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Abstract

Scoring the impact of noncoding variation on the function of cis-regulatory regions, on their chromatin state, and on the
qualitative and quantitative expression levels of target genes is a fundamental problem in evolutionary genomics. A
particular challenge is how to model the divergence of quantitative traits and to identify relationships between the
changes across the different levels of the genome, the chromatin activity landscape, and the transcriptome. Here, we
examine the use of the Ornstein–Uhlenbeck (OU) model to infer selection at the level of predicted cis-regulatory modules
(CRMs), and link these with changes in transcription factor binding and chromatin activity. Using publicly available cross-
species ChIP-Seq and STARR-Seq data we show how OU can be applied genome-wide to identify candidate transcription
factors for which binding site and CRM turnover is correlated with changes in regulatory activity. Next, we profile open
chromatin in the developing eye across three Drosophila species. We identify the recognition motifs of the chromatin
remodelers, Trithorax-like and Grainyhead as mostly correlating with species-specific changes in open chromatin. In
conclusion, we show in this study that CRM scores can be used as quantitative traits and that motif discovery approaches
can be extended towards more complex models of divergence.
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Introduction
Mutations in regulatory sequences can lead to the birth or
disruption of transcription factor binding sites (TFBS) that
can affect developmental gene networks and can lead to
changes in spatiotemporal gene expression patterns
(Simpson and Ayyar 2008; Kalay and Wittkopp 2010;
Ordway et al. 2014). Cis-regulatory changes are considered
important drivers of molecular and organismal phenotype
divergence and have been associated with disease (Visel
et al. 2009; Maurano et al. 2012). Therefore, deciphering reg-
ulatory changes leading to changes in chromatin activity and
gene transcription is an important question in biology.

Comparative studies of gene expression across and within
species have been used to study the impact of natural selec-
tion on gene regulation. Studies on yeast (Busby et al. 2011),
Drosophila (Rifkin et al. 2003), and mammals (Caceres et al.
2003; Gilad et al. 2006; Brawand et al. 2011) have identified
expression divergence, even between closely related species.
However, these studies often lack a connection with the un-
derlying regulatory sequences that may have caused the ob-
served lineage-specific gene expression changes. An
interesting approach aiming to connect cis-regulatory
changes to expression changes is to include hybrids into
the comparison. Such studies have been successfully applied
to yeast (Tirosh et al. 2009; Emerson et al. 2010) and
Drosophila species (Wittkopp et al. 2004; McManus et al.

2010; Coolon et al. 2014) and have provided insight into
cis- and trans-regulatory changes (McManus et al. 2010;
Suvorov et al. 2013; Coolon et al. 2014).

Another approach to study the divergence of gene regula-
tion is to directly examine the activity at the level of chromatin,
including transcription factor (TF) binding, histone modifica-
tions, or nucleosome positioning. Several genome-wide com-
parative studies of TF binding measured by ChIP-Seq across
species have studied the tempo of TF binding turnover for
several TFs and organisms (Borneman et al. 2007; Odom
et al. 2007; Bradley et al. 2010; He et al. 2011; Schmidt et al.
2010, 2012). Recent efforts compared the layer of TF binding
changes with changes in gene expression and found surprisingly
few causative links, indicating a complex relationship between
cis-regulatory changes, cis-compensatory changes, and gene ex-
pression changes (Paris et al. 2013; Wong et al. 2015).

Also, computational methods are often used to analyze
the evolution of regulatory elements by comparing nucleo-
tide sequence or motif composition across the phylogenetic
tree. The conservation of noncoding regions across species
(i.e., purifying selection) has been often used to identify re-
gions with regulatory function and methods that use phylo-
genetic trees and evolutionary models have been used mainly
to identify conserved elements. The phylogenetic tree can
indeed be a useful instrument, even for the purpose of
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detecting conserved elements, because it allows assessing
whether a given sequence is indeed under negative selection,
or constraint, which is only possible when a multiple align-
ment and the phylogenetic distances are taken into account
(Siepel et al. 2005). A widely used example where such an
approach is used to identify conserved motifs across the
genome is the Branch Length Score. By comparing the total
branch length of the tree that underlies all the observed motif
instances in the tips, highly informative sets of DNA words
have been identified across yeast, Drosophila, and vertebrate
genomes (Kellis et al. 2003, 2004; Xie et al. 2005; Kheradpour
et al. 2007; Stark et al. 2007). Sequence conservation has also
been a fruitful cue for motif discovery methods in sets of
coexpressed genes (Ho Sui et al. 2007; Aerts et al. 2010;
Gotea et al. 2010; Herrmann et al. 2012; Kwon et al. 2012;
Janky et al. 2014).

Although functional cis-regulatory elements are under
constraint, they show considerable turnover and are consid-
ered as a playground for evolution (Wray 2007; Carroll 2008).
Certain nucleotide substitution models have been used to
characterize turnover of TFBS. Moses et al. (2006) used a
loglikelihood ratio between the Halpern–Bruno (HB) model
and the Hasegawa–Kishino–Yano model to assess whether a
TF binding site is conserved or not conserved, and found that
approximately 5% of Zeste binding sites in Drosophila show
turnover. Doniger and Fay (2007) also found that TF binding
sites are frequently gained and lost, using a model of semicon-
servation, whereby a TF binding site may be conserved in
some species (suggesting a putative function of the site),
but not all. Another model, the McDonald–Kreitman test,
considers polymorphisms within a species and substitutions
between species (McDonald and Kreitman 1991) and has
been used to assess TF binding site gains and losses in
Drosophila (He, Holloway, et al. 2011), and was also applied
to all human TFs with ENCODE ChIP-Seq data (Arbiza et al.
2013).

Although studying turnover of individual TF binding sites
can provide interesting hypotheses, many studies have shown
that enhancers and promoters can show substantial gains,
losses, and reshuffling of TF binding sites, while maintaining
a comparable regulatory activity (Ludwig et al. 2000;
Dermitzakis and Clark 2002; Dermitzakis et al. 2003). A cis-
regulatory module (CRM) can show divergence not only by
changing the composition of TF binding sites but also by gains
and losses of entire CRMs around a gene locus (Wittkopp and
Kalay 2012). Several methods for CRM detection have taken
the evolution of TF binding sites into account, by implement-
ing evolutionary models of CRM turnover, such as cisEvolver
(Pollard et al. 2006) and EMMA (He et al. 2009). Although
these methods have been useful to identify CRMs in a refer-
ence species, to our knowledge, quantitative changes in CRM
scores have not been used to identify divergent CRMs and
consequent evolution of gene regulatory networks.

