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Abstract

Genetic background often influences the phenotypic consequences of mutations, resulting in variable expressivity. How standing genetic
variants collectively cause this phenomenon is not fully understood. Here, we comprehensively identify loci in a budding yeast cross that
impact the growth of individuals carrying a spontaneous missense mutation in the nuclear-encoded mitochondrial ribosomal gene MRP20.
Initial results suggested that a single large effect locus influences the mutation’s expressivity, with 1 allele causing inviability in mutants.
However, further experiments revealed this simplicity was an illusion. In fact, many additional loci shape the mutation’s expressivity, collec-
tively leading to a wide spectrum of mutational responses. These results exemplify how complex combinations of alleles can produce a di-
versity of qualitative and quantitative responses to the same mutation.
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Introduction
Mutations frequently exhibit different phenotypic effects across

individuals in the same population or species (“background
effects”) (Nadeau 2001; Chandler et al. 2013; Riordan and Nadeau

2017). Individuals with the same mutation may differ in whether

they show an effect (“incomplete penetrance”) or in their degrees

of response (“variable expressivity”) (Griffiths et al. 2020). For ex-

ample, people with the same disease-causing mutation often
vary in whether they express the associated disorder and in their

manifestation of symptoms (Cooper et al. 2013). Background

effects can arise due to a myriad of reasons, including genetic

interactions between a mutation and segregating loci

(“epistasis”), dominance in individuals heterozygous for a muta-
tion, and variability in environmental conditions experienced by

individuals (Nadeau 2001), as well as differences in microbiome

composition among individuals (Wagner et al. 2021) and stochas-

tic noise (Raj et al. 2010). Multiple of these factors may jointly

cause a mutation to show a background effect (Lee et al. 2016,
2019).

In this study, we focus on the role of epistasis in background

effects, an important topic for evolution and inheritance (Gibson

and Dworkin 2004; Jarosz et al. 2010; Paaby and Rockman 2014;

Siegal and Leu 2014). Genetic interactions with loci can impact

the evolutionary trajectories of mutations, influencing selection
for and against beneficial and deleterious mutations, respectively

(Weinreich et al. 2005; Lang et al. 2011; Kryazhimskiy et al. 2014;

Johnson et al. 2019). Such epistasis can also have bearing on ge-

notype–phenotype relationships, as a mutation may alter the

phenotypic effects of interacting loci (Dworkin et al. 2003; Jarosz
et al. 2010; Geiler-Samerotte et al. 2016; Schell et al. 2016; Mullis
et al. 2018). In extreme cases, a mutation may mask genetically
interacting loci or convert them from cryptic to phenotypically
visible (Gibson and Hogness 1996; Rutherford and Lindquist 1998;
Queitsch et al. 2002; Jarosz and Lindquist 2010).

Epistasis between mutations and loci is also relevant to mod-
ern genetic applications. In medicine, loci that genetically inter-
act with mutations are referred to as “modifiers” (Nadeau 2001).
Knowing the modifiers of a disease mutation may enable person-
alized prediction of disease severity and treatment (Riordan and
Nadeau 2017). This knowledge may also be necessary to ensure
potentially curative genome editing therapies, such as those for
sickle cell disease and beta thalassemia (Frangoul et al. 2021),
have their intended consequences. In agriculture, genome editing
will likely become a common crop improvement strategy (Nasti
and Voytas 2021), but its success depends on edits having their
predicted phenotypic effects.

Studies in diverse species have found a large fraction of muta-
tions show background effects due to epistasis with loci (Dowell
et al. 2010; Chari and Dworkin 2013; Paaby et al. 2015; Vu et al.
2015; Mullis et al. 2018; Galardini et al. 2019; Johnson et al. 2019).
Yet, questions about the number of loci that typically show epis-
tasis with a mutation and the architecture of genetic interactions
between mutations and loci remain (Goldstein and Ehrenreich
2021). Addressing these questions is difficult because natural
populations harbor substantial genetic diversity, which presents
a technical challenge for genetic mapping and enables complex
forms of epistasis between mutations and multiple loci (Dowell
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et al. 2010; Chari and Dworkin 2013; Chandler et al. 2014, 2017;
Taylor and Ehrenreich 2014, 2015b; Paaby et al. 2015; Vu et al.
2015; Lee et al. 2016; Taylor et al. 2016; Mullis et al. 2018;
Galardini et al. 2019; Hou et al. 2019; Lee et al. 2019; Parts et al.
2021).

