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Abstract: Syzygium cumini (Pomposia) is a well-known aromatic plant belonging to the family
Myrtaceae, and has been reported for its various traditional and pharmacological potentials, such
as its antioxidant, antimicrobial, anti-inflammatory, and antidiarrheal properties. The chemical
composition of the leaf essential oil via gas chromatography–mass spectrometry (GC/MS) analysis
revealed the identification of fifty-three compounds representing about 91.22% of the total oil. The
identified oil was predominated by α-pinene (21.09%), followed by β-(E)-ocimene (11.80%), D-
limonene (8.08%), β-pinene (7.33%), and α-terpineol (5.38%). The tested oil revealed a moderate
cytotoxic effect against human liver cancer cells (HepG2) with an IC50 value of 38.15 ± 2.09 µg/mL.
In addition, it effectively inhibited acetylcholinesterase with an IC50 value of 32.9 ± 2.1 µg/mL.
Furthermore, it showed inhibitory properties against α-amylase and α-glucosidase with IC50 values
of 57.80 ± 3.30 and 274.03 ± 12.37 µg/mL, respectively. The molecular docking studies revealed
that (E)-β-caryophyllene, one of the major compounds, achieved the best docking scores of −6.75,
−5.61, and −7.75 for acetylcholinesterase, α-amylase, and α-glucosidase, respectively. Thus, it is
concluded that S. cumini oil should be considered as a food supplement for the elderly to enhance
memory performance and for diabetic patients to control blood glucose.

Keywords: acetylcholinesterase; α-amylase; α-glucosidase; cytotoxicity; essential oil; molecular
docking; Syzygium cumini; Pomposia

1. Introduction

Syzygium cumini (L.) is an aromatic evergreen plant belonging to the family Myrtaceae,
originating in Asia and widely distributed in America [1]. It is commonly known as jamum
or jambul in Asia and as jambolão or jamelão in Brazil [2]. Traditionally, it has acquired great
value in the Ayurveda and Unani systems of medication for possessing various treatment
applications such as digestive, carminative, anthelmintic, antiulcer, bronchitis, antiasthma,
antiallergic, diuretic, antiscorbutic, and wound healing [3,4]. Further, a wide range of
pharmacological studies have been carried out on S. cumini that have proven its therapeutic
potential as an antioxidant, antidiabetic, antimicrobial, anti-HIV, anti-inflammatory, and
antidiarrheal [5–7]. Phytochemical investigations have shown that the plant is rich in
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flavonoids, tannins, anthocyanins, triterpenoids, essential oil, vitamins, and fatty acids [8,9].
Interestingly, the fruits of Syzygium cumini are purplish black in color with a pleasant odor,
are edible with a high nutritional value, and are involved in many food products such as
ice cream, jam, jellies, and yogurt [10]. Previously, the oil isolated from S. cumini leaves
growing in Brazil exerted antioxidant, molluscicidal, and leishmanicidal effects [11,12].

Recently, the inhibition of key enzymes involved in the pathogenesis of disease has
become a most effective therapeutic technique [13]. For instance, the most widely accepted
strategy for the management of Alzheimer’s disease is to inhibit acetylcholinesterase
(AChE) [14]. Furthermore, the inhibition of carbohydrate-metabolizing enzymes such
as α-amylase and α-glucosidase is an effective mechanism to control hyperglycemia in
diabetic patients [15]. Interestingly, synthetic drugs such as galantamine and acarbose
are well-developed enzyme inhibitors in the pharmaceutical market for the management
of Alzheimer’s disease and diabetes mellitus, but these drugs are known for side effects,
such as hepatic injury and bowel disorders [16,17]. Consequently, medicinal plants have
great value in an era of natural enzyme inhibitors to overcome the struggles of synthetic
drugs [18]. Several essential oils from the genus Syzygium exploit enzyme inhibitory
activities [19]. For example, S. aromaticum oil has shown remarkable antidiabetic activity
via its inhibitory effect against α-amylase [20].