In this study, we investigate turnover of the entire CRM—
the CRM score is used as quantitative trait—while allowing
turnover of TF binding sites within a CRM. To model quan-
titative CRM changes we investigate the Ornstein–Uhlenbeck
(OU) model, an extension of the Brownian motion (BM)

model (Felsenstein 1988). Although the BM assumes that
quantitative changes are caused by random drift, the OU
model assumes that changes are the result of a shift toward
a new optimum state (Bedford and Hartl 2009). This method
was first used by Hansen (1997) to analyze the evolution of
quantitative phenotypic traits, and recently has been applied
to the evolution of gene expression (Brawand et al. 2011;
Rohlfs et al. 2014). The OU model can be extended by defin-
ing different selective regimes (also called the Hansen model),
whereby each regime states a priori which lineage is expected
to have changes in the quantitative trait (Hansen 1997; Butler
and King 2004; Hansen et al. 2008). After testing this model on
CRM scores, we also ask whether this framework can be ap-
plied to identify divergent motifs/CRMs underlying set of
coevolving genomic regions, analogously to (conserved)
motif discovery on coexpressed genes or coregulated regions
such as ChIP-Seq peaks. The joint analysis of the genome
sequence, the chromatin landscape, and the emerging gene
expression across species in a particular cell type and time
point may provide means to further disentangle the evolution
of functional enhancers and gene regulatory networks
(Shibata and Crawford 2009; Connelly et al. 2014). We show
that modeling CRM divergence can be an important compo-
nent of such integrative comparative genomics studies.

Results

Applying OU Models to CRM Scores

Our first aim was to develop a CRM prediction method to
identify significantly divergent CRMs across a phylogeny of 12
sequenced Drosophila species. For a given input position
weight matrix (PWM), we score a given genomic region in
the reference species D. melanogaster, and all its orthologous
regions in the 11 other genomes, with a Hidden Markov
Model (HMM; see Materials and Methods). The HMM
score represents a homotypic cluster of binding sites (al-
though single PWM matches are also considered), and this
score is used as quantitative trait (fig. 1A). Its distribution
across the phylogenetic tree is then statistically assessed for
whether it shows conservation, random drift, or selection in a
particular lineage. To this end we use an extension of the OU
model (Hansen 1997; Butler and King 2004; Hansen et al.
2008), considering 11 selective regimes (fig. 1B and C). The
most simple regime is random drift, as modeled by BM
(Felsenstein 1988). The second regime represents one global
CRM score optimum across the phylogeny, or stabilizing se-
lection, whereas the remaining regimes represent different
branch-specific shifts in CRM score optima.

We first illustrate our approach on a previously known
divergent enhancer, namely a CRM that controls Dscam ex-
pression and that is bound by Atonal (Aerts et al. 2010). The
homologous enhancer in D. virilis has lost the Atonal binding
site, and consequently its reporter activity (Aerts et al. 2010)
(supplementary fig. S1, Supplementary Material online). To
assess whether this enhancer adheres to a particular selective
regime we performed the likelihood ratio (LR) test between
each lineage-specific model (M1!10) against a model that
represents one global optimum (M0), and compared with
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BM. The Dscam enhancer is predicted to diverge significantly,
with a D. virilis specific loss, based on the LR between D. virilis
specific loss (M10) and conservation (M0) (LR = 28.99;
P = 7.25� 10�8).

We also calculated the (weighted) Akaike Information
Criterion (wAIC) for this example (Burnham and Anderson
2004; Schraiber et al. 2013). The AIC provides a correction on
the LR when comparing models with a different number of
parameters (e.g., BM is the simplest); and furthermore allows
comparing models that are not nested. The Dscam enhancer
has a higher wAIC score for M10 (0.99) versus M0

(3.73� 10�6), and versus BM (4.31� 10�5). Hence, the
wAIC also suggests a D. virilis specific loss of the Ato binding
sites at the Dscam enhancer (the model with the lowest AIC is
chosen).

Finally, we tested the significance of this finding by a para-
metric bootstrapping approach (Boettiger et al. 2012) (see
Materials and Methods), which confirmed that this region
fits better to the D. virilis specific model compared with the
model with one global optimum, and compared with BM
(supplementary fig. S1, Supplementary Material online).
Therefore, we conclude that the OU model can accurately
detect, and quantify, this branch-specific loss of TF binding at
a given CRM.

Genome-Wide Prediction of Divergent CRMs Using
AIC

Next, we applied the OU model to 136K candidate regulatory
regions covering the entire noncoding genome of D. melano-
gaster (Herrmann et al. 2012), for 6,272 position weight ma-
trices (fig. 1D). Using the wAIC we compared each model
(M1!10) versus conservation (M0). This way, we were able
to define for each PWM, for each of the nine lineage-specific
models, sets of candidate divergent regions as those with a
higher wAIC compared with M0. Note that because these are
pairwise comparisons, similar results can be obtained using
the LR test, but the wAIC is more robust since a branch-
specific shift model contains more parameters than the
single-optimum model M0. In addition, the wAIC allows com-
paring multiple models at once, including BM (see
Discussion). When we examined the resulting sets of AIC-
based divergent CRMs, we observed that the size of each
set is partly dependent on the information content of the
PWM (fig. 2), corroborating earlier findings (Lusk and Eisen
2010). Thus, longer and less degenerate PWMs (i.e., with high
information content) show lower turnover and less lineage-
specific divergent regions independently of the evolutionary
model. For example, the CTCF motif results in the lowest
number (only 5) of divergent CRMs. Interestingly, we found

A
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B

FIG. 1. Application of the OU model at the CRM score level. (A) Calculation of CRM scores for a given PWM is performed with an HMM that
aggregates over all possible matches to the PWM. A genomic region in Drosophila melanogaster is shown, alongside all the orthologous regions in the
other 11 species (obtained from whole-genome alignments by liftOver). (B) The evolutionary scenarios considered are BM; M0: one global optimum
across species; and nine models presenting a branch-specific optimum. M1: melanogaster subgroup optimum; M2: melanogaster group optimum; M3:
D. mojavensis, D. virilis, and D. grimshawi shared optimum; M4: D. mojavensis and D. virilis shared optimum; M5: obscura group optimum; M6: D.
willistoni, D. mojavensis, D. virilis, and D. grimshawi shared optimum; M7: D. sechellia specific optimum; M8: D. melanogaster specific optimum; M9: D.
pseudoobscura specific optimum; M10: D. virilis specific optimum. (C) The OU model formula assess the evolution of the quantitative trait X (here the
CRM score) across phylogenetic time; dX(t) =� [�� X(t)]dt +� dB(t), where the term alpha (�) represents the action of selection; � the optimum trait
value, dB(t) is the ensemble of independent normally distributed random variables, and � measures the intensity of the random fluctuations in the
evolutionary process. (D) Application of the OU model across the entire Drosophila regulatory genome (136K regions, Herrmann et al. 2012) for all
selective regimes and for a collection of 6,272 PWMs.
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no overall genome-wide bias toward either gains or losses of
homotypic CRMs (fig. 2). Nevertheless, several individual TFs
show a strong difference in the number of gained versus lost
enhancers (fig. 2). In conclusion, CRM divergence scoring can
be used to predict evolutionary gains and losses for thousands
of position weight matrices.