Lab crosses can overcome these challenges (Dowell et al. 2010;
Chandler et al. 2014; Taylor and Ehrenreich 2014, 2015b; Mullis
et al. 2018; Hou et al. 2019; Parts et al. 2021). Crosses can be
grown in controlled environments and have balanced allele and
multilocus genotype frequencies providing statistical power to
detect epistatic loci (Ehrenreich 2017). In inbred or haploid
crosses, dominance will be absent, eliminating another potential
concern. To date, crosses have shown that background effects of-
ten involve multiple loci that may genetically interact not only
with a focal mutation, but also each other (Dowell et al. 2010;
Chandler et al. 2014; Taylor and Ehrenreich 2014, 2015b; Lee et al.
2016, 2019; Taylor et al. 2016; Mullis et al. 2018; Hou et al. 2019;
Parts et al. 2021). However, these studies mainly focused on
mutations that cause binary phenotypes and show incomplete
penetrance. Similar work is needed on mutations with quantita-
tive phenotypic effects and variable expressivity.

In this study, we employ a series of crosses in the budding
yeast Saccharomyces cerevisiae to determine how loci cause a spon-
taneous mutation to show variable expressivity. We focus on a
missense mutation in MRP20, a nuclear-encoded subunit of the
mitochondrial ribosome that is essential for cellular respiration
(Fearon and Mason 1992). This mutation occurred by chance in a
previously generated cross between the reference strain BY4716
(“BY”) and the clinical isolate 322134S (“3S”) (Mullis et al. 2018).
Here, we identify the MRP20 mutation and demonstrate its vari-
able expressivity among haploid BYx3S cross progeny
(“segregants”). We then determine how loci in the BYx3S cross in-
dividually and collectively cause this variable expressivity. These
data show that expressivity can be shaped by many loci that
show a spectrum of effect sizes and act in a predominantly addi-
tive manner.

Materials and methods
Generation of segregants
The mrp20-A105E mutation occurred spontaneously in a BY/3S
HOS3/hos3D::KanMX diploid produced in Mullis et al. (2018)
(Fig. 1a). As described in Fig. 1, this mutant strain was generated
through targeted disruption of 1 copy of the HOS3 gene in a BY/3S
diploid by transformation of a KanMX cassette with homology
tails (Wach et al. 1994). The BY/3S diploid used in this transfor-
mation had been produced by mating a BY MATa ho
can1D::STE2pr-SpHIS5 his3D haploid and a 3S MATa ho::HphMX
his3D::NatMX haploid, resulting in a BY/3S MATa/MATa CAN1/
can1D::STE2pr-SpHIS5 his3D/his3D ho/ho::HphMX diploid. This dip-
loid genotype made it possible to obtain MATa haploid F2 segre-
gants by sporulating the initial diploid strain or its HOS3/
hos3D::KanMX derivative and selecting for random spores on His-
plates containing canavanine (Tong and Boone 2006). Haploid
segregants from the HOS3/hos3D::KanMX diploid also went
through a second selection for the hos3D mutation on G418. The
mrp20-A105E mutation was heterozygous in all BY/3S HOS3/
hos3D::KanMX cells, implying it was likely present in the original
cell in which 1 HOS3 copy had been deleted. Following discovery
of mrp20-A105E, we sporulated the BY/3S HOS3/hos3D::KanMX
again and performed tetrad dissection, avoiding any marker
selections. This made it possible to obtain all 4 products from
each meiotic event, which was necessary to distinguish the

phenotypic effects of the mrp20-A105E and hos3D mutations and
to test whether these 2 mutations genetically interact.

To fine map the Chromosomes XIV locus harboring MKT1, we
produced haploid F3 segregants by mating 2 mrp20-A105E F2 seg-
regants from Mullis et al. (2018), one with the BY allele of the lo-
cus and the other with the 3S allele (Fig. 3a). Because these
segregants were both MATa, we mating-type switched the segre-
gant with the 3S allele of the Chromosome XIV locus. To enable
mating-type switching, we first deleted URA3 from the segregant
using a HphMX cassette with homology tails (Goldstein and
McCusker 1999). We then mating-type switched the strain by
transforming it with a counterselectable URA3 plasmid contain-
ing an inducible HO endonuclease (Herskowitz and Jensen 1991),
inducing HO, and plating single cells. After mating the 2 haploids,
the resulting diploid was sporulated and random haploid F3 seg-
regants were obtained by plating on His- media.

In addition, to better understand the genetic basis of mrp20-
A105E’s expressivity, we generated new haploid F2 segregant pan-
els, 1 in which all individuals were mrp20-A105E MKT1BY and 1 in
which all individuals were mrp20-A105E MKT13S (Fig. 5a). To facili-
tate this, we engineered mrp20-A105E, as well as the 3S and BY
causal variants at MKT1 position 467,219 into BY and 3S, respec-
tively, using a 2-step CRISPR/Cas9 strategy described later. BY
mrp20-A105E was mated to 3S mrp20-A105E MKT1BY twice inde-
pendently, the resulting diploids were sporulated, and BYx3S
mrp20-A105E MKT1BY haploid segregants were obtained by tetrad
dissection. The same process was followed with BY mrp20-A105E
MKT13S and 3S mrp20-A105E strains to obtain BYx3S mrp20-A105E
MKT13S haploid segregants.

