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Abstract: Natural killer (NK) cells play a pivotal role in cancer immunotherapy due to their innate
ability to detect and kill tumorigenic cells. The decision to kill is determined by the expression of a
myriad of activating and inhibitory receptors on the NK cell surface. Cell-to-cell engagement results
in either self-tolerance or a cytotoxic response, governed by a fine balance between the signaling
cascades downstream of the activating and inhibitory receptors. To evade a cytotoxic immune
response, tumor cells can modulate the surface expression of receptor ligands and additionally, alter
the conditions in the tumor microenvironment (TME), tilting the scales toward a suppressed cytotoxic
NK response. To fully harness the killing power of NK cells for clinical benefit, we need to understand
what defines the threshold for activation and what is required to break tolerance. This review will
focus on the intracellular signaling pathways activated or suppressed in NK cells and the roles
signaling intermediates play during an NK cytotoxic response.

Keywords: natural killer cells; NK cells; immune surveillance; signaling; inhibitory receptors;
activating receptors

1. Introduction

Natural Killer (NK) cells are bone marrow–derived innate lymphocytes that are found in most
organs, with the largest population of NK cells residing in the blood [1]. NK cells are large granular
lymphocytes that were initially defined by their ability to kill tumor cells without prior sensitization [2,3].
The role of NK cells has since been expanded to include the elimination of virally infected cells and
secretion of cytokines that mediate crosstalk and regulation of other immune cells [4].

Following their discovery in the 1970s, immunologists have been fascinated by the ability of NK
cells to detect and kill tumorigenic or virally-infected cells, whilst tolerating healthy self-tissue [5–7].
However, it wasn’t until the early 1990s that scientists started to explore the mechanisms by which NK
cells distinguished “self” from “non-self,” an area of research instigated by Klas Kärre’s exposition
of the “missing self” theory [8]. Karre hypothesized that NK cells could recognize loss or reduction
in surface expression of major histocompatibility complex (MHC) class I proteins (human leukocyte
antigens (HLA) class I in humans), triggering recognition as non-self. This hypothesis was based on
earlier studies by Strokus et al. [9,10] that described protection of susceptible cells with experimentally
expressed MHC-I. The ‘missing-self’ theory was further validated by Karlhofer et al. [11], who showed
that the murine Lymphocyte Ag 49A (Ly49A) receptor recognized and discriminated between different
MHC-I molecules, with tumor cells from H2d and H2K backgrounds resistant to killing by Ly49A
expressing NK cells [11,12]. Soon after, Moretta et al. [13] discovered the first human inhibitory NK
receptor Killer cell immunoglobulin-like receptor 2DL1 (KIR2DL). Inhibitory receptors are now known
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to not only sense reduction in expression of MHC class I proteins, but also recognize non-MHC-I
molecules, such as glycans and collagen, which are crucial for NK cell discrimination of self [14]. Upon
engagement of cognate ligands, the various NK cell receptors send activating and inhibitory signals,
which collectively determine NK cell action.

NK cells kill infected and transformed cells via a variety of mechanisms, including the delivery of
lytic granules loaded with proteases and pore-forming proteins such as granzymes and perforin, release
of cytokines such as tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ), upregulation
of FASL and TNF-related apoptosis-inducing ligand (TRAIL) and by antibody-dependent cellular
cytotoxicity (ADCC) [15–19]. There are multiple steps between NK cell: target cell engagement and
cell killing, with receptor-ligand interactions thought to be the initiating step in the formation of an
immunological synapse (IS) (Figure 1A,B) [20,21]. This is followed by recruitment of filamentous actin
(F-actin) to the IS (Figure 1B) and polarization of the lytic granules and the microtubule-organizing
center (MTOC) toward the IS (Figure 1C). Then, the granules dock at the synapse and are ready for
the final step: granule-membrane fusion and release of the cytotoxic contents at the center of the IS
(Figure 1D) [22,23]. NK cell signaling and killing is considered to be localized to the IS [24], with each
NK cell thought to reach exhaustion after killing four to seven target cells [25].
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Figure 1. Immunological synapse (IS) of Natural Killer (NK) cell and target cell. (A) NK cells engage
other cells via integrins and adhesion molecules, which create the immunological synapse (IS)—the
subsequent process between engagement and killing or tolerance can be broken down into four steps.
(B) First, filamentous actin (F-actin) is recruited to the IS. Inside-out signaling reinforces IS interactions
and activating and inhibitory surface receptors cluster at the IS. (C) Second, NK lytic granules move
along microtubules by dynein-dynactin motor proteins toward the microtubule-organizing center
(MTOC). (D) Third, the polarized lytic granules and MTOC travel in an ATP-dependent manner
through the actin mesh via myosin IIA to dock at the IS, and finally, the lytic granules fuse with the
membrane and release the lytic contents into the target cells, a process also known as degranulation.
The NK cell then detaches and moves on to the next target.

NK cells represent approximately 10% of the circulating lymphocyte population and thus
predominantly control hematologic malignancies and tumor metastasis, rather than solid tumors [26].
This is reflected by only minor NK cell infiltration in nascent and fully developed tumor
microenvironments, such as in colorectal cancer “encapsulated” by tissue barriers [27,28]. Importantly,
the presence of circulating NK cells is inversely correlated with metastatic burden in patients suffering
from different carcinomas [29–31], gastrointestinal sarcoma (GIST) [32], melanoma [33], and breast
cancer [34] and suggests that enhancing NK infiltration into tumors and/or activity would have clinical
benefit. Early clinical trials for non-Hodgkin’s lymphoma and chronic lymphocytic leukemia (CLL)
have shown positive patient responses following adoptive transfer of allogeneic chimeric antigen
receptor (CAR)-NK cells, without significant toxicities [35]. This recent advance by Liu et al. [35]
underscores the clinical utility of NK cell–based therapies.
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The remainder of this review highlights the importance of individual NK receptors and our
current understanding of how they function. Understanding the interplay between NK cell, tumor,
and TME has the potential to not only lead to new cancer therapies, but inform which patients are
likely to respond to receptor-focused interventions.

2. Receptor Mediated Inhibition of NK Cells: Inhibitory Receptors

NK cell self-tolerance in humans and mice is mostly mediated by inhibitory receptors that
recognize either MHC-I complexes or non-MHC-I surface molecules [36]. In general, inhibitory
receptors belong to receptor families comprised of both activating and inhibitory members, and signal
through a cytoplasmic signaling tail containing an immunoreceptor tyrosine-based inhibitory motif
(ITIM) (Table 1, Figure 2) [37]. NK killing of target cells can be viewed as an internal decision-making
process using a “pros and cons” list; when activating signals outweigh inhibitory signals, the NK cell
becomes cytotoxic. Interestingly, NK cells lacking inhibitory receptors are unable to become cytotoxic,
thus acquiring functional maturation is also dependent on inhibitory signals. This requirement is
commonly referred to as NK cell “education” [38].