The scratch Gene Harbors Conserved and Divergent
Glass Target Enhancers

To investigate whether predicted divergent CRMs are also
functionally divergent, we focused on the targets of one par-
ticular TF, namely Glass, a master regulator of photoreceptor
differentiation (Moses et al. 1989; Ellis et al. 1993). Particularly,
we identified all divergent Glass CRMs for seven previously
validated target genes of Glass (scratch [scrt], chp, retn, dpr10,
CG6329, Lim3, and dmrt99B) (Naval-S�anchez et al. 2013). Out
of the 138 regions (all regions in the 5 kb upstream and in-
trons), 11 enhancers (9%) corresponding to five target genes
(three to scrt, three for Lim3, three for retn, one for dpr10, and
one for CG6329) presented a significant binding gain (CRM
score in one species� 6) in a lineage-specific manner. Note
that this finding suggests that some Glass target genes con-
tain apart from conserved enhancers also lineage-specific
“shadow” enhancers (fig. 3A). For example, one scrt enhancer

presents a higher CRM score (6.9) in D. virilis compared with
the other species (2.62 on average) (fig. 3A and B). This dif-
ference can be explained by a D. virilis specific evolutionary
change as suggested by the LR (LR = 8.23; P = 0.0041) and by a
higher wAIC in the D. virilis specific model (M10, 0.89) com-
pared with the conservation model (M0, 0.11). We also tested
the significance of this finding by a parametric bootstrapping
approach (Boettiger et al. 2012) (see Materials and Methods),
showing that this region fits better to the D. virilis specific
model compared with the model with one global optimum
(fig. 3C). Also when compared with other models such as BM
or an alternative branch-specific model M6 (gain in Dwil/
Dmoj/Dvir/Dgrim), M10 was found to fit best (supplementary
fig. S2, Supplementary Material online).

Next, we tested this predicted de novo enhancer using an
in vivo enhancer reporter. Particularly, we created transgenic
D. melanogaster flies carrying the D. virilis sequence and flies
carrying the D. melanogaster sequence. We found that the D.
virilis enhancer having a high Glass CRM score is active in
photoreceptors whereas the D. melanogaster sequence has no
activity in the eye imaginal disc (fig. 3D–G). Therefore, we
present for the first time that the application of the OU
model at the CRM level can lead to the de novo discovery
of an enhancer.

FIG. 2. CRM turnover gains and losses per PWM in the melanogaster subgroup. X axis: Number of regions with a significant lower CRM score in the
melanogaster group species for a collection of 6,272 PWMs. Y axis: Number of regions with a significant higher CRM score in the melanogaster group
species for a collection of 6,272 PWMs. All divergent regions have a lower AIC for M2 versus M0. Several example PWMs are highlighted, including TFs
involved in early embryogenesis (e.g., Hunchback, Bicoid, Twist), in eye development (e.g., Eyeless, Glass, Atonal), and several general factors (e.g., Trl,
Dref, CTCF). Among the motifs with the lowest divergence are CTCF, p53, and Dref. Among the motifs with the highest number of CRM losses is Trl.
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Motif Discovery Approach Based on Divergence:
Application to Cross-Species ChIP-Seq and STARR-Seq
Data

Next, we asked whether our database with divergent regions for
thousands of motifs could be used as a “divergent motif dis-
covery” approach. The goal of such an approach would be to
predict for which PWM the CRM divergence correlates with an
observed functional divergence. This functional divergence
could be, for example, a change in ChIP-Seq peaks, or a

change in enhancer-reporter activity. To address this question
we assessed the overlap between the input set of functional
regulatory regions and each set of predicted divergent regula-
tory regions—gains and losses—for a particular PWM, using a
hypergeometric test. This way we identify for a particular set of
lineage-specific functional regions the most enriched lineage-
specific gains or losses of a particular PWM and TF (fig. 4A).

To test this procedure, we first applied it to a public
ChIP-Seq data set for Twist across six species, namely,

FIG. 3. Application of OU predicts a de novo scrt enhancer in Drosophila virilis. (A) Predicted CRMs for the Glass PWM are color-coded: The darker the
color the higher the CRM score. The highlighted region is predicted to be divergent, with a CRM gain in D. virilis. (B) Representation of the Drosophila
phylogenetic tree. Orthologous Drosophila regions for regulatory region D, with a very high CRM score in D. virilis (6.92). The Glass motifs (red
rectangles) in the detected highest scoring homotypic Glass CRM (open boxes) are shown. On the right, the CRM score. (C) Distribution of the LR
statistic comparing M0 (conservation) versus M10 (D. virilis specific change), derived by parametric bootstrapping. (D–G) In vivo enhancer-reporter
results for the D. melanogaster region and the D. virilis region, both tested in transgenic D. melanogaster. Antibody staining for GLASS (red), ELAV (blue),
and GFP (green).
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D. melanogaster, D. simulans, D. erecta, D. yakuba, D. anannas-
sae, and D. pseudoobscura (He, Bardet, et al. 2011). As in the
original article, we selected regions with a Twist ChIP binding
signal based on fold-change (greater than 2-fold) in line-
ages for which we have modeled a selective regime, such as
the D. melanogaster subgroup, the D. melanogaster group,
and the obscura group. Next, we tested the significance of
the overlap between the Twist regions bound in a branch-
specific manner and the regulatory regions considered under
a branch-specific selective regime for any of the 6,272 PWMs
(fig. 4A and B). We observe that regions with a gain of
Twist binding in the melanogaster group (D. melanogaster,

D. yakuba, and D. ananassae [2,270 regions]), the first pre-
dicted motif to have a selective shift in the CRM optimum is
an E-box, representing the Twist motif (fig. 4B and C). Thus, a
better lineage-specific CRM score of a Twist-associated PWM
is related to regions with a quantitatively greater binding by
ChIP-Seq. Interestingly, together with Twist-related PWMs
other motifs appear that also represent a branch-specific
shift in CRM scores for the species of interest. One such ex-
ample is the Dorsal PWM (pos = 49, nb_reg = 206, P-
adj = 4.65� 10�9), a Twist cofactor (Zeitlinger et al. 2007),
suggesting that Dorsal binding site turnover is correlated
with turnover of Twist binding.