Molecular docking was chosen as the most suitable method to assess the underlying
mechanism of inhibitory action for the pharmacologically active components, thus helping
us understand the interactions of the enzyme with the major oil components [21]. In
turn, molecular modeling provides information about the most appropriate geometry and
binding affinity of the tested components (ligand) to the active site of the enzymes (target
macromolecules) [22].

The present study was designed to investigate the chemical composition and enzyme
inhibitory properties of the essential oil isolated from Syzygium cumini (L.) leaves grown
in Egypt. The enzyme inhibitory assays were evaluated against AChE, α-amylase, and
α-glucosidase. An added objective was to evaluate the binding affinities between the char-
acterized major oil components and the tested enzymes using molecular docking studies.

As the essential oils are mostly safe with few complications, they can be a valuable non-
medicinal option or coupled with conventional care for some health conditions, provided
safety and quality issues are taken into consideration [23].

2. Results and Discussion
2.1. GC/MS Analysis of Essential Oil

The GC/MS analysis revealed identification of fifty-three compounds, representing
about 91.22% of total oil as shown in Figure 1 and Table 1. The major components of the
oil were found to be α-pinene (21.09%), followed by β-(E)-ocimene (11.80%), D-limonene
(8.08%), β-pinene (7.33%), α-terpineol (5.38%), (E)-β-caryophyllene (4.51%), and myrcene
(3.90%). The oil was predominated by hydrocarbon monoterpenes representing about
61.82%, followed by oxygenated monoterpenes (15.17%), hydrocarbon sesquiterpenes
(8.18%), and oxygenated sesquiterpenes (6.02%).
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Table 1. Chemical composition (%) of essential oil identified from Syzigium cumini leaves grown in Egypt using GC/MS analysis.

No. Compound Retention Time (Rt) Molecular
Formula

Retention Index
Peak Area (%)

Exp. Rep.

1 Bornylene 6.488 C10H16 885 890 0.02
2 α-Thujene 7.135 C10H16 908 911 0.02
3 α-Pinene 7.470 C10H16 921 924 21.09
4 Camphene 7.775 C10H16 930 932 1.86
5 2,4(10)-Thujadiene 7.945 C10H16 938 943 0.02
6 β-Pinene 8.645 C10H16 963 963 7.33
7 Myrcene 9.085 C10H16 979 983 3.90
8 α-Phellandrene 9.445 C10H16 992 998 0.09
9 α-Terpinene 9.825 C10H16 1006 1012 0.11