Table 1. Consensus sequence of signaling motifs.

Signaling Motifs Consensus Sequence

ITIM S/I/V/LxYxxI/V/L

ITT/ITT-Like YxNM/YvNy

ITSM TxYxxV/I

ITAM YxxI/Lx6-12YxxI/L
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Figure 2. NK cell surface receptors involved in tumor recognition. NK cells express a myriad of
inhibitory and activating receptors designed to recognize healthy or aberrant (non-healthy) cells.
(A) Inhibitory receptors dampen activating NK cell signals via cytoplasmic tyrosine motifs in their
cytoplasmic tails, regulating NK cell effector function. (B) In contrast, most activating receptors signal
through cytoplasmic adaptor proteins. Although many of the receptors are expressed by both mouse
and human NK cells (shared), some are exclusive.
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2.1. MHC-I Recognizing Receptors

MHC-I complexes can be divided into classical (MHC-Ia) and non-classical (MHC-Ib)
complexes [39]. The up-regulation of particular inhibitory receptors leads to NK cell education
by either classical MHC-Ia-dependent (licensing), non-classical MHC-Ib-dependent recognition, or
MHC-independent recognition [40].

Inhibitory MHC receptors are divided into the following three categories: the KIR and Leukocyte
Immunoglobulin-Like Receptor (LILR, LIR, ILT, CD85) family in humans; the Ly49 family, also
known as the Killer Cell Lectin-like Receptor subfamily A (klra) in mice; and lastly, the CD94/NKG2
receptor family, found in both mouse and human (Figure 2A). KIRs and Ly49s are so-called functional
homologues as they bind MHC-I molecules yet are different at the protein and genetic sequence
level [41,42]. Despite these differences, they both appear to have arisen from multiple duplication
events, making KIRs and Ly49s highly polymorphic.

Inhibitory (i)KIRs are composed of a long (L) intracellular ITIM-containing region, a
transmembrane domain, and an extracellular region with either two or three C2-type immunoglobulin
(Ig)-like domains (2/3 D) [43,44]. iKIR family members are named based on their domain architecture,
thus iKIRs can be either KIR2DL1-3,5 or KIR3DL1-5. Human NK cells express up to six iKIRs that are
able to differentiate between HLA allotypes, as well as recognize different moieties on HLA molecules
(Table 2). For example, KIR3DL2 recognizes HLA-A3 and -A11 allotypes, KIR3DL1 recognizes HLA-B
allotypes containing a Bw4 epitope, and KIR2DL1-3 recognizes HLA-C [45–47]. In combination, these
KIRs cover all HLA-isoforms.

The LILR family includes many inhibitory receptors, but only LILRB1 is expressed on NK cells
and is capable of recognizing both classical and non-classical HLA-I molecules [48,49]. LILRB1 has four
Ig-like domains in the extracellular domain and four cytoplasmic ITIMs [50,51]. Unlike other inhibitory
receptors, LILRB1 is mostly known as a receptor for viral infection and until recently, was thought to
have little or no effect in tumor immunity. However, given that different breast and colorectal patient
cancers upregulate the LILRB1 ligand HLA-G as a means of evading NK targeting and killing, LILRB1
is likely to be important in tumor immunity [52–55].

Table 2. NK cell inhibitory receptors and their ligands [56–58].

Human Receptor Classical MHC Ligands

KIR2DL1 HLA-C group 2 molecules (Asn77 and Lys80) [45]
KIR2DL2 HLA-B and HLA-C group 1 molecules (Ser77 and Asn80) [45]

KIR2DL3 HLA-C group 1 molecules (Ser77 and Asn80) [45] and some HLA-CGroup 2 and
HLA-B (weaker affinity than 2DL2) [46]

KIR2DL5(A+B) unknown

KIR3DL1 HLA-A and B with the Bw4 epitope, amino acid positions 77–83 [45]
KIR3DL2 Some HLA-A allotypes [45]
KIR3DL3 Unknown
LILRB1 HLA-C [48,49]

Human receptor Non-classical MHC ligands

CD94/NKG2A/B HLA-E [59,60]
LILRB1 HLA-E and HLA-G [61] and UL18 (MHC viral homologue) [62,63]

Human receptor Non-MHC-I ligands

SIGLEG-7/9 α2,3- and α2,6-linked sialylated proteins [64–66]
NKRP1A LLT1 (CLEC2D) [67,68]
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Table 2. Cont.

Mouse Classical MHC ligands

Ly49A H2-Dd [11,69–74], H2-Dk [74], H2-Ld, H2-Kb, H2-Kb and H2-Dp [69]
Ly49B Unknown
Ly49C H2-Kb [74,75], H2-Kd [74], H2-Kk, H2-Db, H2-Dd [76]
Ly49F H2-Dd [76]
Ly49G H2-Db [69]
Ly49I H2-Kb [75] and H2-Kd [74]

Human receptor Non-classical MHC ligands

Ly49A H2-M3 [77]
Ly49C H2-Q10 [78]

CD94/NKG2A/B Qa-1 [59,60]

Human receptor Non-MHC-I ligands

NKRP1B Clr-b (Clec2d) [79]
gp49B1 integrin αVβ3 [80]

Ly49E urokinase plasminogen activator (uPA) [81]

Shared receptors Non-MHC-I ligands

TIGIT poliovirus receptor (CD155, PVR) and nectin-2 (CD112, PVRL2) [82,83]
TACTILE poliovirus receptor (CD155, PVR) and nectin-2 (CD112, PVRL2) [82,83]

CEACAM1 CEACAM1 [84]
LAIR-1 Collagen [85]
KLRG1 E- and N-Cadherin [86,87]
TAMs Gas6 and Pros1 [88,89]

The Ly49 receptor family contains 23 different members that are mostly encoded by a highly
polymorphic Ly49 gene cluster located on chromosome 6 [90]. Although most members are expressed
on NK cells, not all are expressed in all mice strains. NOD and 129 mice express most Ly49 members
(15 and 13), with C57BL/6 (11) and BALB/c mice expressing relatively few members (8) [56,58,91].
Inhibitory Ly49 receptors (iLy49s) function as homodimers; each subunit is composed of a single
C-type lectin domain (CTLD), an extracellular stalk region, a transmembrane region and a C-terminal
cytoplasmic tail containing an ITIM. iLy49s bind both classical and non-classical MHC-I molecules
through a binding site created by homodimerization of the two single CTLDs [56–58]. Although
iLy49 binding requires MHC-I loaded with peptide, binding occurs in a peptide-independent manner,
except for Ly49C, which has been shown to confer protection by binding H2-Kb haplotype loaded with
specific peptides (from ovalbumin, vesicular stomatitis virus, and elongation factor, but not peptide
from Sendai virus) [57,92]. Of the iLy49s present on murine NK cells, only Ly49A and Ly49C bind
non-classical MHC-I ligands H2-M3 and H2-Q10, respectively [77,78,93].