A

B

C

FIG. 4. Application of divergent motif discovery to publicly available cross-species data sets. (A) Overview of the procedure. A set of divergent regions
(left), obtained by cross-species ChIP-Seq, STARR-Seq, or FAIRE-Seq, is compared against all sets of predicted divergent regions (right) using a
hypergeometric test. (B) Example analysis for divergent Twist ChIP-Seq peaks (He et al. 2011) (losses in Drosophila pseudoobscura; or gains in the
melanogaster group), for which the most significant overlap was found for the Twist CRM gains in the melanogaster group. (C) All results for six data
sets, including ChIP-Seq binding in the embryo for Twist (He et al. 2011), BCD, GT, HB, and KR (Paris et al. 2013) and functional enhancers specific for D.
pseudoobscura detected by STARR-Seq in S2 cells (Arnold et al. 2014). Green motifs indicate the expected motifs to be found on the diagonal (all correct
except Giant). Red border marks all the Zelda CRMs gains and losses, only found for the embryonic ChIP peaks.
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We also analyzed divergent binding peaks for Kr, Gt, Hb
and Bcd across five Drosophila species, namely, D. mela-
nogaster, D. yakuba, D. erecta, D. pseudoobscura, and D.
virilis (Paris et al. 2013). For each of the 6,272 PWMs, we
performed a hypergeometric test between species-speci-
fic ChIP-Seq peaks and the sets of regions predicted to
follow the melanogaster group selective regime (fig. 4A).
At the exception of Giant, for which its PWM shows no
relation to lineage-specific binding, for all other TFs, the
regions presenting higher binding have the corresponding
TF motif with the most significant turnover (fig. 4C). As
control we found that in most cases no unrelated TF was
recovered, for example, Twist CRM changes do not affect
the lineage-specific binding of the factors Bcd, Gt, Hb, and
Kr. However, it is possible that the appearance of high-
scoring Kruppel CRMs in a lineage-specific manner could
influence a better binding of Giant and Hunchback in
those lineages (fig. 4C). Finally, it is worth mentioning
that for the lineage-specific binding of Bcd, Hb, Gt, and
Kr we find many regions presenting a strong enrichment
of the PWM of Zelda (Vfl) in the corresponding lineages
(fig. 4C). The relation of Zelda binding, a zygotic chroma-
tin modifier, affecting the binding of Bcd, Hb, Gt, and Kr
has been previously reported (Bradley et al. 2010; Paris
et al. 2013). Therefore, gain or loss of Zelda binding sites
may agree with gain or loss of binding of these segmen-
tation factors.

In a third case study, we analyzed species-specific en-
hancers detected by STARR-Seq in S2 cells (Arnold et al.
2014). This study identified lineage-specific enhancers, parti-
cularly 525 D. melanogaster, 515 D. yakuba, 632 D. ananassae,
1,332 D. pseudoobscura, 1,214 D. willistoni, 434 melanogaster
subgroup, and 255 melanogaster group. In all these sets of
divergent enhancers, we almost always find the Serpent (Srp)
motif (GATAAG) in the correct species or branch of interest
(fig. 4C). Srp expression has been shown to be relevant for S2
cell morphology and growth, and therefore the Srp cistrome
is expected to be active in S2 cells (R€amet et al. 2002). For
example, in the melanogaster group (235 regions) the GATA
PWM was found as the most significantly lost motif in M3 (D.
mojavensis, D. virilis, and D. grimshawi) (P-adj = 6.73� 10�5)
or for the D. pseudoobscura STARR-Seq specific regions, the
GATA PWM is found in the D. pseudoobscura specific lineage
(P-adj = 1.41� 10�6) (fig. 4C). Altogether, these validation re-
sults indicate that the use of the OU model applied to a
library of PWMs and across the entire genome can help to
detect selective forces acting at the cis-regulatory level leading
to alterations in enhancer functionality across lineages. These
results also show that the correct TF can be identified, for
which the binding sites show turnover in relation to enhancer
function.

Species-Specific Chromatin Changes in the Drosophila
Eye Are Associated with Trithorax-Like and
Grainyhead Binding Site Turnover

Next, we applied this framework to identify cis-regulatory
variation underlying Drosophila eye development. To quantify

enhancer activity genome-wide across different species, we
made use of open chromatin profiling by FAIRE-Seq (Gaulton
et al. 2010). We applied FAIRE-Seq to the eye-antennal imag-
inal disc of third instar wandering larvae of three species,
namely D. melanogaster, D. pseudoobscura, and D. virilis, span-
ning 45 My of evolutionary divergence. Overall, we found that
the open chromatin landscape is highly conserved between
species, with 81.9% and 82.6% of the top 1,000 D. melanoga-
ster peaks being recalled in the top 10,000 of D. pseudoobscura
and D. virilis, respectively (the expected overlap conservation
based on two different D. melanogaster strains is 98.7%; dif-
ferences between strains might be due to technical errors or
polymorphisms). As an example of this conservation,
figure 5A shows the locus of the sine oculis gene, a key TF
involved in retinal determination. Quantitatively, the peak
heights correlate between the species, and are, as expected,
more divergent with higher divergence time (R2 = 0.452 with
D. pseudoobscura, and R2 = 0.368 with D. virilis, whereas
R2 = 0.817 between two D. melanogaster strains) (fig. 5B and
C). The increasing chromatin activity divergence with phylo-
genetic distance may indicate that regulatory changes accu-
mulate with species divergence time. Next, we categorized all
the comparable peaks (i.e., D. melanogaster sequences that
have orthologous sequences in the other species, and vice
versa) into a group that is conserved across the phylogeny,
and several groups with species-specific gains or species-spe-
cific losses (see Materials and Methods). We also confirmed
that the observed differences with both strains of D. melano-
gaster can also be recapitulated by comparing with a third,
previously published, FAIRE-Seq data set for D. melanogaster
obtained in the same tissue (McKay and Lieb 2013) (fig. 5D
and E).