10 o-Cymene 10.090 C10H14 1014 1018 1.24
11 D-Limonene 10.260 C10H16 1020 1021 8.08
12 β-(E)-Ocimene 10.605 C10H16 1031 1035 11.80
13 α-(E)-Ocimene 10.880 C10H16 1040 1042 4.82
14 γ-Terpinene 11.165 C10H16 1049 1052 0.48
15 Isoterpinolene 12.065 C10H16 1078 1082 0.96
16 Fenchol 12.855 C10H18O 1103 1110 0.47
17 (E)-Sabinene hydrate 13.135 C10H18O 1112 1104 0.12
18 Neo-allo-ocimene 13.325 C10H16 1118 1123 0.58
19 4(10)-Thujen-3-ol 13.645 C10H16O 1128 1137 0.32
20 Thujol 13.930 C10H18O 1135 1138 0.31
21 Pinocarvone 14.380 C10H14O 1152 1158 0.09
22 (−)-Borneol 14.485 C10H18O 1155 1163 0.43
23 Terpinen-4-ol 14.835 C10H18O 1167 1172 0.53
24 Crypton 15.130 C9H14O 1176 1177 0.60
25 α-Terpineol 15.315 C10H18O 1182 1184 5.38
26 (−)-Myrtenol 15.450 C10H16O 1187 1189 0.30
27 Carveol 15.625 C10H16O 1192 1200 0.15
28 (+)-Verbenone 15.835 C10H14O 1199 1201 0.34
29 Fenchyl acetate 16.105 C12H20O2 1208 1212 0.74
30 p-Cumic aldehyde 16.775 C10H12O 1232 1237 0.08
31 Phellandral 17.775 C10H16O 1267 1272 1.46
32 Bornyl acetate 18.065 C12H20O2 1277 1277 2.35
33 (−)-E-Pinocarvyl acetate 18.355 C12H18O2 1287 1293 0.18
34 (+)-Z-Verbenol, acetate 18.465 C12H18O2 1291 1294 0.29
35 Carvacrol 18.615 C10H14O 1296 1298 0.21
36 Myrtenyl acetate 19.180 C12H18O2 1316 1323 0.06
37 α-Terpinyl acetate 19.430 C12H20O2 1324 1328 0.02
38 α-Copaene 20.590 C15H24 1365 1370 0.16
39 (E)-β-Caryophyllene 21.845 C15H24 1410 1412 4.51
40 α-Humulene 22.740 C15H24 1445 1447 2.71
41 Alloaromadendrene 22.915 C15H24 1452 1455 0.19
42 Eudesma-4(14),11-diene 23.605 C15H24 1479 1479 0.30
43 α-Selinene 23.805 C15H24 1487 1490 0.15
44 α-Amorphene 23.915 C15H24 1491 1497 0.07
45 α-Farnesene 24.280 C15H24 1505 1508 0.09
46 Palustrol 25.740 C15H26O 1562 1563 0.46
47 (−)-Spathulenol 25.950 C15H24 1570 1572 1.22
48 Caryophyllene oxide 26.085 C15H24 1576 1577 2.32
49 Epiglobulol 26.500 C15H26O 1592 1589 0.76
50 Humulenol-II 27.255 C15H24 1624 1632 0.39
51 Longipinocarveol, trans- 27.360 C15H24 1628 1634 0.42
52 (E)-Guai-11-en-10-ol 27.705 C15H26O 1643 1654 0.45
53 Hibaene 33.840 C20H32 1942 1941 0.03

Hydrocarbon Monoterpene 61.82%
Oxygenated Monoterpene 15.17%

Hydrocarbon Sesquiterpene 8.18%
Oxygenated Sesquiterpene 6.02%

Diterpenes 0.03%
Total identified 91.22%

Yield (mg/100 g) 0.63%
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Previous reports concerning the essential oil of Syzygium revealed differences in its
chemical composition relative to its geographical collection area. The major compounds of
the essential oil of leaves of S. cumini (L.) Skeels, collected from the southwestern region
of Brazil are sesquiterpenes, namely, α-caryophyllene and β-caryophyllen, α-terpineol,
and iso-caryophyllene, along with caryophyllenyl alcohol and oxide [1]. The essential
oil of S. cumini collected from India showed τ-cadinol and τ-muurolol to be the major
compounds, followed by τ-globulol, caryophyllene, δ-cadinene, and α-pinene [24]. The
collected S. cumini leaves from Pakistan revealed the major compounds to be β-farnesene,
cis-β-ocimene, terpinen-4-ol, fenchol, β-myrcene, and γ-cadinene [25]. Another report
revealed that the principal components of the essential oil isolated from S. jambos collected
from Brazil to be (E)-caryophyllene, α-humulene, α-zingibirene, hydroxytoluene buty-
lated, caryophyllene alcohol, caryolan-8-ol, caryophyllene oxide, thujopsan-2-α-ol, and
n-heneicosane [26].

Previous studies of the essential oil content of S. cumini leaves from Egypt revealed
components that were comparable to our results, α-pinene, β-pinene, trans-caryophyllene,
and α-limonene [12]. The chemical constituents of another species collected from a private
garden on the Cairo–Alexandria desert road, Egypt, namely, S. aqueum and S. samarangense,
showed differences from S. cumini, whereby the essential oil of leaves of S. aqueum showed a
high percentage of α-selinene followed by β-caryophyllene and β-selinene, and Germacrene
D was found to be the major constituent in S. samarangense essential oil [27]. From these
previous reports, it is obvious that the essential oil composition shows variability between
different Syzygium species along with their geographical distribution.