The CD94:NKG2 receptor complex consists of a heterodimer between CD94 (also known as killer
cell lectin-like receptor subfamily D; KLRD1) and a member of the greater NKG2 family and contributes
to non-classical MHC-I-dependent education [59]. When the complex contains NKG2A or NKG2B (a
splice variant of NKG2A), the receptor complex is inhibitory; however, when CD94 is complexed with
other NKG2 family members it can generate an activating signal [94]. The inhibitory complex signals
through two ITIMs present in the cytoplasmic tail of NKG2A and B [95,96]. NKG2A and B are the only
two inhibitory NKG2 family members and recognize the same non-classical MHC-1b ligand: HLA-E in
humans or its homologue Qa-1 in mice [59,60]. NKG2A and B expressing NK cells degranulate better
and produce more IFNγ in the absence of HLA-E or Qa-1 [97,98] and are better killers compared to
NKG2A and B negative NK cells which are considered to be uneducated. Although the activating
receptor subunit NKG2C binds the same non-classical MHC-1b ligand as iNKG2A and B, the iNKG2A
and B receptors display considerably higher ligand affinity, explaining why the NKG2-HLA-E/Qa-1
interaction is mostly considered relevant for maintaining self-tolerance and not activation [99].
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2.2. Non-MHC-I Recognizing Receptors

NK cells also express various inhibitory receptors that recognize non-MHC molecules on healthy
cells. These include T cell immunoglobulin and ITIM domain (TIGIT); carcinoembryonic Ag cell
adhesion molecule 1 (CEACAM1); soluble leukocyte-associated Ig-like receptor-1 (LAIR-1); Killer
cell lectin-like receptor G1 (KLRG1) and NKR-P1(A/B); sialic acid-binding immunoglobulin-like
lectin (Siglec); and the Tyro3, Axl, and MerTK (TAM) receptors [100,101]. Like the KIRs, the TIGIT,
TACTILE (CD96), LAIR-1, and CEACAM1 receptors are members of the Ig-like superfamily and share
a similar domain architecture comprised of an extracellular region containing the Ig-like domains, a
transmembrane domain and a cytoplasmic signaling tail (Figure 2A).

TIGIT and TACTILE bind to the poliovirus receptor (CD155, PVR) and nectin-2 (CD112, PVRL2),
ligands which are normally expressed by antigen presenting cells and T cells [82,83]. However, CD155
and CD112 are also frequently expressed by tumorigenic cells, presumably as an immune escape
mechanism. NK cells try to counter this evasion tactic by expressing DNAX accessory molecule-1
(DNAM-1; also known as CD226), which competes with TIGIT and TACTILE for binding to CD155
and CD112 [102]. TIGIT has the highest affinity for the ligands, followed by TACTILE, with DNAM-1
having the lowest affinity, suggesting that NK expression of DNAM-1 may not be a particularly
effective counter-tactic [103,104]. The cytoplasmic signaling tails of human and murine TIGIT contain
an ITIM and ITT motif, whereas murine TACTILE has only an ITIM motif, and human TACTILE has
an additional YxxM activating motif (Table 3) [105]. TIGIT is the most well understood and blocking
TIGIT gives rise to a potent NK anti-tumor effect, which is attributed to both loss of NK inhibition
and enhanced activation. Recently, Zhang et al. [83] showed that TIGIT blockade appeared to reverse
NK cell exhaustion, as well as enhance NK mediated anti-tumor responses in an experimental colon
cancer model, both alone and in combination with anti-PD1 (programmed cell death protein 1) and
anti-PD-L1 (programmed death-ligand 1).

PD-1 and PD-L1 are well-known T cell checkpoints commonly targeted in cancer
immunotherapy [106]. PD-1 recognizes two ligands, PD-L1 (B7-H1) and PD-L2 (programmed
death-ligand 2), but only PD-L1 is constitutively expressed on hematopoietic and non-hematopoietic
cells, explaining why intervention has focused on the PD-1:PD-L1 interaction [107,108]. PD-1 and
PD-L1 contain a similar domain architecture encompassing an Ig-like extracellular binding domain, a
transmembrane region, and a cytoplasmic tail [109,110]. The cytoplasmic tail of PD-1 contains an ITIM
and ITSM motif, while the cytoplasmic tail of PD-L1 is short, lacks the motifs and does not have a
known function.

In recent years, multiple studies have investigated a role for these checkpoints in NK cells, with
no clear consensus reached in the field. Some studies suggest that PD-1 is expressed solely on activated
NK cells [111], while others have identified PD-1 expression as a marker for dysfunctional or exhausted
NK cells [112–114]. Most recently, Judge et al. [115] compared PD-1 expression on mouse, human-
and canine, T cells and NK cells under various conditions in vitro and investigated intratumoral NK
cells in sarcoma, colon cancer, and head and neck squamous carcinoma, concluding that PD-1 was not
significantly expressed on mouse or human NK cells. However, there may still be an argument for
combining anti-PD-1 therapy with other checkpoint blockers to rescue exhausted NK cells [114].

T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) and Lymphocyte-activation
gene 3 (LAG-3) are newly established T cell checkpoints and targets for cancer therapy, with studies
suggesting an emerging role for these proteins in NK cells [116]. TIM-3 recognizes galectin-9,
phospholipid phosphatidylserine (PtdSer), alarmin high mobility group box 1 (HMGB1) and
carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1) via its Ig-like extracellular
domain [117–120]. Although the intracellular tail of TIM-3 contains five tyrosines that are conserved
between humans and mice and are potential phosphorylation sites, they don’t conform to known
binding motifs [121]. TIM-3 is expressed by NK cells and is reported to not only inhibit NK cell
cytotoxicity [122], but also mediate IFNγ production [123]. So et al. were unable to reproduce these
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specific findings and argued that TIM-3 could be used as a marker for end-stage NK cell activation,
with TIM-3 blockade likely to affect NK cell activation [124].

LAG-3 binds to MHC-II on APCs via four Ig-like domains in the extracellular region and signals
via a “KIELE” motif present in the cytoplasmic tail [125–127]. Although NK cells express LAG-3, studies
exploring its biological relevance are still limited. LAG-3 deficiency in mice resulted in decreased NK
cell cytotoxicity [128], while anti-LAG-3 blocking antibodies had no impact on human NK cells [129],
suggesting a species-specific role. Regardless, LAG-3 in NK cells requires further investigation before
being considered as a candidate for immune checkpoint therapy.

LAIR1 binds to all collagens and is thought to aid in NK cell discrimination of damaged tissue,
where the collagen-rich extracellular matrix of cells has been reduced [130]. Tumor cells have been
observed to up-regulate localized collagen expression as a means of forming adhesive structures in the
TME. Coincidentally, this also hides tumor cells from LAIR-1-expressing immune cells such as NK
cells, with LAIR-1 inhibitory signals correlating with dampened in NK cytotoxicity [85].

