody-
namic parameters and determining blood pressure values is the significant errors in the
data obtained.

The existing algorithm underlying the pulsation curve processing is estimated for the
average statistical data of patients. It is known that the process of transferring pressure from
the artery to the cuff depends on the anatomical features of the forearm or wrist structure.

Another reason is related to the influence of breathing on the pulse curve contour as a
consequence of a change in the pulse wave signal amplitude (PW) [27,28].

The third reason is related to the need to form a multiparametric feature space for
determining critical conditions and assessing the dynamics of the pathological processes
development in the cardiovascular system (CVS) based on neural network technologies.
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It is not possible to estimate the values of corrections in order to eliminate their
influence by traditional filtering methods [29,30] and removing trends since such transfor-
mations cause distortion of the pulse wave contour and amplitude-frequency characteristics
underlying the main hemodynamic parameters calculation.

In this regard, a technique based on neural network applying is proposed, which
allows, on the basis of training, to produce the effective adjustments to the blood pressure
values and other hemodynamics parameters. The neural network is based on learning on a
multiparametric feature space that characterizes the CVS state.

Such parameters can be weight-dimensional anatomical parameters such as: age,
gender, height, weight, waist circumference, arm circumference, and body mass index.

Another group of indicators forming a multiparametric feature space are hemody-
namic parameters: cardiac output, stroke volume, pulse wave propagation velocity, stiffness
index and many others. Currently, it is possible to present up to thirty indicators charac-
terizing the CVS state [31,32]. When calculating vital signs of hemodynamics, the values
of SBP and DBP are used in the algorithms of their calculation. Inaccuracies and errors in
their assessment entail inaccuracies in the hemodynamic parameters values and lead to a
distortion of the picture of the disease.

Currently, oscillatory methods [33–36] do not allow obtaining accurate values of SBP
and DBP due to the small amplitude of oscillations. An improved method is the use
of hydrocuff technology for the pulse wave contour formation and recording. At the
Department of “Medical Cybernetics and Informatics” of Penza State University, research is
being conducted on hydrocuff technology [37] for fixing the pulse wave contour to further
analyze the hemodynamics and blood pressure parameters.

The disadvantage of the air compression cuff, widely used in oscillator-type tonome-
ters, is the small amplitude of the generated oscillations (1–3 mm Hg). Against the noise
background, it is quite difficult to establish peak values of pulse waves underlying the
algorithms for obtaining hemodynamic parameters. The use of filtering procedures, trend
removal, and smoothing of the envelope of oscillation peaks lead to significant errors in
determining pressure values for characteristic points.

The authors of this study upgraded the existing method by applying two chambers
of the same type into which liquid is pumped. The oscillations processing is performed
on the sensor’s differential activation basis. This makes it possible to implement a direct
method of fixing systolic and diastolic pressure levels with a significant reduction in the
effect on noise readings, which allows to obtain a more reliable pulse wave contour.

The technical result is achieved due to the fact that an incompressible medium, a
liquid, is selected as the working medium, which increases the reliability of the qualitative
representation of the pulse wave contour and, as a result, the determination of hemody-
namic parameters and blood pressure. A more detailed description of hydrocuff technology
is undesirable due to the know-how disclosure.

The use of a hydrocuff allows to increase the oscillations amplitude up to 20 mm
Hg. This creates prerequisites for improving the accuracy of the SBP and DBP assessment.
Figure 1 shows a fragment of the blood pressure pulsation signal of a thirty-year-old female
patient, the cuff was installed on the forearm.

The study included 30 potentially healthy people (15 women and 15 men): average
age, 45 ± 2 years; average height, 175.5 ± 5.7 cm; average weight, 80.3 ± 4.2 kg; average
heart rate, 80 ± 8 beats/min; average systolic blood pressure, 119 ± 4 mm Hg; and the
average diastolic blood pressure, 82 ± 4 mm Hg. All participants were informed about
the study and provided informed consent. The study was developed in accordance with
the Helsinki Declaration and approved by the local ethics committee. All measurements
were performed during working hours while observing usual lifestyle. The study involved
people who did not take any medications.
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Figure 1. Pulse wave signal recorded using hydrocuff technology. The presented fragment shows the
presence of a respiratory component, which leads to a change in the oscillation’s amplitude. When
finding an oscillation with the maximum amplitude, it is necessary to take into account the influence
of the respiratory component.