2.2. Cytotoxic Activity

Essential oils are well known for their richness with oxygenated and non-oxygenated
components, such as monoterpenes and sesquiterpenes, and previous reports have re-
vealed their impact on several cancer cell lines [28,29]. The results of the cytotoxicity of
the essential oil of S. cumini leaves revealed its inhibitory effect on human liver cancer
cells (HepG2), with an IC50 value of 38.15 ± 2.09 µg/mL as compared to staurosporine
(IC50 = 8.637 ± 0.47 µg/mL) as a reference drug.

In agreement with our results, α-pinene, one of the major components of S. cumini
oil, showed inhibition toward hepatoma carcinoma BEL-7402 cells with an inhibitory rate
of 79.3% in vitro and 69.1% in vivo through the suppression of growth of tumor cells in
tumor-bearing mice. Additionally, α-pinene induced a significant increase in the G2/M
population of the hepatoma cell line (BEL-7402) [30]. One of the major components of
S. cumini oil is β-caryophyllene, which has shown potent cytotoxicity towards human
oral squamous (OEC-M1) cells, human hepatocellular carcinoma (J5) cells, human lung
adenocarcinoma (A549) cells, human colon (HT-29) cells, human melanoma (UACC-62)
cells, and human leukemic (K562) cells with IC50 values of 24.0, 111.2, 31.3, 9.8, 3.2, and
4.6 µg/mL, respectively (Su and Ho 2013). In addition, it has exhibited cytotoxicity towards
MCF-7, MDA-MB-468, UACC257, A549, Hela, and HT-29 cancer cell lines [31,32].

2.3. Acetylcholinesterase Inhibition

The acetylcholinesterase enzyme is responsible for the hydrolysis of acetylcholine,
which is considered a key enzyme in the treatment of Alzheimer’s disease. Several plants
have been reported for their inhibitory activity against acetylcholinesterase [33–35]. The
essential oil of S. cumini showed moderate inhibitory ability against AChE with an IC50
value of 32.90 ± 2.10 µg/mL as compared to donepezil (IC50 = 7.89 ± 1.30 µg/mL) as a
reference drug.

The essential oil of S. cumini leaves showed promising anti-cholinesterase inhibitory
activity that could be attributed to the presence of some volatile compounds such as
monoterpenes: α-pinene, β-pinene, and β-(E)-ocimene being major compounds; along with
the presence of sesquiterpenes, such as (E)-β-caryophyllene, which has been supported by
previous investigations [36–39]. Mohamed et al. reported on the antioxidant activity of
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the essential oil of S. cumini leaves using ferric reducing power (FRAP) assays [12]. They
showed that the highest ferric reducing power property was 0.47 mg/100 mg of essential oil,
which correlated with the presence of a mixture of monoterpene hydrocarbons and oxygen
containing mono- and sesquiterpenes. In addition, S. cumini leaves have been reported for
their traditional use as a natural antioxidant agent [12]. The essential oil of S. cumini leaves
isolated from the mature trees in Pakistan showed DPPH radical scavenging activity with
an IC50 value of 1.2 mg/mL [24]. The potential activity of the essential oil components of
S. cumini leaves, as new AChE inhibitors and antioxidants, could be considered a potential
strategy for treating and decreasing the progress of Alzheimer’s disease [39,40].

2.4. α-Amylase and α-Glucosidase Inhibition

Inhibition of the α-amylase enzyme has been reported in previous studies to be one of
the effective approaches for diabetes management through reduction in the postprandial
hyperglycemia associated with type 2 diabetes mellitus [41,42]. Regarding our results, the
essential oil of S. cumini leaves showed α-amylase inhibitory ability with an IC50 value of
57.80± 3.30 µg/mL as compared to acarbose (IC50 = 34.71 ± 2.30 µg/mL) as a reference
drug. In addition, it showed moderate α-glucosidase inhibitory properties with an IC50
value of 274.03 ± 12.37 µg/mL as compared to acarbose (IC50 = 138.76 ± 7.59 µg/mL).