Having identified sets of conserved versus species-specific
open chromatin peaks, we first examined sequence con-
straint (PhastCons scores) in each group. We observed that
open chromatin gains present lower sequence constraints
compared with all detected peaks (Wilcox rank P = 0.028),
whereas sequence conservation is only marginally different
in the case of peak losses (Wilcox rank P = 0.056). Next, we
analyzed the different groups of enhancers for divergent CRM
scores, searching for TFs that may present CRM turnover in
accordance with open chromatin changes. For that, we made
use of the evolutionary framework presented in figure 1B.
Most of the analyses identified enrichment of the motifs of
two major TFs, namely Trithorax-like (Trl) and Grainyhead
(Grh) (fig. 6A). Both these motifs appear with higher numbers
and/or affinity in the species where the open chromatin peaks
are higher (fig. 6A). For example, in the set of 115 peaks
specifically gained in D. melanogaster, 42 regions present a
greater Grh CRM score in the melanogaster group compared
with the rest of Drosophila species (fig. 6A). The same is true
for D. pseudoobscura and D. virilis gains which present a
majority of regions with a significantly higher Grh CRM
score in the obscura group and in the branch (D. virilis, D.
mojavensis) or D. virilis only, respectively. Increased Trl bind-
ing scores on the other hand are overrepresented in D. pseu-
doobscura and D. virilis specific open chromatin peaks; and
Trl CRM losses are enriched in D. melanogaster open
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chromatin losses (fig. 6A). These data indicate that gains in
open-chromatin in a species-specific manner are associated
with the de novo appearance of motifs for the chromatin
regulators Trl and Grh in that species (fig. 5A). An example

of such a case is the gene how, which shows a higher peak in
D. pseudoobscura along with a higher Trl CRM score in that
peak, only in the obscura species (CRM score is 24.3), whereas
D. melanogaster and D. virilis present a much lower CRM

A

B

D

E

C

FIG. 5. FAIRE-Seq open chromatin profiling in the eye disc of three Drosophila species. (A) Example gene (sine oculis) showing conserved FAIRE-Seq
peaks. (B) Heatmap of spearman correlations of FAIRE-Seq signal across the Drosophila species D. melanogaster CantonS, D. melanogaster FRT82, D.
pseudoobscura, and D. virilis. (C) Pairwise comparison of FAIRE-Seq signal between species, showing more divergence with more evolutionary time.
Shown are the values for 19,424 peaks, filtered 1 RPKM in three species, length 4 150 bp. (D) Comparison of D. melanogaster gains and losses to an
independent D. melanogaster on eye-antennal disc FAIRE-Seq sample (McKay and Lieb 2013). (E) Example of a D. melanogaster specific gain of an open
chromatin peak in the pdm3 gene.
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score (1.85 and 3.38, respectively) (fig. 6B). Another example is
the gene fred, for which an intronic region is accessible in D.
melanogaster with a Grh binding score of 4.7, but shows re-
duced accessibility in D. pseudoobscura and D. virilis alongside
a lower CRM score of 1.63 and 1.9, respectively. The hyper-
geometric analysis also identified other motifs besides those
of the chromatin modifiers Grh and Trl. For example, for D.
melanogaster gains a changing homeobox motif TAATTA was
found, which could be potentially bound by Lady bird late or
Lim3. Both these TFs are involved in the regulation of neuro-
genesis and could be therefore related to eye development.

On the other hand, D. virilis peaks were enriched for corre-
sponding CRM score changes for the motif of ventral veins
lacking, a TF involved in axon guidance. In conclusion, evolu-
tionary changes in open chromatin during eye development
identify cis-regulatory sequence changes for broad chromatin
regulators Trl and Grh.

Validation of Grh Binding in D. melanogaster Specific
Accessible Regulatory Regions

Grh was recently identified as a factor with strong overlap
with open chromatin, suggesting a role as chromatin modifier

A

B C

FIG. 6. Lineage-specific Trl and Grh motifs are associated with lineage-specific open chromatin regions. (A) The rows represent FAIRE-Seq peak gains for
each species. The first column shows the first and most significant PWM, for which CRM score changes overlap with open chromatin changes. The
second column reports the position and P value of the Trl motif, and the third column the Grh motif. Trl and Grh CRM gains and losses correlate
significantly with open chromatin changes. (B) Example of a Dpse-specific FAIRE-Seq peak, predicted to be gained because of a gain of a Trl CRM
(increased CRM score from 1.85 to 24.3). (C) Example of a gene, fred, with a gain of a FAIRE-Seq peak in Drosophila melanogaster, predicted to be caused
by a gain in Grh-binding sites. This position also contains a Grh ChIP-Seq peak (Potier et al. 2014).
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(Potier et al. 2014). To examine whether predicted melano-
gaster specific Grh binding in D. melanogaster specific open-
chromatin regions is functional, we used a Grh ChIP-Seq data
set obtained in the same tissue (Potier et al. 2014). We as-
sessed whether there is a significant overlap between D. mel-
anogaster Grh ChIP-Seq regions (12928) and D. melanogaster
specific open-chromatin (FAIRE-Seq) with predicted melano-
gaster Grh binding (OU model) (42 regions). This resulted in a
significant overlap of 24 regions (P = 1.743� 10�14). For ex-
ample, the predicted CRM gain in the fred intron described
above overlaps with a Grh ChIP peak (fig. 6C). As negative
controls we performed the same test in D. pseudoobscura and
D. virilis species-specific gains with predicted species-specific
Grh gains. However, in both cases the overlap resulted in no
significant overlap (P< 0.01). Thus, we conclude that pre-
dicted melanogaster specific Grh CRM gains within D. mela-
nogaster specific open-chromatin are functionally relevant in
D. melanogaster eye development.

Discussion
Cis-regulatory changes are considered major drivers of line-
age-specific characteristics. However, there is no straightfor-
ward method to identify cis-regulatory sequence changes
underlying variation of gene regulation. We propose the use
of OU models to infer selection at the cis-regulatory level
underlying lineage-specific TF binding, chromatin activity,
or gene expression. The use of OU processes to compare
evolutionary models such as random drift, stabilizing selection
or lineage-specific selection for quantitative morphological
traits was first applied to the evolution of morphological
traits (Hansen 1997; Butler and King 2004; Hansen et al.
2008). Later, these same models were applied to study the
evolution of gene expression. These studies showed that sta-
bilizing selection overall explains the observed variation in
gene expression for the vast majority of genes involved in a
biological process, much better than random drift can explain
this variation (Bedford and Hartl 2009). Brawand et al. (2011)
also employed OU models in a comparative analysis to assess
the evolution of gene expression across six organs and ten
mammals and found that gene expression dynamics varies
among organs, lineages, and chromosomes. In our study, we
extend the use of OU models to study the evolution of reg-
ulatory regions (e.g., promoters, enhancers), for which we
consider homotypic CRM scores as the quantitative measure.
These scores represent the total binding energy for a TF on a
CRM, calculated by the factors PWM using an HMM (Frith
et al. 2003). The HMM allows incorporating strong and weak
binding sites, and accounts for the local clustering of binding
sites within a confined genomic region. Therefore, our ap-
proach goes beyond the detection of individual TF binding
site turnover. The variation of this CRM score is used by the
OU model to estimate whether the CRM evolves under sta-
bilizing selection with a single optimum across species or
adaptive evolution with a distinct optimum in a particular
branch of the phylogenetic tree.