Genotyping
Genotyping of previously generated F2 segregants is described in
Mullis et al. (2018) and was performed in the same manner as
segregants produced in the current study. All haploid F2 and F3

segregants generated in this study were genotyped by low cover-
age whole genome sequencing, using previously reported
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Fig. 1. The mrp20-A105E mutation occurred spontaneously, increasing
phenotypic variance in the BYx3S cross. a) A spontaneous mutation in a
BY/3S diploid gave rise to a BYx3S segregant population in which mrp20-
A105E segregated. b) The mrp20-A105E segregants exhibited increased
phenotypic variance and a bimodal distribution of phenotypes.
Throughout the study, blue and orange are used to denote BY and 3S
genetic material, respectively. All growth data presented in the paper are
measurements of colonies on agar plates containing rich medium with
ethanol as the carbon source.
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methods that we summarize here (Bloom et al. 2013; Taylor and
Ehrenreich 2014; Lee et al. 2016, 2019; Mullis et al. 2018). Strains
were inoculated into liquid overnight cultures and grown to sta-
tionary phase at 30�C on a shaker. DNA was extracted from cell
pellets using Qiagen 96-well DNeasy kits. Sequencing libraries
were prepared using the Illumina Nextera Kit and custom bar-
coded adapters. Segregants from each respective cross were
pooled in equimolar fractions into multiplexed libraries, run on a
gel, size selected, and purified with the Qiagen Gel Extraction kit.
150� 150-bp paired-end sequencing was done on an Illumina
HiSeq4000 with Novogene.

All sequence processing and analyses were conducted in bash
and R, and specific programs and functions used are listed in
Supplementary Table 1. Sequencing reads were mapped against
the S288C reference genome (version S288C_reference_
sequence_R64-2-1_20150113.fsa from the Saccharomyces
Genome Database https://www.yeastgenome.org (accessed 28
January 2022)) using BWA version 0.7.7-r44 (Li and Durbin 2009).
Note, BY is a close derivative of S288C, the main reference strain
of yeast. Samtools v1.9 was then used to create a pileup file for
each segregant (Li et al. 2009). For both BWA and Samtools, de-
fault settings were employed. Base calls and coverages were gath-
ered for 44,429 SNPs that segregate in the cross and are spaced
approximately every 300 bp (Taylor et al. 2016). Low coverage
individuals (<0.7� average per site coverage) were removed from
analyses. Ninety percentage of segregants had an average per
site coverage of 2.5 or more across all SNPs and the median per
site coverage across all segregants in this study was 12. Diploid
and contaminated individuals were identified by abnormal pat-
terns of heterozygosity or sequencing coverage and excluded
from all analyses.

For each segregant, a raw genotype vector was determined based
on the percentage of 3S calls at each marker. We then used a
Hidden Markov Model (HMM) implemented in the “HMM” package
v 1.0 in R to correct each raw genotype vector. The HMM was used
both to impute genotype at markers lacking direct sequencing infor-
mation and to correct for sequencing errors at low coverage sites.
Both types of corrections were rare. The following probability
matrices (Rabiner 1989) were used, transitionProbabilitiy¼
matrixfc[0.(\dþ),.0001,.0001,.9999],2g and emissionProbability¼
matrixfc[0.(\dþ).25,0.75,0.75,0.25],2g. These values were taken from
past work (Taylor and Ehrenreich 2014; Lee et al. 2016, 2019; Mullis
et al. 2018); their appropriateness here was confirmed by visual
comparison of HMM outputs to raw genotype vectors.

Aneuploidies were identified based on segregants showing ele-
vated sequencing coverage across entire chromosomes.
Specifically, we employed the normalmixEM() function from the
mixtools library v 1.2.0 (Benaglia et al. 2009) in R to each segre-
gant, identifying chromosomes that had unusually high coverage
relative to the rest of the nuclear genome. A Chromosome II du-
plication in a subset of BYx3S mrp20-A105E MKT1BY and BYx3S
mrp20-A105E MKT13S segregants was the only detected aneu-
ploidy. The coverage of Chromosome II in aneuploid individuals
was roughly double the rest of the genome, suggesting the pres-
ence of 1 extra copy of that chromosome.