Figure 1 shows a fragment of the blood pressure pulsation signal of a thirty-year-old
female patient. The cuff was installed on the forearm, the signal obtained by the authors of
the study using a new hydrocuff technology for the oscillation’s formation. The signal is
characterized by a significant oscillation’s amplitude ranging from 20 to 25 mm Hg, which
is almost 50% of the pulse pressure value. The signal is also characterized by a low level of
high-frequency interference and a high degree of the pulse wave contour reproducibility.

Due to hydrocuff technology oscillation’s formation, these changes in amplitudes have
a significant impact on the estimating values of hemodynamic parameters. In this regard, it
is necessary to take into account dynamic changes in amplitudes to stabilize the pulsations
amplitudes of the pulse wave contour.

The third group involved in the formation of a multiparametric feature space includes
processes that characterize the formation of pathological changes in hemodynamic parame-
ters, allowing to observe their dynamics and compare the values of the forecast with the
values recorded in the early stages. As a result of measurements, an array of data was
generated for training and testing a neural network.

Taking into account these factors allow to create conditions for the development of sys-
tems for assessing the hemodynamics and blood pressure parameters with increased accuracy.

Figure 2 shows a single pulse wave with marked characteristic points A, B, B′, C, D,
and E.

Figure 2. The pulse wave signal fragment. The figure shows a fragment of a single pulse wave
contour obtained by the authors of the study, with characteristic points of dynamic changes in pulse
pressure applied A, B, B′, C, D, E.
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This form combines well with the form of the pulse wave in the brachial artery. It
allows to present time intervals for characteristic points A, B, B′, C, D, and E which are
important parameters in assessing the state of the cardiovascular system and the functions
of the left ventricle.

Point A characterizes the cardiac cycle beginning. Peak B is the main amplitude of the
pulse signal caused by the cardiac discharge of blood from the ventricles during systole.
The rate of wave rise characterizes cardiac output, arterial resistance, and the vascular
wall elasticity. Peak B′ is often not visible on pulse wave signals; according to a group of
authors [38] this peak reflects the moment when the blood ejection by the left ventricle
stops. Its position is influenced by the values of peripheral vascular resistance, the elasticity
of the vascular bed. Peak C reflects the moment of systole termination and the beginning of
the diastolic phase. The position of this peak is influenced by peripheral vascular resistance.
Peak D characterizes the moment when the valve closes and the pressure increases due to
the elastic properties of the arteries. The peak E is the end moment of the diastolic phase
and the indicator of the final diastolic intravascular pressure.

For the early diagnosis of diseases such as hypertension, atherosclerosis, and other
vascular pathologies, it is relevant to determine the following amplitude-time parameters
of the pulse wave contour.

The pulse wave amplitude, has no normative values, is estimated in dynamics, and
measured in relative units.

The amplitude of the dicrotic wave. Normally, it is 1
2 of the pulse wave amplitude

value, also measured in relative units.
The incision height, normally 2/3 of the pulse wave amplitude value, is measured in

relative units.
The dicrotic wave index is measured as a percentage; the normative value is 63–73%.
The duration of the pulse wave anacrotic phase; measurement unit: seconds.
The duration of the pulse wave dicrotic phase; measurement unit: seconds
The duration of the exile phase. A parameter reflecting the diastolic activity of blood

vessels; measurement unit: seconds.
The duration of the exile phase. A parameter reflecting the diastolic activity of blood

vessels; measurement unit: seconds.
Pulse wave duration; measurement unit: seconds.
The rising wave index. This reflects the filling phase in the systolic period of the

cardiac cycle. The standard value corresponds to 15–24%.
Filling time; measurement unit: seconds. The standard value is in the range of

0.06–0.12 s.
The cardiac cycle systole phase duration; measurement unit: seconds.
The cardiac cycle diastole phase duration; measurement unit: seconds.
The cardiac cycle diastole phase duration; measurement unit: seconds.
Pulse wave reflection time; measurement unit: seconds. The standard value is in the

range of 0.03–0.04 s.
Heart rate; measurement unit: beats per minute.
Despite the diagnostic significance of the pulse wave contour with its characteristic

points, many normative values of hemodynamic parameters have yet to be determined.
The absence of these values is due to the complexity of forming a database of pulse wave
contours in normal and pathological conditions.