We propose two strategies to implement the OU-based
evolutionary framework at the CRM level. First, when there is
prior knowledge of the motif or TF of interest, we use the OU

model to identify divergent regions in the genome, or to
assess the evolutionary mode of a particular set of sequences.
We applied this principle to Atonal, and found a D. virilis
specific loss of a Dscam enhancer; and to Glass, for which
we found a de novo scrt enhancer in D. virilis. This shows that
the application of the OU model at the CRM level can lead to
the discovery of lineage-specific de novo enhancers, and as
such it could also be applied to identify nomadic enhancers
(Kalay and Wittkopp 2010). Second, when there is no prior
knowledge of involved TFs, or of potential lineage-specific
TFs, we use the OU model to identify candidate TFs by testing
the CRM divergence rates for a large compendium of motifs.
This technique can be considered a “divergent motif discov-
ery” approach, in contrast to other existing “conserved motif
discovery” approaches (Roider et al. 2007, 2009; Warner et al.
2008; Aerts et al. 2010; Gotea et al. 2010; Herrmann et al. 2012;
Kwon et al. 2012; Janky et al. 2014). We have validated this
strategy with publicly available data on Drosophila lineage-
specific ChIP binding for several TFs, namely Twist (He,
Bardet, et al. 2011), Bcd, Gt, Hb and Kr (Paris et al. 2013),
and for functional enhancers identified by STARR-Seq
(Arnold et al. 2014). In most cases, the correct TF can be
identified, and shows overrepresented lineage-specific
changes of its CRM score, in the set of divergently bound
regions. In addition, often we detected the influence of line-
age-specific binding of cofactors that can affect the binding of
the TF of interest. For example, we found that Zelda binding
can be lineage-specific and may underlie variation in binding
of Bcd, Gt, Hb, and Kr. This finding is in agreement with
previous studies (Bradley et al. 2010; Paris et al. 2013). It is
also worth mentioning that for some factors, such as Twist,
species-specific ChIP’d regions can present slightly different
associated PWMs for the TF under study, thus suggesting that
changes in the TF domain can affect evolution (Cheatle
Jarvela et al. 2014).

In our genome-wide enrichment analyses, we considered
sets of lineage-specific regions that are selected based on a
higher wAIC score for the corresponding lineage-specific
model versus a model that represents one global optimum.
We obtained similar results using a threshold on the LR P
value (unadjusted P value< 0.05) (data not shown). However,
the advantage of wAIC is that it corrects for the difference in
the number of parameters between models and it allows
comparing multiple models at once, including models that
are not nested. Thus, alternative model comparisons such as
(M1!10), M0, and BM, or all the evolutionary models pre-
sented in figure 1B can be performed. When such alternatives
are used to select divergent CRMs, we find that the diver-
gence predictions become more stringent, resulting in smaller
sets of predicted divergent CRMs under a particular evolu-
tionary regime. Therefore, even if the enrichment of previous
TFs is maintained, the overlap with sets of experimentally
identified regions showing evolutionary divergence is less sig-
nificant (supplementary figs. S3 and S4, Supplementary
Material online). Thus, although the specificity may increase
when comparing all models at once, we find that the enrich-
ment analyses are less performant (likely due to the drop in
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sensitivity), compared with using pairwise comparisons be-
tween lineage-specific shifts versus conservation.

Finally, identifiability issues and lack of statistical power to
discern between alternate models is an important concern in
evolutionary models (Boettiger et al. 2012; Ho and An�e 2014).
For example, when the simple BM is included in the compar-
ison, many regions are assigned to BM rather than to a
branch-specific shift model. However, further inspection by
parametric bootstrapping shows that often this is due to the
lack of power to assign some regions to particular models
(supplementary fig. S5, Supplementary Material online). A
related issue that others have reported concerns the use of
AIC or other extended statistics for model choice such as the
Bayesian Information Criterion, because they may favor
models with a higher number of parameters (Ho and An�e
2014). Here, we did not encounter obvious biases toward any
lineage-specific model (supplementary fig. S6, Supplementary
Material online).

We analyzed CRM divergence underlying species-specific
active chromatin activity across three Drosophila species and
asked whether there exist overrepresented lineage-specific
CRM changes leading to changes in open chromatin, or
whether alternatively, variation in open chromatin is rather
governed by “spurious” cis-regulatory changes without any
clear enrichment for a particular motif. These analyses indi-
cate that the de novo appearance of binding sites for chro-
matin-related factors such as Trl and Grh is correlated with
species-specific chromatin opening, suggesting that the ap-
pearance in a particular lineage of a chromatin remodeler
sequence such as Trl or Grh can influence the binding of
these factors in that particular lineage and facilitate the ac-
cessibility or appearance of a new regulatory region in a given
biological process. Interestingly, we do not observe any cor-
relation between lineage-specific TFBSs for eye-master regu-
lators such as Eyeless and Sine Oculis, with lineage-specific
active chromatin. This may indicate that the turnover rate of
the binding sites for the master regulators of eye development
is relatively low (fig. 2), and that the core of the eye develop-
mental gene regulatory network is conserved up to the cis-
regulatory sequence level. On the other hand, our chromatin
profiling data are obtained for the entire tissue, and do not
allow assessing evolutionary changes of CRMs that are active
in a small subset of cells.

Here we have focused our analyses on genomic regions,
but a similar approach could in principle also be applied to
sets of divergently expressed genes (Brawand et al. 2011),
which could be an interesting future avenue. Motif discovery
in gene sets is more difficult than in enhancer sets because of
its larger and noisier search-space (e.g., 5 kb upstream and
introns) relative to ChIP’d regions.