Siglec-7 and 9 receptors recognize sialylated glycans [131,132], which are found on glycoproteins
and glycolipids on the outer membrane of mammalian cells and are believed to act as a signal of
self [133]. An abnormally high sialic acid coat (hypersialylation) is a hallmark of many tumors and may
facilitate evasion of Siglec-expressing NK cells [134,135]. Consistent with this, several in vitro studies
using blocking antibodies or chemical de-sialylation of proteins on the surface of tumor cells have
demonstrated enhanced NK-mediated anti-tumor responses [136–138]. Although a murine orthologue
for Siglec-9 exists (Siglec-E), it is not expressed on NK cells, so there is no role for Siglec 9 NK responses
in mice to date.

Table 3. Inhibitory NK cell receptors and their signaling motifs.

Human Form Signaling Motif 1 pY 2 Position Reference

KIR2DL1 Monomer 2× ITIM
VTYTQL Y302

[44]
IVYTEL Y332

KIR2DL2 Monomer 2× ITIM
VTYTQL Y302

[44]
IVYAEL Y332

KIR2DL3 Monomer 2× ITIM
VTYAQL Y303

[44]
IVYTEL Y333

KIR2DL5 Monomer 2× ITIM
VTYAQL Y298

[44]
TMYMEL Y228

KIR3DL1 Monomer 2× ITIM
VTYAQL Y398

[44]
ILYTEL Y428

KIR3DL2 Monomer 2× ITIM
VTYAQL Y398

[44]
SVYTEL Y428

KIR3DL3 Homodimer 1× ITIM VTYAQL Y381 [44,139]

LILRB1/ILT2 Monomer 4× ITIM

NLYAAV Y533

[50,51,140]
VTYAEV Y562

VTYAQL Y614

SIYATL Y644

SIGLEC-7/9 Monomer
1× ITIM IQYAPL/LQYASL Y437/Y433

[131,132]
1× ITIM NEYSEI/TEYSEI Y460/Y456

NKRP1A Homodimer 1× ITIM-like AIYAEL Y7 [141]
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Table 3. Cont.

Human Form Signaling Motif 1 pY 2 Position Reference

Mouse

Ly49A Homodimer 1× ITIM VTYSMV Y8 [93,142]

Ly49B Homodimer 1× ITIM VTYTTL Y8 [93,142]

Ly49C, E-I Homodimer 1× ITIM VTYSTL Y8 [93,142]

NKRP1B Homodimer ITIM LVYADL Y8 [141]

Shared

iNKG2A/B Heterodimer with
CD94

2× ITIM
(h) VIYSDL

Y8 [95,96]
(m) VTYAEL

1× ITIM (h) EITYAEL
Y40 [95,96]

1× ITIM-like (m) IIYSDF

TIGIT Monomer

1× ITT-like YFN
(h) Y225

[82,83]
(m) Y230

1× ITIM LSYRSL
(h) Y231

(m) Y236

TACTILE Monomer 1× ITIM IKYTCI
(h) Y566

[105](m) Y583

1× YxxM (h) YHEM (h) Y579

CEACAM1
Homomer
Homodimer
Oligomer

(h) 2× ITIM
VTYSTL Y459

[84,143,144]
IIYSEV Y486

(m) 1× ITIM VAYTVL Y454

(m) 1× ITSM TVYSEV Y481

LAIR-1 Monomer 2× ITIM

(h) VTYAQL Y251

[145]
(h) ITYAAV Y281

(m) VTYIQL Y228

(m) STYAAI Y257

KLGR1 Homodimer 1× ITIM
(h) VIYSML

Y7 [146,147]
(m) SIYSTL

Shared Form Signaling Motif 1 pY 2 Position Reference

Tyro Homodimer
Heterodimer 1× ITIM-like IYNYL (h) Y742

(m) Y744 [148]

Axl Homodimer
Heterodimer

1× ITIM LLYSRL (h) Y634
(m) Y628 [148]

1× ITIM-like IYDYL (h) Y759/761
(m) Y753/755

Mer Homodimer
Heterodimer

1× ITIM LLYSRL (h) Y685
(m) Y680 [148]

1× ITIM-like MYDYL (h) Y810/Y812
(m) Y805/807

1 m = mouse, h = human; 2 Phosphorylated tyrosine (pY).

The CEACAM family is composed of over 10 members that have multiple roles in differentiation,
proliferation and signaling. CEACAM1 is the only family member expressed on NK cells and has
approximately 12 isoforms with varying extracellular and intracellular domains. The CEACAM1-L
isoform predominates and contains three to four extracellular Ig-like domains and two cytoplasmic
ITIMs in humans, or one ITIM and one ITSM in rodents [143]. NK CEACAM1 binds other CEACAM
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molecules present on nearby cells, including tumor cells; this interaction inhibits NKG2D-mediated
tumor control [84,149].

The C-type lectin receptor superfamily includes inhibitory members KLRG1 on both human
and mice, NKRP1A in humans, and NKRP1B and gp49B1 in mice. KLRG1 is mostly known for its
role in NK cell maturation, development and maintenance of peripheral homeostasis [150]. Recently,
a new role for KLRG1 has emerged as an inhibitory receptor in the context of tumor control. The
KLRG1 ligands E- and N-cadherin were found to be upregulated in tumor samples from patients
suffering from melanoma, prostate, breast or colorectal cancer [86]. Furthermore, blocking KLGR1
in mice showed enhanced tumor control compared to controls, with even better protection observed
when used in combination with anti-PD1 [86]. Little research has been performed to understand
the inhibitory role of KLRG1 in NK cells and this latter study highlights the therapeutic potential of
anti-NKLRG1 antibodies.

The TAMs are a relatively new family of NK inhibitory receptors [88,151,152]. TAMs contain an
extracellular region composed of two Ig-like domains followed by two fibronectin type II domains,
a transmembrane region and an intracellular region containing a tyrosine kinase domain, an ITIM
and ITIM-like motif. TAMs are classified as receptor tyrosine kinases (RTKs) and bind via their
extracellular domain to growth arrest-specific gene 6 (Gas6) and Protein S (Pros1). TAM inhibition in
the mouse B16F10 melanoma model has shown promising results and mechanistically, TAM receptors
are proposed to act via inhibition of NKG2D signaling [88]. TAM association with Casitas B lineage
lymphoma b (Cbl-b) has recently uncovered a new inhibitory signaling pathway in NK cells [88,153]
(discussed in more detail in a later section; Figure 2A).