The above-mentioned components of pulse wave signals can be used to evaluate the
characteristic points of the pulse wave contour. In this regard, it is important to focus on
the study of the pulse wave contour and its characteristics, which make it possible to form
a multiparametric feature space for machine learning of neural network classifiers.

3. Results

Pulse wave signals were received using the «Hemodyn1» device. The pressure signal
processing algorithm was implemented as a virtual instrument using LabVIEW software.
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Graphic processing was performed using the MATLAB R2017b software as part of the
study, taking into account the age and health status of the participants.

To study the process of a multiparametric feature space formation and to prove
the possibility of predicting the hemodynamic parameters values based on non-invasive
hydrocuff technology using a neural network, the authors used the hydrocuff device
«Hemodin1», the block diagram of which is shown in Figure 3.

Figure 3. The block diagram of the «Hemodyn 1» device, for assessing the cardiovascular system
state. It consists of a two-chamber compression hydraulic cuff, a pressure source (Pressure source),
two pressure sensors (Pressure sensor), two pressure control units (Pressure control unit), a pressure
analyzer (Pressure analyzer), and a registrar (Registrator).

The pressure source contains a reservoir with a given volume of liquid and a device
for supplying liquid to the hydrocuff chambers. A two-chamber compression hydrocuff is
installed on the patient’s forearm before starting the measurement.

When creating pressure, the liquid from the pressure source enters the working
chamber through the first control unit. Excessive pressure is created in it and oscillations
are formed caused by the passage of pulse waves under the cuff [37].

The figures below show the pulse wave contours of patients from different age groups
registered by the «Hemodin 1» hydrocuff device.

Figures 4–7 were obtained by the authors of this study as part of the development
of a system for predicting the hemodynamic parameters values based on non-invasive
hydrocuff technology with a neural network applying.

Figure 5 shows the pulse wave signal of a patient with no pathologies identified and
no undergoing treatment by a cardiologist, in other words, potentially healthy.

The factors of formation and diagnostic significance of this peak are to be determined
during an extended study of a group of patients 18 to 21 years of age.

The maximum amplitude of the presented signal is 8 mm Hg. The amplitude of the
dicrotic burst is 3.5 mm Hg, which is 44% of the total amplitude of the signal and indicates
a high elasticity of the vessel wall. Having estimated the duration of one cardiac cycle, it
can be concluded that 64% of the cardiac cycle time falls on the work of the vessels and
only 36% on the work of the heart muscle.

Figure 6 shows the pulse wave signal of a patient without identified pathologies and
complaints of violations in the CVS work.
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Figure 4. A typical fragment of a pulse wave signal recording obtained during the experiment process.
Along the ordinate axis, the values of blood pressure in mmHg are deposited, and along the abscissa
axis is the time with a sampling frequency of 512 Hz.

Figure 5. The pulse wave signal fragment of a 20-year-old young men without identified pathologies.
Considering the fragment of the pulse wave of a twenty-year-old patient, it can be noted, in addition
to the classical peaks, a characteristic sub-lash is marked on contour B′ on the segment of the curve
from point B to point C.

Analyzing the treated contour of the pulse wave, it can be stated the high amplitude of
the signal, about 12 mmHg, which characterizes such a hemodynamic parameter as cardiac
output, it can also be noted a good response of the artery walls to extensibility under the
influence of shock volume, as evidenced by a dicrotic surge on a single pulse wave.

The amplitude of the dicrotic surge was 41.6% of the total amplitude, there is a decrease
in vascular response compared with indicators of a younger age. More detailed calculations
and in-depth analysis may offset these discrepancies. The working time of the vessels
relative to the total duration of the cardiac cycle was almost the same and amounted to
64%, while the work of the heart accounted for 36%.

Figure 7 shows the pulse wave signal of a men aged 60 years. At the time of the study,
the man was not taking any medications that affect blood pressure indicators.
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Figure 6. The pulse wave signal of a woman 30 years of age.

Figure 7. The pulse wave signal of a man 60 years of age.

Analyzing the contour of the pulse wave of an age-related patient in the same way
as in previous cases, the shape of the pulse wave resembles the classical one, there are
two waves and all the main characteristic points, a distinctive feature can be called a high
amplitude of 22 mmHg; however, the amplitude of the dicrotic surge was 5 mm Hg, this
is only 22.7%. This indicates the process of reducing the vascular bed elasticity. The main
work is performed by the heart muscle, the weak work of the vessels provides an additional
load on the left ventricle of the heart. The same fact confirms the duration of the cardiac
cycle, the share of vascular work accounts for 49.4% of the time.