The antidiabetic effects of the S. cumini volatile components as enzymes inhibitors
could be attributed to the presence of oxygenated compounds, such as monoterpene and
sesquiterpene, which can bind non-selectively to amino and sulfhydryl groups of enzymes
and cause a conformational change and loss of activity [43]. Previous reports concerning
the seed extract of S. cumini in south India have shown an α-amylase enzyme inhibitory
effect of up to 95.4% [44]. In accordance with these previous reports, we found that α-
and β-pinene showed α-amylase inhibitory ability that suggests their responsibility for the
observed inhibitory activity of the essential oil of S. cumini [45,46].

2.5. Molecular Docking

In this section, we aimed to identify the molecular mechanism of action as well as
the binding mode of the identified compounds. Therefore, the crystal structures of the
acetylcholinesterase, α-amylase, and α-glucosidase were downloaded from the PDB and
prepared for docking. The docking protocol was roughly validated by re-docking each
o-crystalized ligand into its corresponding active site. The calculated RMSD between the
co-crystalized pose and the docked pose was 0.53, 0.82, and 0.76 for AChE, α-amylase,
and α-glucosidase, respectively, highlighting the validity of the docking. To benchmark
our docking results so far, the docking score of each crystal reference was taken into
consideration when comparing the docking scores of the seven selected compounds. As
depicted in Table 2, all the major compounds in the isolated oil achieved favorable-accepted
scores with the three targeted enzymes. Taking into account the hydrophobic nature of
the isolated oil—composed entirely from hydro-carbonic compounds—all the interactions
formed between any compounds within the three targets were found to be hydrophobic
in nature (see Figure 2). Among the tested seven compounds, (E)-β-caryophyllene was
the best compound to interact with the three enzymes, achieving docking scores of −6.75,
−5.61, and −7.75 for AChE, α-amylase, and α-glucosidase, respectively. On the second
rank after (E)-β-caryophyllene came β-(E)-ocimene, myrcene, and α-terpineol for AChE,
α-amylase, and α-glucosidase, respectively (see Figure 3).

In conclusion, from the major oils, (E)-β-caryophyllene was the best compound to
interact with the three enzymes, achieving docking scores of −6.75, −5.61, and −7.75 for
AChE, α-amylase, and α-glucosidase, respectively. Compounds achieved acceptable scores
with these three enzymes through the establishment of many hydrophobic interactions. It
is worth mentioning that no compound was able to single-handedly overcome the scores
achieved by any co-crystalized ligand, which highlights that their biological effects come
from synergistic contributions from all the compounds.
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Table 2. The docking scores achieved by the major identified compounds against different enzymes.

Compound α-Amylase α-Glycosidase Acetyl Cholinesterase

α-pinene −4.62956142 −5.69745064 −4.83523035
β-pinene −4.59063005 −5.4204216 −4.89209366

α-terpineol −4.8473525 −6.05044317 −5.19867182
D-limonene −4.59063005 −5.58485031 −5.07891607

myrcene −4.67749071 −5.52444649 −5.16836262
β-(E)-ocimene −4.53650188 −5.60387325 −5.58642292

(E)-β-caryophyllene −5.61668322 −7.75139856 −6.75857782
Validation ligand −5.83725119 −10.7614613 −8.74956799
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3. Materials and Methods
3.1. Plant Material

Fresh leaves of Syzygium cumini (L.) were collected from a private garden in the
Abo-Zabal area (N 30◦17′43.386′ ′, E 31◦22′27.9804′ ′), Qualiobya, Egypt, in February 2021.
They were kindly authenticated by taxonomy specialist engineer, Therease Labib, the
taxonomy specialist at El-Orman Botanical Garden, Giza, Egypt. A voucher specimen,
PHG-P-SC-348, was deposited at the Pharmacognosy Department, Faculty of Pharmacy,
Ain Shams University.