3. Current Therapies Harnessing the Power of Inhibitory NK Receptors

The success of current immunotherapies that block immune checkpoints, such as CTLA4 and PD1
in CD8 cells, has spurred interest in targeting other immune populations, such as NK cells. Given
that blocking NK inhibitory receptors has proven beneficial in experimental tumor models, a number
of blocking antibodies have been developed, with several progressing to clinical trials. Currently,
KIR2D and NKG2A are the only two MHC-I-dependent receptors targeted to mimic a “missing-self”
situation and enhance anti-tumor activity, with two agents that block KIR2D (Lirilumab and IPH2101)
in clinical phase I or II trials. Lirilumab alone or in combination with other agents is being trialed
against solid tumors (NCT03203876), hematological malignancies [154], chronic lymphocytic leukemia
(NCT02557516), multiple myeloma (NCT01592370), resectable squamous cell carcinoma of the head
and neck (NCT03341936), and resectable bladder cancer (NCT03532451), while IPH2101 is being trialed
against acute myeloid leukemia [155]. Monalizumab is the only antibody being trialed for NKG2A,
both alone and in combination with other agents for advanced gynecological solid tumors [156],
advanced squamous cell carcinoma of the head and neck (NCT02643550), and resectable non-small cell
lung cancer (NCT03794544).

In addition to KIR2D and NKG2A, anti-TIGIT antibodies are in multiple phase I and II clinical
trials against different advanced solid tumors (NCT029133133, NCT02794571 and NCT02964013).
Anti-TIGIT antibodies are also being used in combination with other therapies against solid tumors
(NCT04150965, NCT03119428 and NCT04047862), notably against advanced non-small cell lung cancer
(NCT03563716). These are just a handful of the clinical trials that are taking advantage of blocking
inhibitory NK signaling, with no doubt many more to come.

4. Inhibitory NK Signaling

The full complement of events that transduce inhibitory receptor signals remains unclear, with
much work still required to fully understand the different pathways. However, for some receptors
a clearer picture of the signaling events following ligand engagement is now emerging, as well as
identification of alternative signaling cascades that can lead to inhibition.
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Inhibitory NK receptors signal via the different tyrosine-containing motifs: ITIM, ITT, ITSM,
ITIM-like, ITT-like, or ITSM-like motifs. Upon engagement of the respective ligands, tyrosines within
the signaling motifs are phosphorylated by members of the Src-family kinases (SFKs), with Lyn and
Lck the most likely candidates in NK cells (Figure 3A) [157–159]. Tyrosine phosphorylation within the
inhibitory motif enables recruitment of Src homology 2 (SH2)-containing protein tyrosine phosphatases
such as SHP-1 and SHP-2, which then function to de-phosphorylate signaling intermediates and
negatively regulate NK cell activity.
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Figure 3. Inhibitory and activating NK cell signaling. NK cell effector function is collectively determined
by the strongest activating or inhibitory signals. (A) Signaling downstream of inhibitory receptors
is initiated by ligand engagement, followed by tyrosine phosphorylation of the signaling motif by
Src-family kinases (SFK), Fyn or Lck. Once phosphorylated, there are three known inhibitory pathways:
(1) Recruitment of SHP-1, SHP-2 or SHIP, which dephosphorylate Vav1; (2) Association with c-Abl
kinase, which phosphorylates Crk disassociating it from its active complex and; (3) Phosphorylation and
activation of Cbl-b by the TAM receptors. Cbl-b in turn ubiquitylates activating signaling intermediates
such as LAT1 for degradation. (B) Signaling downstream of activating receptors is similarly transduced
by tyrosine containing motifs that are phosphorylated by SFK. Various signaling intermediates such as
Grb2, VAV1, or PI3K are then recruited, which induce cytotoxicity and cytokine release.
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4.1. SHP1 and SHP-2 Signaling

SHP-1 is required for inhibition of NK cell effector function, whereas SHP-2, despite binding to
most inhibitory receptors, appears to selectively inhibit cytokine production [160,161]. Most inhibitory
NK receptor signaling tails are comprised of at least of two ITIMs or are found as homodimers creating
two parallel ITIM sites within one receptor complex. Recruitment of SHP-1 and SHP-2 is dependent
on both the residues flanking the tyrosine and the spacing between phosphorylated tyrosines. So far,
the only known NK cell substrate de-phosphorylated by SHP-1 is the guanine nucleotide exchange
factor Vav1. However, in other cell types SHP-1 has been shown to interact with CD3ζ, Syk, ZAP-70,
LAT and SLP-76, and these may also prove to be targets in NK cells [159,162–164]. Phosphorylated
Vav1 (pVav1) is a major intermediate downstream of multiple activating signals and is crucial for
MTOC organization, thus dephosphorylation of pVav1 at the IS essentially attenuates NK activation.
Signaling intermediates downstream of Src-kinase activity and SHP-1 and -2 recruitment remain to
be elucidated in most KIRs, most Ly49s, CD94:NKG2A and B, NKRP1B, and CEACAM1 [165–167],
whereas others such as KIR2DL1,3–4, Ly49C and gp49B1 bind to β-arrestin 2, enhancing recruitment of
SHP-1 and SHP-2 [168]. For some receptors, recruitment of SHP-1 and SHP-2 is species dependent;
take for instance human LAIR-1 associating with SHP-1 and SHP-2 and murine LAIR-1 only interacting
with SHP-2 [145,169,170]. Regardless, the Src-kinase inhibitor PPI is shown to inhibit LAIR-1 tyrosine
phosphorylation despite the Src-kinase responsible remaining unknown. Although LILRB1 contains
four ITIM motifs, a study by Bellón et al. [171] showed that only Y614 and Y644 are required for
inhibitory signals via SHP-1 association; Siglec-7 and -9 have also been shown to associate with SHP-1
and SHP-2 [172,173]. Inhibitory signaling by Siglec 7 is regulated by Suppressor of Cytokine Signaling
(SOCS)3, which binds to the ITIM, blocking docking of SHP-1 and SHP-2, and potentially targeting
Siglec-7 for proteasomal degradation via its associated E3 ubiquitin ligase complex [174]. In contrast,
TIGIT contains an ITT-like motif that allows association with Grb2, which in turn recruits SHIP-1
(SH-2 containing inositol 5’ polyphosphatase 1) [175]. SHIP-1 is known to inhibit PI3K signaling by
hydrolyzing PI(3,4,5)P3, inhibiting the accumulation and activation of Akt, Btk and PLC-γ (Figure 2A).

4.2. c-Abl Signaling

In both human and murine NK cells, a SHP-1/2-independent inhibitory mechanism has also been
described, involving phosphorylation of a small adaptor protein named Crk by the c-Abl tyrosine
kinase [176,177]. Active Crk is non-phosphorylated, is found in many different complexes together
with c-Cbl, C3G and p130CAS, and is known to confer activating signals. Following engagement of
inhibitory receptors and phosphorylation of the signaling motifs, the c-Abl kinase phosphorylates
Crk, rendering it inactive and resulting in its dissociation [178] from activating complexes [179]. This
inhibitory pathway has been shown to be KIR- and CD94:NKG2A-mediated.

4.3. TAM Signaling

A novel TAM/Cbl-b-mediated inhibitory signaling pathway has also been described. TAMs
exert their inhibitory function by phosphorylation of human Cbl-b on tyrosine residues 133 and
363 [153]. Phosphorylation of Y363 prompts a conformational change, activating Cbl-b E3 ubiquitin
ligase activity [180]. Cbl-b is thought to then target LAT1, a key molecule downstream of activating
receptors NKG2D and NK1.1, for ubiquitination and subsequent proteasomal degradation, resulting
in inhibition of NK cell activity [153].