Phenotyping
Segregants were inoculated into broth containing 1% yeast ex-
tract, 2% peptone, and 2% dextrose (“YPD”). Cultures were grown
to stationary phase at 30�C over 2 days and were then pinned
onto YP plates containing ethanol (“YPE”) and 2% agar. YPE is 1%
yeast extract, 2% peptone, and 2% ethanol. Each pinned colony
results from clonal growth of a genetically distinct strain. Plates

were grown at 30�C for 2 days. Growth assays were conducted in
a minimum of 3 replicates across 3 plates, with randomized posi-
tioning of strains. On each plate, a BY parental strain was in-
cluded as a control. Plates were imaged with the BioRAD Gel Doc
XRþ Molecular Imager at a standard size of 11.4 � 8.52 cm2

(width � length) and imaged with epi-illumination using an expo-
sure time of 0.5 s. Images were saved as 600 dpi tiffs. ImageJ
(http://rsbweb.nih.gov/ij/ (accessed 28 January 2022)) was used to
quantify pixel intensity of each colony through the Plate Analysis
JRU v1 plugin (https://research.stowers.org/imagejplugins/
zipped_plugins.html (accessed 28 January 2022)), as discussed in
a previous study (Matsui and Ehrenreich 2016). In brief, each col-
ony was normalized to the BY control grown on the same plate to
account for batch effects. Then, the 3 normalized biological repli-
cates for a given strain were averaged to produce a single growth
value for each genetically distinct segregant. We used replicates
to calculate the broad sense heritability of growth on ethanol.
Specifically, all replicates of the 749 segregants engineered to
carry mrp20-A105E and specific MKT1 alleles were utilized as data
points in the fixed effects linear model growth � strain þ error.
From this model, we took the Sum of Squares of the strain term
and divided it by the Sum of Squares Total. This produced a
broad sense heritability estimate of 0.93.

Comparison of phenotypic variance between
mutant and wild-type segregants
To compare phenotypic variance between wild-type and mutant
segregants, we used the leveneTest() function in the car library (v
3.0.6) in R (Fox and Weisberg 2018). We employed the default set-
tings for this function, which use the median as the center for
each group rather than the mean, providing a more robust and
conservative test (Fox and Weisberg 2018).

Linkage mapping
Initial discovery of the spontaneous mrp20-A105E mutation was
done by performing linkage mapping with 385 haploid F2 segre-
gants (164 wild type and 221 hos3D) generated in Mullis et al.
(2018). The hos3D segregants had been engineered to lack the
gene encoding the histone deacetylase Hos3. As discussed in the
“Generation of segregants” section of the Materials and Methods,
this gene deletion had been introduced by transformation of PCR
tailed KanMX cassette into a BY/3S diploid. To identify mrp20-
A105E, we employed the fixed effects linear model growth �
hos3D þ locus þ hos3Dxlocus þ error, from which the hos3Dxlocus in-
teraction term was used to identify loci that differentially
explained growth in hos3D segregants. Examination of the
hos3Dxlocus interaction term led to discovery of the spontaneous
mrp20-A105E mutation, which was present in the BY copy of
MRP20 in only the hos3D segregants.

Following the identification of mrp20-A105E, we attempted to
identify genetically interacting loci using the fixed effects linear
model growth � MRP20þ locus þ MRP20xlocus þ error with only
hos3D segregants. From this scan, we examined the MRP20xlocus
interaction term. Only a single locus was identified in this scan at
a �log10(P) exceeding 4 and it passed even the most conservative
thresholds, including a Bonferroni threshold (Bland and Altman
1995) accounting for all SNPs in the cross. Three hundred and
sixty-one mrp20-A105E F3 segregants were then used to better re-
solve the Chromosome XIV locus. In the experiment, we
employed the fixed effects linear model growth � locus þ error and
examined the locus term, focusing on the Chromosome XIV locus,
whose significance also exceeded a Bonferroni threshold.
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To map loci affecting growth among mrp20-A105E segregants,
we generated new populations of mrp20-A105E MKT1BY (353) and
mrp20-A105E MKT13S (396) haploid segregants. The combined 749
mrp20-A105E segregants were used in linkage mapping with a for-
ward regression approach. We obtained residuals (“residuals1”)
from the fixed effects linear model growth � MKT1þ error and
then implemented a first genome-wide scan using the model
residuals1 � locus þ error. We examined the locus term and called
loci significant if they exceeded the 95th quantile of maximal
�log10(P-values) from 1,000 permutations (Churchill and Doerge
1994). Permutations were implemented by randomly shuffling
the residuals1 vector and rerunning the genome-wide scan. In the
first scan, we only called the single most significant locus on
each chromosome.