The presented results of recording the single pulse waves prove the individuality of
the pulse wave contour and the fact that age-related changes in the elasticity of the vascular
wall affect the work of the entire CVS.

In Figure 2, the characteristic elements of the pulse wave are marked with symbols:
anacrotic rise (A–B), and dicrotic period (B–E). The pulse wave character depends on the
systolic output, the blood flow intensity, blood viscosity, and the vascular wall’s state. Due
to the high diagnostic information content of the pulse wave contour, it is necessary to
implement special methods which allow to reduce the error of fixing characteristic points on
the pulse wave contour. The study used a spline interpolation technique based on changing
the position of the characteristic points of the selected fragment of the curve. Signal
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processing was performed in MATLAB R2017b. In order to determine the characteristic
points of the pulse wave contour, the pressure curve must be analyzed by the first and
second derivatives of the signal [8]. Figure 8 shows the results of determining the first and
second derivatives of the pulse wave signal.

Figure 8. The original signal and derivatives of the first and second order with normalized values
and coefficients. For the first derivative, the coefficient is assumed to be equal to five. For the second
derivative, the coefficient is fifty. The coefficient determines the steepness of the amplitudes of
the derivatives.

The use of neural networks when making a diagnosis reduces the time of research
and simplifies the task for medical personnel. To form a multiparametric feature space, the
authors of this study proposed the structure of an artificial neural network. Figure 9 reflects
the neural network architecture variant. The input layer is represented by the three groups
of parameters above: mass-dimensional, anatomical, hemodynamic, and amplitude time.

Determining the sufficient number of neurons in the hidden layers is an important
task. A small number of neurons complicates the learning procedure. A large number of
neurons leads to an increase in training time and the effectiveness of its tuning. To find the
rational number of neurons of the hidden layer of a neural network with the structure of a
multilayer perceptron, it is necessary to study the indicators of sensitivity and specificity of
all network outputs, which the authors of this study have yet to implement. It is possible
that the number of neurons in the hidden layer will decrease as a result of further research.
The output layer of the proposed neural network contains information about the normal
state and pathologies of the cardiovascular system.

To train an artificial neural network, it is possible to use an error back propagation
algorithm [39]. The variant of the neural network learning algorithm proposed in Figure 10
involves calculating the error of both the output layer and each neuron of the learning net-
work and the correction of the weights of neurons in accordance with their current values.
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Figure 9. The neural network architecture variant. The under development neural network con-
tains three groups of data in 21 input neurons. The hidden layer and the output layer with
pathological conditions.

Figure 10. A variant of the neural network learning algorithm.

4. Discussion

In this study, the authors recorded the pulse wave contours of citizens of different age
groups and analyzed the characteristic points position of the pulse wave contour. In the
study, it was aspired to evaluate the factors influencing the SBP and DBP determination
accuracy, as well as to evaluate the possibility of forming a multiparametric feature space
based on preliminary collection of information about the patient anatomical features and
the pulse wave contour obtained by hydrocuff technology applying [37]. The recorded
contours of pulse waves of citizens from different age groups clearly demonstrated changes
in the pulse wave contour with increasing age of the patient, which indirectly confirmed
an increase in the stiffness of the vascular wall. Moreover, in the course of the conducted
research, it was desired to substantiate an increase in the quality of the received pulse
waves contour. The graphs presented in the paper reflect the original signals that did not
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pass the filtering stage. For the study results, a large number of pulse wave signals were
collected, which are of scientific interest in terms of cardiovascular pathologies diagnostics.
The beginning to the formation of BP oscillograms recorded by a device implementing
the hydrocuff technology, which was performed for the first time, is set. The obtained
unique recordings of arterial pressure pulse waves, open certain prospects in terms of
understanding the process of the heart and vascular bed performing.

During the study, the amplitude and time characteristics of the registered signals
were evaluated. The obtained preliminary data showed an increase in amplitude with
an increase in age, this fact needs to be checked on a larger sample. Moreover, in the
conducted research’s result, the task of assessing the effect of pathological changes in
the cardiovascular system on the time of a complete cardiac cycle arose. The considered
issue of the respiratory organs work influence on the pulse waves contour requires an
extended study with the involvement of additional equipment a chest respiratory sensor.
The conducted research only confirmed the respiratory system’s effect on the pulse wave
contour in all age groups. Studies on the selection of the respiratory component of the
signal were not conducted. Hartmann V et al., 2019 [40], published results concerning the
determination of the installation location of a photoplethysmographic sensor to accurately
calculate the respiratory rate. The Hartmann V et al. study results provide additional
prospects for hydrocuff technology application in the field of diagnostics of the respiratory
system work and possible pathological conditions identification.