5. Activating NK Cell Receptors

NK cells express activating receptors on their surface which recognize different stress molecules
and ligands on ‘unhealthy’ cells (Figure 2B). Unlike the inhibitory receptors, most activating receptors
lack a cytoplasmic signaling tail and instead associate with membrane bound adaptor proteins which
contain immunoreceptor tyrosine-based activation motifs (ITAMs), to propagate their signals [181].
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To date, CD16, NKG2D, NKp46 (natural cytotoxicity receptor 1; NCR1), DNAM-1, 2B4, NTB-A and
CRACC have been found to be critical for tumor surveillance in both human and murine NK cells [182].
Human NK cells additionally express and rely on NKp30 (NCR3) and NKp44 (NCR2) for tumor
surveillance (Figure 2 and Table 4) [183].

Table 4. Activating NK receptors paired to cellular ligands and signaling adaptors.

Human Ligands Co-receptor

NKp30 B7H6 [184,185] CD3ζ and FCRγ
NKp44 NKp44L (unusual isoform of MLL5) [186,187] DAP12

Shared

NKG2D
MICA/B, ULBP1-6 [188,189] (humans) DAP10
Rae1B, MULT1, H60 [190,191] (mice) DAP10 and DAP12

NKp46 Unknown CD3ζ and FCRγ
DNAM-1 CD155 and CD112 [82,83] -

2B4 CD48 (SLAMF2) [192,193]. -
NTB-A NTB-A (SLAMF6, CD319 and Ly108 in mice) [192,193]. -
CRACC CRACC (SLAMF7, CD352) [192,193]. -

CD16 IgG [194,195] CD3ζ and FCRγ

CD16 (FcgRIII) is a low-affinity receptor for IgG and is expressed at high levels on human NK
cells and at lower densities on murine NK cells [194–196]. NK cells express a transmembrane form
of CD16 that lacks a cytoplasmic signaling tail [197] and, in humans, associates with either CD3ζ
homodimers [194,198], FCRγ homodimers [199] or CD3ζ:FCRγ heterodimers to transduce activating
signals, while murine CD16 associates with FCRγ homodimers [200]. CD16 expression enables NK
cells and other immune cells to recognize the Fc portion of an antibody bound to an antigen on the
surface of tumor cells and trigger NK-mediated lysis of the target cell (known as ADCC). After cytolysis,
CD16 is proteolytically cleaved by ADAM17 [201] or MMP25 [202] and shed from the NK cell surface,
with shedding not only important for NK cell detachment and subsequent targeting of tumor cells but
also enhancement of subsequent NK cell signaling [203]. This has resulted in a new field focused on
generating monoclonal antibodies against tumor antigens to enhance immune-mediated ADCC [204].
Additionally, endogenous antibodies to tumor antigens have been observed in patients with various
cancers, including human papillary thyroid cancer, some soft tissue sarcomas and melanoma [205,206].
Although these antibodies are predominantly IgG and are located within neoplastic tissue in the
TME [207], they apparently fail to elicit tumor control; why this is the case remains unknown.

NKG2D is a member of the NKG2 receptor family and is one of the main activating receptors
involved in NK cell tumor surveillance [208]. In humans, its ligands include MICA and B and
UL16-binding proteins (ULBP)1–6, and in mice, Rae1α-ε, MULT1 and H60a-c (with H60a-c restricted
to BALB/C mice) [188–190]. Structurally, NKG2D ligands resemble MHC-I proteins, with MICA and B
containing three extracellular α(1–3) domains in which α3 is an Ig-like domain. ULBP1-6 have two
extracellular α(1–2) domains and ULBP4 and 5 are similar to murine Rae1 ligands [191,209]. ULBP1-3
and -6 are attached to the membrane via a glycophosphatidylinositol (GPI)-anchor, whereas MICA and
B and ULBP4–5 all have a transmembrane domain and cytoplasmic tail.

NKG2D has two isoforms that dictate NKG2D signaling: the short isoform NKG2D-S associates
with the DNAX-activating protein (DAP)10 and 12 adaptor proteins, while the long isoform (NKG2D-L)
only associates with DAP10 [210]. Homodimeric NKG2D forms a hexamer with each subunit associated
with either a DAP10 or DAP12 homodimer, respectively [211]. Additionally, NKG2D-S is restricted to
mice, meaning that human NKG2D only signals via DAP10, while engagement of the murine NKG2D
receptor can lead to signaling by either DAP10 or DAP12 [212,213]. The differences between mouse
and human are further amplified by the presence of an ITAM signaling motif in DAP12 and a YxxM
motif in DAP10 (Figure 2B and Table 5) [214,215].
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Table 5. Activating signaling motifs.

Adaptor Proteins Signaling Motif Motif Sequence pY 1,2 Position

DAP10 YxxM YINM
(h) Y86
(m) Y71

DAP12
ITAM YQELQGQRSDVYSDL (h) Y91 & Y102
ITAM YQELQGQRPEVYSDL (m) Y92 & Y103

FCR γ ITAM YTGLSTRNQETYETL Y65 & Y76

CD3ζ 3x ITAM
YNELNLGRREEYDVL Y72 & Y83
YNALQKDKMAEAYSEI Y111 & Y123
YQGLSTATKDTYDAL Y142 & Y153

Receptor Signaling Motif Motif Sequence pY1 Position

NKp44 ITIM-like EILYHTVA (h) Y258

DNAM-1 ITT-like YvNY
(h) Y322 & Y325
(m) Y319 & Y322

2B4

ITSM 1
TIYEDV (h) Y271
TIYEYV (m) Y266 & Y268

ITSM 2
TIYSMI (h) Y297
TMYSMI (m) Y325

ITSM 3
TLYSLI (h) Y317
TVYSVV (m) Y343

ITSM 4
T IYEVI (h) Y342
TVYEEV (m) Y369

NTB-A
ITSM 1

TVYASV (h) Y285
TVYAQV (m) Y295

ITSM 2
TIYSTI (h) Y309
TIYS IV (m) Y319

CRACC
ITSM-like

TEYDTI (h) Y284
ADYDTI (m) Y282

ITSM
TVYSTV (h) Y304
TFYSTV (m) Y302

1 m = mouse, h = human; 2 Phosphorylated tyrosine (pY).

Human NKG2D ligands are expressed in ovarian cancer, leukemia, colorectal cancer and pediatric
brain cancers, amongst others [216–220]. Regardless of ligand expression, Groh et al. [221] showed
that soluble MIC (sMIC) shed by tumors impaired NKG2D mediated cytotoxicity by blocking receptor
engagement and thus signaling [221,222]. This shedding of NKG2D ligands has been observed in
many cancers, including ovarian, breast, lung, colon and prostate, as well as lymphoma, myeloma
and melanoma [219,220,223,224]. Antibodies targeting sMIC have been shown to enhance NK and T
cell-mediated killing of head and neck squamous cell carcinoma [225], in addition to other patient
cancers, when combined with PD1/PD-L1 blockade [226].