Following the first scan, we accounted for all detected loci us-
ing the fixed effects linear model residuals1 � locus 1þ locus 2 þ . . .

locus n þ error and obtained the residuals (“residuals2”). These
new residuals were used in another genome-wide scan with the
fixed effects linear model residuals2 � locus þ error. Permutation
thresholds were calculated anew for this second stage scan in the
same manner as the first scan and again a maximum of 1 signifi-
cant locus per chromosome was called. This process was re-
peated for 3 additional iterations, at which point no additional
loci were detectable using a permutation-based significance
threshold. Chromosome II was excluded from linkage mapping
due to the presence of its aneuploidy in a subset of individuals.
The Chromosome II duplication was tested for significance using
the model growth � MKT1þChromosome II þ error, from which the
Chromosome II term was examined.

We then conducted genome-wide scans in mutant segregants
for pairwise interactions with detected loci, similar to Brem et al.
(2005) and Storey et al. (2005). We used the fixed effects linear
model growth � detected_locus þ new_locus þ detected_locusxnew_lo-
cus þ error. In this model, detected_Locus corresponded to the peak
marker at one of the loci detected in the forward scan and
new_Locus represented a different marker. From each test, the P-
value of the detected_locusxnew_locus term was extracted.
Significance thresholds were determined in each scan using the
same permutation strategy described above, with different per-
mutations conducted for each of the previously detected loci. No
genetic interactions exceeded the scan-specific permutation
thresholds. We also explicitly tested for epistasis between MKT1
and the newly detected locus on Chromosome XIV that we refer
to as “SAL1” using the fixed effects linear model growth �
MKT1þ SAL1þMKT1xSAL1þ error. We examined the P-value for
the MKT1xSAL1 interaction term, which was greater than 0.05.

All linkage mapping was performed in R. Fixed effects linear
models were implemented using the lm() function in base R.
Although we had genotype calls for 44,429 SNPs, we only used a
subset of these markers in genetic mapping. The difference be-
tween the total and tested number of markers reflects the fact
that certain linked markers had exactly the same genotype calls
across all segregants. Such markers containing the same genetic
information will produce identical test results. To avoid unneces-
sarily inflating the number of tests, we randomly selected 1
marker in each set and used it in linkage mapping. Because each
genetic mapping population contained different numbers of seg-
regants and different recombination breakpoints, the number of
markers with unique information varied among them, from a
minimum of 7,025 in the F2 population used in identifying mrp20-
A105E to 18,246 in the F2 populations genetically engineered to
carry mrp20-A105E and particular MKT1 alleles.

In all scans, we required that the most significant site (“peak
marker”) be a minimum of 150,000 kb away from any other locus.
We also required peaks to be more than 20 kb from the edge of a
chromosome. We report confidence intervals using established
protocols based on drops in the logarithm of the odds (“LOD”),
here approximated by �log10(P) values, surrounding a peak
marker at a locus; here, we use conventional 2 LOD drops (Lander
and Botstein 1989).

Classification of inviable segregants
Initial discovery of the genetic interaction between mrp20-A105E
and MKT1 suggested that expressivity of mrp20-A105E was largely
determined by variation at MKT1. All mrp20-A105E MKT1BY segre-
gants exhibited very poor growth, while all mrp20-A105E MKT13S

segregants showed higher levels of growth. We termed this initial
mrp20-A105E MKT1BY segregant population as “inviable.”
Figures 7 and 8 include a gray dashed line to denote the highest
growth value observed among the original inviable segregants.

Resolving loci and identifying candidate genes
To help resolve loci, we utilized all 44,429 SNPs to analyze recom-
bination breakpoints within loci containing mrp20-A105E, MKT1,
and SAL1/PMS1. In each case, we split the appropriate segregants
into 2 groups depending on whether they carried the BY or the 3S
allele at the peak marker. Segregants’ haplotypes across the adja-
cent genomic window were then examined. The likely causal
regions were determined by identifying the SNPs fixed for BY
among all BY individuals and fixed for 3S among all 3S individu-
als. All recombination breakpoints were confirmed by visual in-
spection of raw Illumina sequencing using the view function of
BWA version 0.7.7-r44 (Li and Durbin 2009). Previously generated
F2 segregants (Mullis et al. 2018), newly generated F3 segregants,
and newly generated genetically engineered segregants were
used to localize MRP20, MKT1, and SAL1/PMS1, respectively.
Delimiting these loci in this manner was only possible because of
their large phenotypic effects. For other loci with smaller effects,
we identified all markers showing peak significance and listed
any genes containing these markers as “candidates.” These loci
and the candidate genes in them are provided in Table 1 and
Supplementary Tables 3 and 4.