In this study, the authors did not set the task of comparing the developed hydrocuff
technology with well-known published works on the assessment of blood pressure and
hemodynamic parameters using PPG and ECG signals. The authors propose to use hy-
drocuff technology to form a high-quality pulse wave contour.

5. Conclusions

This study substantiates the need for the formation of a multiparametric feature space
for the purpose of early diagnosis of CVS pathologies. Groups of features are provided that
allow forming a large data array for training a neural network. A variant of a multilayer
neural network is proposed to increase the prognostic accuracy of the intended diagnosis.
The complexity in the formation of a multiparametric feature space is associated with the
need to create an extensive database of pulse wave contours characterizing various types of
pathologies. The use of hydrocuff technology leads to a complication of the device design
compared with PPG, due to the use of expensive microprocessors used to solve neural
network classification tasks.

As a result of tests, the contours of the pulse waves were obtained and characteristic
points were marked. In this study, a reliable, accurate but simple mechanism is proposed
that allows to extract clinically significant signs from the pulse wave curve by taking into
account the position of characteristic points on the curves.

The conducted research results indicated a high sensitivity of perception of pressure
changes in the artery under the cuff. This has advantages associated with an increase in
the pulsations amplitude of small distortions of the pulse waves contour. High sensitivity
makes it possible to capture the influence of the respiratory component on the amplitude
characteristics of pulse waves. In this regard, the task of eliminating the modulations
of the respiration amplitudes arises. For practical use of the proposed technology, it is
necessary to develop an algorithm for extracting respiratory amplitudes from the pulse
wave contour. This will allow to isolate and take into account the respiratory component in
order to exclude the respiratory system work influence on hemodynamic parameters. It will
expand the functionality of hydrocuff devices in the field of diagnostics of the respiratory
system for determining the frequency and depth of breathing, which is an urgent problem
in pulmonology.
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23. Slapničar, G.; Mlakar, N.; Luštrek, M. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep
Neural Network. Sensors 2019, 19, 3420. [CrossRef]

24. Aguirre, N.; Grall-Maës, E.; Cymberknop, L.; Armentano, R. Blood Pressure Morphology Assessment from Photoplethysmogram
and Demographic Information Using Deep Learning with Attention Mechanism. Sensors 2021, 21, 2167. [CrossRef]

25. Su, P.; Ding, X.-R.; Zhang, Y.-T.; Liu, J.; Miao, F.; Zhao, N. Long-term blood pressure prediction with deep recurrent neural
networks. In Proceedings of the 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas,
NV, USA, 4–7 March 2018; pp. 323–328. [CrossRef]

26. Chowdhury, M.H.; Shuzan, N.I.; Chowdhury, M.E.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating Blood
Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors 2020,
20, 3127. [CrossRef]

27. Markuleva, M.V.; Gerashchenko, M.S.; Gerashchenko, S.I. The Hydrocuff Sensor Position Analysis for Assessing Therespiration
Effect in Measuring Hemodynamics and Blood Pressure. In Proceedings of the 2020 International Russian Automation Conference
(RusAutoCon), Sochi, Russia, 6–12 September 2020; pp. 810–814. [CrossRef]

28. Markuleva, M.V.; Gerashchenko, M.S.; Gerashchenko, S.I.; Polosin, V.G.; Mitroshin, A.N.; Astafyev, A.N. The Respiratory Organs
Effect on Hemodynamics Evaluating Method Based on Hydro-Cuff Technology. In Proceedings of the 2020 4th Scientific School on
Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), Innopolis, Russia, 7–9 September 2020;
pp. 165–168. [CrossRef]

29. Gerashchenko, M.S.; Markuleva, M.V.; Gerashchenko, S.I.; Semenov, A.D.; Mitroshin, A.N. Nonlinear SVD–filtration in hemody-
namic parameters evaluation hydrocuff systems. J. Phys. Conf. Ser. 2020, 1515, 052041. [CrossRef]