NKp46, NKp30 and NKp44 (NCR family) were the first activating receptors identified in NK
cells [227–229]. While many molecules such as heparin, vimentin and viral proteins are suspected
ligands, the search for cellular ligands remains a priority in the field [183]. So far, two cellular ligands,
B7 homologue 6 (B7H6) and NKp44L, have been identified for NKp30 and NK44, respectively [184–187].
There is currently no known ligand for NKp46, which is the only NCR conserved in both human and
mice and is found on activated and resting NK cells. Despite not knowing which ligands activate
NKp46, its engagement has been shown to be critical for control of melanoma and lung carcinoma
metastasis in experimental models [230,231]. NKp46 contains two extracellular Ig-like domains, a
transmembrane domain and a short, 25-residue cytoplasmic tail [232]. Following NKp46 engagement,
signaling occurs through NKp46 interaction with a CD3ζ:FCRγ heterodimer [229,233] and results
in NK cytoskeletal engagement and F-actin accumulation at the lytic synapse, both early events in
the killing process (Figure 1) [234]. Tantalizingly, this hints that NKp46 has a critical role in target
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identification, but without a known ligand or ligands, it is impossible to confirm. In addition, studies
have shown that NKp46 engagement results in IFNγ and TNFα production [231,235].

NKp30 is found on mature resting and activated NK cells, with most NK cells expressing one or
two of the three major NKp30 isoforms (NKp30A-C), that differ in the composition of their cytoplasmic
tails [228,236]. Depending on the isoform engaged, NKp30 transduces different signals via CD3ζ
homodimers or CD3ζ:FCRγ heterodimers. For example, engaging NKp30A or B induces significantly
higher IFNγ, TNFα and IL12B production, while NKp30C which induces IL10 production, leads to
immune suppression [32,237]. In addition, NKp30B constitutively associates with CD3ζ, while both
NKp30A and C associate with CD3ζ upon engagement; however, NKp30A has a tighter association
with CD3ζ and gives the dominant response [32]. Furthermore, the predominant expression of NKp30C
in patients with GIST is predictive of a poor prognosis [32,237].

NKp44 is only expressed upon activation and associates with ITAM-containing DAP12 to
induce IFNγ and TNFα production [229,238,239], and cell lysis of experimental cervix carcinoma and
neuroblastoma cell lines [240]. Finally, although NKp44 contains a cytoplasmic ITIM-like motif, this
does not appear to be functional [239,241].

DNAM-1 has an important role in NK cell-mediated tumor immunosurveillance and shares
CD155 and CD112 ligands with TIGIT and TACTILE (CD96) [242,243]. The role of DNAM-1 in
immunosurveillance was discovered using the RMA lymphoma model where NK cells were shown to
be responsible, at least in part, for metastatic control of DNAM-1 ligand-expressing RMA tumors [244].
The importance of DNAM-1 is underscored by DNAM-1-deficient NK cells that no longer control
experimental metastasis in a spontaneous fibrosarcoma formation model [245,246]. However, if
the tumors express NKG2D ligands, then DNAM-1 deficiency has no impact, suggesting a signal
hierarchy between the two receptors [247,248]. DNAM-1 ligand CD155 is expressed in a variety of
human cancers, including colon, adenocarcinoma, pancreatic and melanoma [249–253]. Interestingly,
human melanoma samples have also been shown to express CD112 [254], and expression of CD112
and CD155 on patient-derived neuroblastomas correlated with susceptibility to NK cell killing
in vitro [255]. To date, CD155 but not CD112 has been shown to be critical for DNAM-1-mediated
NK cell cytotoxicity [255,256]. Furthermore, CD155 association with DNAM-1 promotes NK cell
cytotoxicity and IFNγ production [257].

2B4 (SLAMF4), NTB-A (SLAMF6 or Ly108 in mouse) and CRACC (SLAMF7) belong to the
signaling lymphocytic activation molecule (SLAM) family and are the only members expressed on NK
cells [258,259]. CRACC and NTB-A act in trans as their own ligands, while CD48 (SLAMF2) is the ligand
for 2B4 and is thought to act in trans and in cis [192,193,260]. CRACC and 2B4 are potent stimulators of
NK cell cytotoxicity; CRACC is already in clinical use and 2B4 is a potential new therapeutic target [261].
The SLAMs contain cytoplasmic ITSM motifs that recruit different signaling molecules to allow for a
switch between activating and inhibitory signals following receptor engagement [262,263].

6. Current Therapies Harnessing the Power of Activating NK Receptors

There are several ongoing clinical trials testing antibodies that enhance NK cell activation, mediate
direct cell killing (ADCC) or achieve both NK cell activation and ADCC. The latter is exemplified
by Elozutumab, an anti-CRACC (SLAM7) antibody currently in pre-clinical testing and phase 1–3
clinical trials for multiple myeloma (NCT01335399) [264–266]. Another ongoing trial in non-Hodgkin’s
lymphoma is combining anti-CD123 antibody with adoptive transfer of an NK cell line engineered to
express high levels of CD16 and potentiate NK responses (NCT03027128) [267]. Adoptively transferred,
allogeneic CD19 CAR-NK cells were successfully used in recent phase 1 and 2 trials to treat patients with
non-Hodgkin’s lymphoma or chronic lymphocytic leukemia (CLL) without significant toxicities [35].
These studies demonstrate the importance of NK cell therapies and pave the way for further clinical
trials using blocking antibodies and/or CAR-NK cells expressing activating receptors [268–270].



Cancers 2020, 12, 952 15 of 33

7. Activating NK Signaling

7.1. ITAM Signaling

Following CD16, NKG2D and NCR family receptor engagement adaptor proteins, DAP12, CD3ζ
and FCRγ are rapidly phosphorylated within their ITAM sequences by an as yet unidentified Src-kinase,
which leads to adaptor association with Syk or Zap70 tyrosine kinases (Figure 3B) [215,271,272].
Following recruitment to DAP12, Syk is thought to interact with the p58 subunit of PI3K leading
to a PI3K → Rac1 → PAK1 → MEK → ERK signaling cascade that drives NK cell cytotoxicity
(Figure 3B) [272,273]. Although Zap70 has also been shown to associate with the ITAMs it does not
appear to be required for signaling.

CD16 signals through its CD3ζ or FCRγ adaptors and like DAP12, activates PI3K, however,
other signaling molecules such as Vav1, PLC-γ1 and PLC-γ2 can also be activated following CD16
engagement [274,275]. Additionally, CD16 engagement has been linked to PIP2 production mediated
by PI5K [276], with Galandrini et al. [277] showing that PI5K was required for NK cell degranulation
but not granule polarization in primary human NK cells. The combined activation of the PI3K and
PI5K pathways could explain why CD16 is the only receptor that can fully activate resting human NK
cells [278]. In addition to the ITAM-mediated signaling cascades, NK cells have been shown to signal
through transmembrane-bound LAT complexed with PLC-γ1/2; the signaling intermediates remain to
be elucidated [279].