Reciprocal hemizygosity experiments
Four hos3D F2 MATa segregants were used in all reciprocal hemi-
zygosity (RH) experiments focused on the Chromosome IV locus
(“IV”) (Steinmetz et al. 2002): 2 were hos3D IVBY XIVBY and 2 were
hos3D IV3S XIVBY. The 4 segregants were first mating-type
switched to enable mating of these segregants to produce homo-
zygous IVBY/IVBY, homozygous IV3S/IV3S, or heterozygous IVBY/IV3S

diploids. Each pairwise mating was performed and confirmed by
plating on mating-type tester plates. These diploid strains were
then phenotyped on YPE plates, which verified that IVBY has an
effect in diploids and acts in a recessive manner. Using the hap-
loid MATa and MATa versions of these 4 segregants, we individu-
ally engineered premature stop codons into DIT1, MRP20, and
PDR15 using CRISPR-mediated targeted gene disruption and lith-
ium acetate transformations (Gietz and Woods 2002). Plasmid-
based CRISPR-Cas9 was employed to target the beginning of each
coding region and 20-bp repair templates which contained a pre-
mature stop codon followed by 1-bp deletions were incorporated.
Each sgRNA and repair template was designed so that only the
first 15 (of 537), 26 (of 264), and 33 (of 1,530) amino acids would
be translated for DIT1, MRP20, and PDR15, respectively.
Engineered strains were confirmed by PCR and Sanger
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sequencing. After confirmation, wild-type and knockout strains
for each gene were then mated in particular combinations to pro-
duce reciprocal hemizygotes that were otherwise isogenic. A min-
imum of 2 distinct hemizygotes were generated for each allele of
each gene.

Construction of nucleotide replacement strains
Single nucleotide replacement strains were generated for MRP20
and MKT1 using a CRISPR/Cas9-mediated approach. For a given
replacement, the appropriate strain was first transformed with a
modified version of pML104 that constitutively expresses Cas9
using LiAc transformation (Gietz and Woods 2002; Laughery et al.
2015). We then inserted the KanMX gene using cotransformation
of a double-stranded DNA containing KanMX with 30-bp up-
stream and 30-bp downstream homology tails and gRNAs target-
ing the region containing the site of interest (Kannan et al. 2016).
DNA oligos and PCR were used to construct custom sgDNA tem-
plates which included crRNA and tracrRNA in a single molecule.
Next, we employed T7 RNA Polymerase to express sgDNA tem-
plates in vitro. DNase treatment and phenol extraction were used
to obtain purified sgRNAs. Transformants were selected on me-
dia containing G418, and KanMX integration was confirmed by
PCR. Next, KanMX was replaced with the nucleotide of interest.
To do this, integrants were cotransformed with 4 gRNAs targeting
KanMX, a 60-bp single-stranded DNA repair oligo, and a marker
plasmid expressing either HphMX or NatMX using electroporation
(Thompson et al. 1998). Marker plasmids were constructed by
Gibson assembly with HphMX or NatMX and pRS316 (Sikorski and
Hieter 1989; Gibson et al. 2009). Repair constructs were 60-bp
ssDNA oligos ordered from Integrated DNA technologies that in-
cluded upstream homology, the desired nucleotide at the site of
interest, and downstream homology. Transformants were se-
lected on media containing either hygromycin or nourseothricin,
depending on what marker plasmid was used. Replacement
strains were then confirmed by Sanger sequencing.

Following this strategy, the mrp20-A105E nucleotide was engi-
neered into 2 hos3D IV3S XIVBY segregants, and 2 hos3D IVBY XIVBY

segregants were restored to MRP20. Similarly, at MKT1 the causal,

nearest upstream and downstream SNPs were engineered into 2
hos3D IVBY XIV3S segregants. Similarly, we generate BY mrp20-
A105E, BY MKT13S, 3S mrp20-A105E, and 3S MKT1BY strains in this
manner. Each single nucleotide parental replacement strain was
then backcrossed to its own progenitor. Each subsequent diploid
was sporulated and tetrad dissected, and we confirmed haploid
genotypes by Sanger sequencing. The same approach was used
to generate 3S mrp20-A105E MKT1BY haploids by crossing 3S
mrp20-A105E and 3S MKT1BY strains. However, this strategy could
not be followed to generate BY mrp20-A105E MKT13S haploids, be-
cause, crossing BY mrp20-A105E and BY MKT13s strains failed to
produce any tetrads with 4 viable spores. Instead, we took BY
MKT13S strains and converted MRP20 to mrp20-A105E.