3.2. Isolation of the Essential Oil

The fresh leaves were finely cut and hydrodistilled for 5 h using a Clevenger apparatus.
After hydrodistillation, the essential oil was isolated and kept in a sealed glass tube at
−4 ◦C until GC/MS analysis.

3.3. Gas Chromatography–Mass Spectrometry (GC/MS)

The GC/MS analysis of the resulting oil was carried out at the Department of Medic-
inal and Aromatic Plants Research, National Research Centre, with the following spec-
ifications. Instrument: a TRACE GC Ultra Gas Chromatographs (THERMO Scientific
Corp., Waltham, MA, USA), coupled with a thermo mass spectrometer detector (ISQ Single
Quadrupole Mass Spectrometer). The GC–MS system was equipped with a TG-5MS col-
umn (30 m × 0.25 mm i.d., 0.25 µm film thickness). Analysis was carried out using helium
as carrier gas at a flow rate of 1.0 mL/min and a split ratio of 1:10 using the following
temperature program: 80 ◦C for 2 min; rising 5.0 ◦C/min to 300 ◦C; and held for 5 min.
The injector and detector were held at 280 ◦C, and 0.2 µL of diluted samples (1:10 hexane,
v/v) was injected. Mass spectra were obtained by electron ionization (EI) at 70 eV, using a
spectral range of m/z 35–500.

3.4. Identification of Oil Components

The components of the essential oil were characterized by comparison of their GC/MS
spectra, fragmentation patterns, and retention indices with those reported in the literature
data [28,47]. The retention indices were calculated relative to a homologous series of
n-alkanes (C8-C28) injected under the same conditions.

3.5. Assessment of Cytotoxic Activity

The cytotoxicity of the essential oil of S. cumini leaves was evaluated against human
liver cancer cells (HepG2) using MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium
bromide) assay [28,48,49]. The cell lines were obtained from American Type Culture Collec-
tion. The cell viability was evaluated based on the reduction in MTT by the metabolically
active cells using staurosporine as a reference drug (Sigma-Aldrich chemicals). The results
were expressed as the concentration that induces 50% of maximum inhibition of cell prolif-
eration (IC50) from graphic plots of the dose–response curve for each concentration using
Graphpad Prism software (San Diego, CA, USA).

3.6. Assessment of Enzyme Inhibitory Activities
3.6.1. Acetylcholinesterase Inhibition Assay

Cholinesterase (ChE) inhibitory activity was evaluated using acetylcholinesterase
activity colorimetric assay kit (Bio-vision company; K197-100), following Ellman’s method
as previously described [17]. About 10 µL of essential oil was mixed with colorimetric
substrate (DTNB) and AChE solution in Tris–HCl buffer (pH 8.0) in a 96-well microplate
and incubated for 10–15 min at room temperature away from light. The reaction was based
on the ability of an active human AchE enzyme to hydrolyze the provided colorimetric
substrate, producing a yellow compound. Similarly, a blank was prepared by addition of a
sample solution to all reaction reagents without enzyme solution. Donepezil was used as
the positive control (Sigma-Aldrich, St. Louis, MO, USA). The absorbance of the sample,
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blank, and standard was measured at 412 nm after 10 min incubation at room temperature.
The absorbance of the blank was subtracted from the value of the sample, and the results
were recorded as IC50.