7.2. DAP10 (YxxM) Signaling

DAP10 is a small transmembrane adaptor protein containing a ’traditional’ costimulatory PI3K
binding motif (YxNM) and a binding site for Grb2 (pYxNx) [280]. Following receptor engagement,
the DAP10 motif is phosphorylated by an unknown Src-kinase to recruit a Grb2-Vav1 complex and
the p85 subunit of PI3K [281,282]. Phosphorylation of Grb2-Vav1 leads to phosphorylation of Vav1,
PLC-γ2 and SLP-76 [281,283]. Presumably, PI3K activation via DAP10 converges on AKT with the end
result being an increase in direct cytotoxicity [280,284]. Interestingly, Grb2-Vav1 signaling alone is not
sufficient to stimulate full calcium release and cytotoxicity [282], whilst NKG2D:DAP10 activation of
Vav1 is important for induction of actin polymerization and polarization of MTOC at the IS [285].

7.3. DNAM-1, 2B4, CRACC and NTB-A Signaling

DNAM-1, 2B4, CRACC and NTB-A contain a cytoplasmic signaling tail, distinguishing them from
the NCRs, CD16 and NKG2D.

DNAM-1 has an ITT-like motif that is phosphorylated at Y319 in mouse and Y322 in humans [286]
and is required for association with Grb2 and initiation of the PI3K signaling cascade (Grb2→ Vav1
→ PI3K→ PLC-γ1) (Figure 3B) [102], although further signaling intermediates have not been fully
elucidated. Interestingly, DNAM-1 signaling enhances Vav1-mediated actin polymerization and
polarization of the lytic granules to the IS, consistent with its role in NKG2D:Dap10 signaling [102,285].

2B4, CRACC and NTB-A: 2B4 contains four ITSM motifs, while CRACC and NTB-A contain
two ITSM motifs [287]. Following 2B4 engagement, ITSM tyrosines are phosphorylated recruiting
either SAP, EAT2 or 3BP2. Six possible signaling cascades have been elucidated to date: (1) SAP→
Fyn→ pVAV1 [288,289], (2) EAT→ PLC-γ→ Ca2+ flux, (3) EAT→ pERK, [290], (4) 3BP2→ pVAV1,
(5) 3BP2→ PLC-γ and (6) 3BP2→ pERK [291–293]. Notably, Saborit-Villarroya et al. [292] showed
that cytotoxicity, not cytokine release, is regulated by pVAV1 and ERK, thus cytokine release and
cytotoxicity are regulated by different signaling pathways downstream of 2B4.

Similar to 2B4, engagement of NTB-A results in recruitment of SAP and EAT2, and NK cell
cytotoxicity and cytokine production [258,294,295]. In contrast, CRACC does not recruit SAP and
solely relies on EAT2 for signaling [296,297]. As mentioned, ITSM phosphorylation can transduce
either activating or inhibitory signals (Figure 2A). Activation relies on SAP recruitment, which blocks
binding site of the phosphatases SHP-1, SHP-2 and SHIP [288,298,299]. Patients suffering from X-linked



Cancers 2020, 12, 952 16 of 33

lymphoproliferative disease (XLP), which is caused by mutations in the gene encoding SAP, show
defective NK cell activation and even inhibition [300,301].

8. Releasing the Brake

While the previous sections discuss the inhibitory and activating receptors and their signaling
events separately, in reality, inhibitory and activating signaling occurs simultaneously upon each NK
cell-to-cell encounter. As mentioned, NK cells are loaded with lytic granules and are ready to kill once
a “decision” has been made. It is this ability to release lytic content and kill their targets within 30
minutes of engagement, that makes them such a powerful weapon for the immune system [302–304].
These natural killers are constantly surveilling our bodies and more often than not, encounter healthy
cells that engage the myriad of inhibitory receptors expressed on NK cells. NK cells can thus be
considered in a constant state of inhibition and overcoming that inhibitory threshold requires either
“release” of the inhibitory “brake” or a countermanding activating signal such as via CD16, or from
co-engagement of various activating receptors [305]. The inhibitory signals appear to act by blocking
early activation, for example, NKG2D, DNAM-1, 2B4, NTB-A and CRACC all converge at Vav-1
dephosphorylation (Figure 3A), which would prevent MTOC formation and result in tolerance. This
implies that Vav phosphorylation may be a “master” switch and understanding the regulatory events
surrounding it could point to new interventions which release the brake on NK cell killing.

9. Conclusion and Future Directions

While numerous inhibitory and activating receptors have been identified, the NK signaling field
is still in its infancy. For clarity, this review has focused on the most well-studied aspects and we
apologize if we have omitted publications that have contributed to a rapidly moving field.

NK cells play a pivotal role in controlling tumor metastasis and there is enormous potential for
the development of new cancer immunotherapies that enhance NK cell activity and infiltration into
the TME. If we consider that NK cells are constantly surveying the body for infected or transformed
“unhealthy” cells, then essentially, most of the time there should be no NK response and thus constant
NK inhibitory signaling in the “normal” state.

In this context, the trigger for response is activation and raises an over-arching question: how
does activation signaling switch off or dominate baseline inhibitory signaling? There are still many
gaps in our understanding of these activating and inhibitory signaling pathways. For instance, what
are the initiating signals post-ligand–receptor engagement? What is the role of the Src-family kinases
and how are they activated? Similarly, once the initial signals are transduced, what intermediates
and regulatory mechanisms come into play and how does this converge to give the final killing
blow? Further delineation of the signals that regulate NK cell responses will be critical not only in the
identification of new targets but to understand the full impact of any intervening strategies.

To evade NK cell recognition and killing, tumor cells upregulate inhibitory ligands and signaling,
as well as downregulate activating ligands; blocking inhibitory and/or enhancing activating ligands
offers attractive opportunities to improve anti-tumor responses. In contrast to T-cells, activated
or adoptively transferred NK cells have the added advantage of not inducing cytokine release
syndrome or neurotoxicity, and allogeneic NK cells/cell lines have at least proven safe for adoptive
immunotherapy [35,306,307]. Further safety and efficacy testing of NK cell therapies, such as adoptive
transfer of NK cell lines, CAR-NK cells, checkpoint blockades and ADCC, will no doubt further
advance the field of NK therapeutics.

Many studies have shown that NK cell–mediated tumor control results not only from NK cell
cytotoxicity but also NK release of cytokines into the TME to marshal other immune cells into a
full-scale attack. Therapeutic approaches that not only trigger cytotoxicity, but aid exhaustion recovery
and enhance proliferation and directed cytokine production, will be key.
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