Mitochondrial genome instability experiments
Budding yeast are facultative anaerobes and can survive without
functional mitochondria (Contamine and Picard 2000). Cells with
defective mtDNA or no mtDNA are referred to as “petites” be-
cause they form small colonies relative to cells with mtDNA
which form normal-sized “grande” colonies (Ephrussi et al. 1949;
Dujon 1981). Mitochondrial genome stability can be quantita-
tively measured as the frequency of spontaneous petites in a
population of cells (Sherman 2002; Dimitrov et al. 2009). We per-
formed petite frequency assays as described in Dimitrov et al.
(2009). In brief, freezer stocks were streaked onto solid YPD media
and grown for 2 days at 30�C. Single colonies were then resus-
pended in PBS, plated across dilutions onto YPDG plates (1% yeast
extract, 2% peptone, 0.1% glucose, and 3% glycerol) and grown
for 5 days at 30�C. Plates were then imaged with the BioRAD Gel
Doc XRþ Molecular Imager at a standard size of 12.4 � 8.9 cm2

(width � length) and imaged with epi-illumination using an expo-
sure time of 0.5 s. Images were saved as 600 dpi tiffs. ImageJ
(http://rsbweb.nih.gov/ij/ (accessed 28 January 2022)) was used to
examine growth and quantitate colony size as discussed in
Dimitrov et al. (2009). Colonies were then classified as petite and
grande using a threshold defined as the maximum colony diame-
ter of observed petites among BY and 3S wild-type strains. Petite
frequency is the ratio of small colonies to total colonies.

Table 1. Candidate genes at detected loci have diverse cellular functions.

Candidate gene(s) Summary of associated function(s)

AFR1 Pheromone-induced projection (shmoo) formation; Septin architecture during mating
HOS2 Histone deacetylase, subunit of Set3 and Rpd3L complexes
YGL193C Haploid specific gene
IME4 Methyltransferase, conditionally essential for meiosis
SDH1 Flavoprotein involved in TCA cycle in mitochondria
BPT1 Vacuolar transmembrane protein
RNH203 Ribonuclease H2 subunit, ribonucleotide excision repair
BOP2 Unknown
ECM7 Putative integral membrane protein with a role in calcium uptake
YMR090W Unknown
NPL6 Component of the RSC chromatin remodeling complex
ECM5 Subunit of Snt2C complex involved in gene regulation in response to oxidative stress
AEP2 Mitochondrial protein; likely involved in translation
PBR1 Putative oxidoreductase; required for cell viability
SAL1 ADP/ATP transporter in mitochondria
PMS1 ATP-binding protein required for mismatch repair; required for both mitosis and meiosis
BRX1 Nucleolar protein involved in rRNA processing
YOR008C-A Unknown, potential transmembrane domain
TIR4 Cell wall mannoprotein; required for anaerobic growth
ISN1 Ionosine metabolism
ISW2 ATP-dependent DNA translocase involved in chromatin remodeling

Candidate genes were identified by looking at all genes within an interval that contained markers showing maximal significance. For this analysis, we considered
all SNPs within an interval, not just the subset used in linkage mapping. Candidate genes in these intervals are listed with brief annotations for the candidates are
provided here from the Saccharomyces Genome Database (Cherry et al. 2012). More information about these loci is provided in Supplementary Tables 3 and 4.
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Modeling growth and examining the model in
additional segregant populations
We modeled growth for mrp20-A105E segregants from the BYx3S
crosses fixed for mrp20-A105E and engineered at MKT1. We incor-
porated MKT1, the 16 detected loci, and the Chromosome II aneu-
ploidy into a fixed effects linear model growth �
MKT1þ locus1þ locus2 þ . . . locus16þChromosome II þ error. This
model was used to generate predicted growth values. We then
compared our observed growth values to these predictions. We
also obtained predictions for the original mutant population and
cloned parent strains from this linear model. These predictions
were compared to observed growth measurements, shown in
Fig. 8a. In addition, a ten-fold cross-validation approach was
employed in which we fit the model to distinct 9/10th subsets of
data and then used it to obtain phenotypic predictions for the
remaining 1/10ths of data. We then compared the predicted val-
ues to the observed growth values and obtained Pearson correla-
tions. We also fit a genomic best linear unbiased prediction
(“gBLUP”) model to these data in which genetic relatedness was
used to predict phenotype (Henderson 1975). Specifically, we
used the A.mat() function from the “sommer” library (v.4.0.9) in R
to generate the genetic relatedness matrix and the mmer() func-
tion to fit this matrix to our growth data and obtain phenotypic
predictions (Henderson 1975; Endelman and Jannink 2012;
Covarrubias-Pazaran 2016).

Relationship between detrimental alleles, growth,
and inviability
At each detected locus influencing response to mrp20-A105E, we
determined the allele associated with worse growth (“detrimental
allele”). Next, we counted the number of detrimental alleles car-
ried by each mrp20-A105E segregant and examined how pheno-
typic response to mrp20-A105E related to it. The MKT1 and SAL1
loci were not included when counting detrimental alleles, so that
this relationship could be examined across different MKT1-SAL1
genotype classes.