3.6.2. α-Amylase Inhibition Assay

The inhibitory activity of the tested oil was performed according to the standard
method with minor modifications [50]. The enzyme solution was prepared by dissolving
α-amylase in 20 mM phosphate buffer (PH = 6.9) at a concentration of 0.50 mg/mL. Then,
1 mL of the tested oil of various concentrations (1000–7.81 µg/mL) and 1 mL of enzyme
solution were mixed and incubated at 25 ◦C for 10 min. After incubation, 1 mL of starch
(0.50%) solution was added to the mixture and further incubated at 25 ◦C for 10 min. The
reaction was then stopped by adding 2 mL of dinitro salicylic acid (3,5-dinitrosalicylic acid,
color reagent) and heating the reaction mixture in a boiling water bath for 5 min. After
cooling, the absorbance was measured colorimetrically at 565 nm. Acarbose was used
as a standard drug. The inhibition percentage was calculated using the given formula:
% inhibition = (1−As/Ac) × 100, where As was the absorbance of the tested compound,
and Ac was the absorbance of the control reaction (containing all reagents except the test
sample). The IC50 value was defined as the concentration of the α-amylase inhibitor to
inhibit 50% of its activity under the assay’s conditions.

3.6.3. α-Glucosidase Inhibition Assay

The α-glucosidase inhibitory activity was performed according to the previously
reported method using BioVision’s α-glucosidase inhibitor screening kit (K938-100) [17].
About 10 µL of leaf oil was mixed with glutathione (10 µL), α-glucosidase solution (10 µL)
in phosphate buffer (pH 6.8), and PNPG (4-nitrophenyl-α-D-glucopyranoside) (10 µL) in a
96-well microplate and incubated for 15–20 min at room temperature. Similarly, a blank
was prepared by adding the sample solution to all reaction reagents without α-glucosidase
solution. The reaction utilized the ability of an active α-glucosidase to cleave a synthetic
substrate (PNPG), releasing a chromophore (p-nitrophenol; OD = 410 nm). The reaction
was then stopped with the addition of sodium carbonate (50 µL, 0.2 M). The absorbance of
the tested oil and blank was read at 410 nm. The absorbance of the blank was subtracted
from the values of the tested oil, and the results were reported as IC50.

3.7. Molecular Docking Studies

The crystal structures of acetylcholinesterase, α-amylase, and α-glucosidase were
downloaded from the protein data bank (www.pdb.org) with the following IDs 1DX6,
4GQR, and 2V3E [51–53], respectively. All the docking studies were conducted using MOE
2019 [54], and the results were visualized by the open-source Discovery studio. Firstly, all
the target enzymes, co-crystalized ligands, and the isolated compounds were prepared
using the default settings. The active site of each target was determined from the binding
of the corresponding co-crystalized ligand. Prior to commencing the docking of the seven
identified compounds, a pose retrieval step for the co-crystalized ligands was performed
and followed by RMSD calculation. Finally, the identified compounds were docked at the
predetermined active site of the three target enzymes.

4. Conclusions

In our study, we described the detailed chemical composition of leaf oil isolated
from S. cumini grown in Egypt. The tested oil was found to be rich in α-pinene (21.09%),
β-(E)-ocimene (11.80%), D-limonene (8.08%), β-pinene (7.33%), α-terpineol (5.38%), and
(E)-β-caryophyllene (4.51%). Further, we investigated its cytotoxic effects against the
human liver cell line. In addition, we explored its effective inhibitory properties against
acetylcholinesterase, α-amylase, and α-glucosidase. Our findings show that we should
consider this oil for use as a food supplement or adjuvant therapy for the elderly to enhance
memory performance and for diabetic patients to control blood glucose. Furthermore, the

www.pdb.org
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essential oils exhibited stronger toxicity towards the different pathogens documented in the
literature [55–58], making the essential oil and its constituents, α-pinene, β-caryophyllene,
and α-terpineol, a good candidate as an antimicrobial, antifungal, and insecticidal agent.
Further in vivo neuroprotective and antihyperglycemic investigations are recommended to
construct a molecular mechanistic profile for the isolated essential oil in the management of
Alzheimer’s disease and diabetic mellitus. Lastly, without further investigations regarding
its toxicity, the in vitro results in the present study should not be considered as encouraging
the use of S. cumini essential oil as a herbal medicinal product.
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