Altogether we present for the first time the use of OU
processes to model CRM evolution and score correlations
between changes in cis with observed divergent functional
regions across species derived from ChIP-Seq experiments,
open chromatin, histone modifications, enhancer-reporter
assays or gene expression. The use of this method can be
useful to answer questions about cis-regulatory evolution
such as how often an enhancer is created or which TFs

present higher turnover rates. In addition, even if changes
in trans are thought to be selected against, a change in the
expression optimum for a particular lineage can trigger
changes in expression to its direct and indirect targetome.
Although trans effects underlying divergent gene expression
can be predicted by the classical approaches of conserved
motif discovery, we here propose the complementary analysis
of identifying motifs with cis effects, thus leading to a better
understanding of the mechanisms underlying regulatory
evolution.

Materials and Methods

Fly Stocks

The following fly stocks were used in this study: D. melano-
gaster Canton-S and FRT82 for FAIRE-Seq analysis. For nonref-
erence species, namely, D. pseudoobscura and D. virilis we
used the sequenced strains, obtained from the San Diego
Stock Center (stock number 14011-0121.94 and 15010-
105.118, respectively). All flies were raised at 25 �C on stan-
dard fly food.

FAIRE-Seq Library Preparation

FAIRE-Seq was performed in accordance to Giresi et al. (2007)
with some modifications. In brief, eye-antennal imaginal discs
were dissected in PBT and cross-linked in 4% formaldehyde
for 10 min. Chromatin was isolated using a three-step lysis
protocol and the chromatin was subjected to a ten-cycle
sonication (30 s on/off) to obtain fragments of 200–500 bp.
Next, nucleosome depleted chromatin regions were extracted
with phenol/chloroform followed by ethanol precipitation
and RNAse A treatment. Finally, libraries were prepared ac-
cording to the TruSeq protocol with indexes, pooled, and
sequenced on Illumina HiSeq2000.

Sequence Reads Quality Check and Mapping

Reads containing residuals of adapters sequences were dis-
carded (FastX clipper version 0.013 with option -M15).
Quality control assessment on the reads was performed
using the software FastQC (version 0.9), mainly we checked
for reads quality score (PHRED quality 4 20) and primers
contaminations. Reads passing the filtering were mapped
against their respective genomes, namely D. melanogaster
FlyBase genome release 5, D. pseudoobscura release 2, and
the rest of nonreference species release 1. FAIRE-Seq reads
were mapped using Bowtie2 (Langmead and Salzberg 2012).

FAIRE-Seq Analysis across Species

Nonreference species alignments were converted to D. mela-
nogaster coordinates using the liftOver tool from UCSC (pa-
rameters minMatch = 0.1) (Fujita et al. 2010). For each
sample, peaks were called in D. melanogaster genome
coordinates with F-Seq (Boyle et al. 2008) parameters-
l = 200. F-Seq calculates the continuous read density
estimation and regulatory regions (peaks) as the locations
presenting greater than user defined standard deviation
over the mean local background. We gathered the
peaks called in each sample approximately 30,000 peaks for

2451

Lineage-specific CRMs . doi:10.1093/molbev/msv107 MBE

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv107/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv107/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv107/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv107/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv107/-/DC1


D. melanogaster strains, CS and FRT82, D. pseudoobscura, and
D. virilis. Regions with 0 counts in one species were excluded
in order to avoid differences in peak intensity caused by ar-
tifacts such as low mappability regions in a particular species.
As a measure of chromatin accessibility we calculated the
number of reads falling in a particular peak by HTseq
counts (strn = no). Peak intensity was normalized following
a within and between normalization procedure as with gene
expression.

To identify open chromatin changes in particular lineages,
we compared a model that assumes a single optimum ex-
pression level (OU model) for a given genomic region in all
branches of the phylogeny with a model in which the region
presents a novel optimum in a specific lineage (extension of
the OU model “Hansen model”). We utilized the R package
ouch (King and Butler 2009) to generate the following evo-
lutionary regimes scenarios: A global optimum among the
three species with open chromatin data, and each selective
regime where one species has a distinct evolutionary opti-
mum for chromatin accessibility. We correct by multiple test-
ing using Benjamini and Hochberg corrections for the
number of regions and number of models tested. To assess
which selective regime (model) was explaining individual
chromatin activity profiles the best, we used the LR between
selective regimes against one shared global optimum across
species regime. This resulted in a list of regions with significant
activity changes across species.

Sequence Divergence

The average PhastCons scores on the 12 flies, mosquito, hon-
eybee, and beetle multiz alignment were used as a measure of
conservation (Margulies et al. 2003) of a particular region.

The OU Model

BM represents a neutral model of evolution where differences
in traits are caused by drift. The equation representing BM is
dX(t) =� dB(t), where dB(t) is the ensemble of independent
normally distributed random variables and � measures the
intensity of the random fluctuations in the evolutionary pro-
cess. Alternatively, OU models build on the BM including a
deterministic part of the equation triggered by the action of
natural selection in a quantitative trait optimum across a
phylogeny. OU is defined by the following equation:
dX(t) =� [�� X(t)]dt +� dB(t). In here, the evolution of
the quantitative trait X across phylogenetic time is not only
dependent to random variances and their fluctuations.
The term � [�� X(t)] presents the terms alpha (�) consid-
ered as the action of selection on a trait and � the optimum
trait value. Thus, selection is influenced by the difference
between the optimum trait value and X(t). If there is no
selection �= 0, then we fall back to BM. The OU model re-
flects stabilizing selection. Alternatively, extensions of this
model by hypothesizing distinct optima in different phyloge-
netic branches allow formulating different evolutionary hy-
potheses and test which model explains best the distribution
of the data.

Evolutionary Motif Analysis

Drosophila melanogaster genome has been previously parti-
tioned into 136K nonoverlapping regulatory regions, based on
Phastcons score, class I insulator binding, and excluding exon
coding regions (Aerts et al. 2010; Herrmann et al. 2012).
Orthologous regions in the rest of 11 Drosophila species
were selected in accordance to liftOver (-minMatch = 0.1,
multiple). All regions were scored for the presence of homo-
typic motif clusters using the program Cluster-Buster (Frith
et al. 2003) for a collection of 6,272 PWMs. Cluster-Buster is a
probabilistic approach, based on HMMs, which provides the
loglikelihood that a region is a TFBS cluster compared with
background. For each PWM, we hypothesized ten different
selective regime scenarios in accordance to the Drosophila
phylogenetic tree. These are BM, M0: the existence of a
global optimum across 12 Drosophila species, and nine alter-
native models with different selective regimes along the
Drosophila tree, namely M1: melanogaster subgroup species;
M2: melanogaster group species; M3: D. mojavensis, D. virilis,
and D. grimshawi; M4: D. mojavensis and D. virilis; M5: obscura
group; M6: D. willistoni, D. mojavensis, D. virilis, and D. grim-
shawi; M7: D. sechellia; M8: D. melanogaster; M9: D. pseudoo-
buscura; M10: D. virilis. To model this selective scenario
framework, we made use of the R package ouch (King and
Butler 2009). To assess which selective regime explains the
best the evolution of a particular PWM in a particular regu-
latory region across species, we used the LR between a line-
age-specific selective regime M1!10 against M0 (one shared
global optimum across species), per model and region.LRs
between M0 and M1!10 follow approximate a X2 (df = 1)
from which a P value is derived. At the same time we com-
puted the standard AIC (Burnham and Anderson 2004;
Schraiber et al. 2013), which contrary to LR, corrects for the
number parameters that need to be estimated as well as
allowing multiple model comparisons and comparisons
across nonnested models. Based on AIC we calculated the
differences between models with the lowest AIC and the rest
(�i = AICi � min AIC) and normalized across models
wAICi = exp(�0.5*�i)/�

R
r=1 exp(�0.5*�i). That is the expo-

nential of AIC variation of that model (�i) divided by the sum
of the relative likelihoods for all candidate models, known as
Akaike weights. The use of wAIC is a straightforward method
for model selection and allows us to compare branch-specific
models (M1!10) versus M0 and BM as well as a global com-
parison of all the models depicted in figure 1B at once. This
way, we produced a list of Drosophila regulatory regions per
TF that are significantly better explained (greater Akaike
weight) by an alternative evolutionary model rather than a
conserved evolutionary optima, conservation or drift and or,
finally compared with the evolutionary scenario proposed in
figure 1B.

We tested four different databases with sets of divergent
regions: 1) Pairwise comparison of Mx against M0 using the LR;
2) pairwise comparison of Mx against M0 using the wAIC; 3)
comparison of BM, Mx, M0; and 4) comparison of all models.
We have mainly used the pairwise comparison using the
wAIC, but also provide the validation results for (3) and (4)
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in supplementary figures S3 and S4, Supplementary Material
online.

Importantly, this is not the only measure used to identify a
significant change, because we need in addition to have a
significant overlap test (hypergeometric) between 1) input
regions considered as functional in a lineage-specific
manner, and 2) regulatory regions considered under a partic-
ular lineage-specific model. The hypergeometric distribution
parameters used are the following:

Population size (N) = the number of regulatory regions based
on Herrmann et al. (2012) genome cut (136,353 regions).
Number of items in the sample (n) = number of regions consid-
ered as lineage-specific by experimental analysis such as ChIP,
STARR-Seq, or FAIRE-Seq. Number of items in the population
that are classified as successes (K) = number of regions in the
population that are classified as lineage-specific by an evolution-
ary model (M1!10). Number of items in the sample that are
classified as successes (k) = number of regions considered by
experimental analysis as functional lineage-specific and also con-
sidered as lineage-specific under a tested lineage-specific evolu-
tionary model (M1!10). Hypergeometric test P values are
corrected for multiple testing by Bonferroni correction.

Phylogenetic Monte Carlo

To assess the power of model selection for particular regions
and a specific TF, we have used a parametric bootstrapping
approach using the R package “Phylogenetic Monte Carlo”
(pmc) (Boettiger et al. 2012). In brief, model parameters are
derived from the user quantitative data across the phylogeny
for model a. Next, 1,000 data sets are simulated under that
model with its estimated parameters. For each set, the loglike-
lihood ratio �= 2(log La� log Lb) was calculated comparing
model a and b. Next, the original data are used to estimate
parameters under model b and 1,000 parametric bootstrap
sets are generated. We obtain a set of � for that model.
Plotting the distributions of � across both models we can
observe where in the distribution the original LR falls. Thus,
how likely is that the original data come from the derived
particular model (Boettiger et al. 2012). The amount of over-
lap between both distributions shows the power of model
choice; the greater the overlap the lower the power.

Lineage-Specific ChIP-Seq Data Sets

Data sets for lineage-specific ChIP-binding for Twist TF were
extracted from supplementary table S11, Supplementary
Material online (He, Bardet, et al. 2011). We considered as
Twist lineage-specific binding regions those presenting a ChIP
binding score greater than 2-fold compared with the rest of
species. The selected sets were D. melanogaster specific regions
(166), D. simulans (82), D. erecta (247), D. yakuba (160), D.
ananassae (760), and D. pseudoobscura (745). Finally, we also
considered melanogaster subgroup regions (D. melanogaster and
D. yakuba) and melanogaster group (D. melanogaster, D. yakuba,
and D. ananassae) as those presenting 2-fold-change enrichment
versus D. pseudoobuscura, 1,129 and 2,270 regions, respectively.

Species ChIP-Seq data from TFs BCD, GT, KR, and HB (Paris
et al. 2013) were downloaded from GEO GSE50773. We

selected regions for the melanogaster group species with a
fold-change greater than 1 for the ChIP normalized data pre-
sented in the accessible metatable.

Enhancer-Reporter Assays STARR-Seq Data Set

Lineage-specific enhancers were detected as in Arnold et al.
(2014). Processed data were kindly provided by the STARK lab.
We defined as lineage-specific enhancers as those with P� 0.001
and� 3-fold enrichment over input only in that particular lineage.

Scrt Enhancer-Reporter Assays

Enhancer region containing the predicted glass-binding
motif was polymerase chain reaction-amplified from geno-
mic DNA of D. melanogaster and of D. virilis and cloned into
the phiC31 and Gateway compatible reporter vector pH-
attB-Dest (Aerts et al. 2010), injected into VK37 (Venken
et al. 2006) by Genetivision, and crossed together to gener-
ate homozygous stocks.

Immunohistochemistry

Eye-antennal imaginal discs at the stage of third instar larva
were dissected and processed as described (Wang et al. 2002).
Antibodies used were anti-GFP (Invitrogen) and the antibody
against ELAV raised by G.M. Rubin was obtained from the
Developmental Studies Hybridoma Bank, developed under
the auspices of the NICHD, and maintained by The
University of Iowa, Department of Biology (Iowa City, IA).
Finally, we used phalloidin (Alexa Fluor 488).

Data Access

FAIRE-Seq data (three species) are available from GEO (acces-
sion number GSE59706). Tables for each motif and for all
Drosophila regions (see Materials and Methods) with AIC
and wAIC scores for all the 11 evolutionary models (fig. 1B)
can be accessed at our lab website (http://www.aertslab.org,
last accessed May 13, 2015) under the Resources section.

Supplementary Material
Supplementary figures S1–S6 and tables S1–S11 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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