30. Volkova, N.A.; Gerashchenko, S.; Vasiliev, V.S. Algorithm for Estimating Arterial Pressure Based on Spectral Analysis of the Pulse
Wave Form. In Proceedings of the 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow,
Russia, 11–13 March 2020; pp. 1–4. [CrossRef]

31. Papaioannou, T.G.; Xanthis, D.; Argyris, A.; Vernikos, P.; Mastakoura, G.; Samara, S.; Floros, I.T.; Protogerou, A.D.; Tousoulis, D.
Accuracy and precision of cardiac output estimation by an automated, brachial cuff-based oscillometric device in patients with
shock. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2020, 234, 1330–1336. [CrossRef]

32. Barroso, W.K.S.; Gonçalves, C.F.; Berigó, J.A.C.; Melo, M.A.; Arantes, A.C.; Lelis, E.D.S.; Sousa, W.M.; Rezende, J.M.; Jardim, T.;
Jardim, P.C.; et al. Tonometric and Oscillometric Methods for Measurement of Central Blood Pressure Parameters: A Comparison
in Patients with Borderline Hypertension or Stage 1 Hypertension. Int. J. Cardiovasc. Sci. 2020, 33, 145–150. [CrossRef]

33. Padwal, R.; Jalali, A.; McLean, D.; Anwar, S.; Smith, K.; Raggi, P.; Ringrose, J.S. Accuracy of oscillometric blood pressure
algorithms in healthy adults and in adults with cardiovascular risk factors. Blood Press. Monit. 2019, 24, 33–37. [CrossRef]

34. Zhang, Z.; Xi, W.; Wang, B.; Chu, G.; Wang, F. A convenient method to verify the accuracy of oscillometric blood pressure
monitors by the auscultatory method: A smartphone-based app. J. Clin. Hypertens. 2019, 21, 173–180. [CrossRef]

35. Rizfan, A.F.; Ghosh, K.; Mustaqir, A.; Mona, R.; Firdous, J.; Muhamad, N. Comparison between Auscultatory and Oscillometric
Reading of Blood Pressure Measurement While in Sitting and Supine Position. Biomed. Pharmacol. J. 2019, 12, 775–781. [CrossRef]

36. Kallioinen, N.; Hill, A.; Horswill, M.S.; Ward, H.E.; Watson, M.O. Sources of inaccuracy in the measurement of adult patients’
resting blood pressure in clinical settings: A systematic review. J. Hypertens. 2017, 35, 421–441. [CrossRef]

37. Gerashchenko, M.S.; Gerashchenko, S.I. Electronic Tonometer. Patent of the Russian Federation 2652070, 16 May 2017.
(In Russian).

38. Yen, C.-T.; Chang, S.-N.; Liao, C.-H. Deep learning algorithm evaluation of hypertension classification in less photoplethysmogra-
phy signals conditions. Meas. Control 2021, 54, 439–445. [CrossRef]

39. Buscema, M. Theory: Foundations of Artificial Neural Networks. Subst. Use Misuse 1998, 33, 17–199. [CrossRef]
40. Hartmann, V.; Liu, H.; Chen, F.; Hong, W.; Hughes, S.; Zheng, D. Toward Accurate Extraction of Respiratory Frequency from the

Photoplethysmogram: Effect of Measurement Site. Front. Physiol. 2019, 10, 732. [CrossRef] [PubMed]

http://doi.org/10.3390/s21010165
http://doi.org/10.3390/s21062188
http://doi.org/10.3390/s21186022
http://doi.org/10.3390/s19153420
http://doi.org/10.3390/s21062167
http://doi.org/10.1109/bhi.2018.8333434
http://doi.org/10.3390/s20113127
http://doi.org/10.1109/rusautocon49822.2020.9208056
http://doi.org/10.1109/dcnair50402.2020.9216916
http://doi.org/10.1088/1742-6596/1515/5/052041
http://doi.org/10.1109/mwent47943.2020.9067322
http://doi.org/10.1177/0954411919888321
http://doi.org/10.36660/ijcs.20190020
http://doi.org/10.1097/MBP.0000000000000356
http://doi.org/10.1111/jch.13460
http://doi.org/10.13005/bpj/1699
http://doi.org/10.1097/HJH.0000000000001197
http://doi.org/10.1177/00202940211001904
http://doi.org/10.3109/10826089809115858
http://doi.org/10.3389/fphys.2019.00732
http://www.ncbi.nlm.nih.gov/pubmed/31316390

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