Results and discussion
A spontaneous mutation increases phenotypic
variance in the BYx3S cross
In a BY/3S diploid, a spontaneous mutation occurred in a core do-
main of Mrp20 that is conserved from bacteria to humans
(Fig. 1a, Supplementary Fig. 2, and Supplementary Table 2)
(Fearon and Mason 1992; Koc et al. 2001). This mutation resulted
in an alanine to glutamic acid substitution at amino acid 105
(mrp20-A105E). We sporulated this diploid, unaware of the muta-
tion, and obtained haploid BYx3S F2 segregants, some of which
possessed mrp20-A105E. We then phenotyped the segregants for
colony growth on agar plates containing glucose, a fermentable
carbon source, or ethanol, a respirable carbon source. In yeast,
colony growth assays are commonly used to measure the pheno-
typic effects of mutations (e.g. Dowell et al. 2010; Costanzo et al.
2016), as well as to characterize phenotypic differences among
genetically diverse strains (e.g. Bloom et al. 2013, 2015; Matsui
and Ehrenreich 2016). Here, cells from each segregant were
pinned onto agar plates and colony size was measured at a com-
mon endpoint, with final size a proxy for the number of mitotic
divisions that occurred.

The mrp20-A105E mutation was discovered because some
haploid BYx3S segregants showed near-zero growth (“inviability”)
on ethanol but not glucose. On respirable carbon sources specifi-
cally, loss-of-function mutations in MRP20 should cause poor
growth by disrupting translation in the mitochondrial compart-
ment and impairing cellular respiration. Unexpectedly, many
mrp20-A105E segregants exhibited high levels of growth on etha-
nol, with some possessing phenotypes similar to wild-type segre-
gants. The BYx3S mrp20-A105E segregants exhibited
substantially elevated phenotypic variance relative to wild-type
segregants (Fig. 1b; Levene’s test using median, P¼ 5.9 � 10�22).
Among the mrp20-A105E segregants, there were 2 modes, cen-
tered on 10% and 57% growth relative to the haploid BY parent
(bimodal fit log likelihood¼ 30; Supplementary Fig. 3). This in-
crease in phenotypic variance, as well as certain segregants
showing a lack of impairment by mrp20-A105E, suggested the
mutation displays variable expressivity on ethanol, our focal en-
vironment hereafter.

A large effect locus shows epistasis with mrp20-
A105E
Multiple lines of evidence suggest that epistasis with segregating
loci in the BYx3S cross causes mrp20-A105E’s variable expressiv-
ity. The same polymorphisms segregated among MRP20 and
mrp20-A105E segregants, which were derived from a common
diploid progenitor. All segregants were haploid and phenotyped
under the same conditions, ruling out dominance and environ-
mental effects as explanations, respectively. Also, we measured
the growth of yeast colonies, which contain hundreds of thou-
sands to millions of cells, making stochastic phenotypic differen-
ces among cells an unlikely explanation as well.

To identify loci that genetically interact with mrp20-A105E, we
performed linkage mapping using all MRP20 and mrp20-A105E
segregants, seeking loci that show pairwsie epistasis with the
mutation. In a genome-wide scan, we detected a single locus on
Chromosome XIV (interaction term in a full-factorial 2-way
ANOVA, P¼ 4.3� 10�16; Fig. 2a). This locus (“XIV”) exceeded even
a conservative threshold based on a Bonferroni correction (Bland
and Altman 1995) accounting for all 44,429 genotyped SNPs in
the cross. Individuals with the XIVBY allele grew worse than indi-
viduals with XIV3S allele in both MRP20 and mrp20-A105E segre-
gants, but to a greater extent among the mutants (Fig. 2b). XIV
explained 79% of the phenotypic variance within mrp20-A105E
segregants (ANOVA, P¼ 3.2� 10�31) and XIVBY was present in all
inviable segregants (Fig. 2b).

Yeast is a highly recombinogenic organism, with 1 centimor-
gan in genetic map distance roughly equal to 2.5 kb in physical
map distance (Cherry et al. 1997; Mancera et al. 2008). Thus, we
performed another cross, with the goal of using yeast’s high re-
combination rate to help resolve the causal polymorphism. We
mated 2 mrp20-A105E segregants that differed at XIV (mrp20-
A105E XIVBY � mrp20-A105E XIV3S; Fig. 3a and Supplementary
Table 2). From this advanced intercross, 361 F3 mrp20-A105E
progeny were sequenced and phenotyped. Linkage mapping with
these data reidentified XIV at a P-value of 2.50� 10�43 (ANOVA;
Fig. 3b and Supplementary Fig. 4). This locus also far exceeded a
Bonferroni threshold. Analysis of the peak marker and recombi-
nation breakpoints surrounding it delimited XIV to a single SNP
in the coding region of MKT1 (Fig. 3c). This SNP causes a substitu-
tion at amino acid 30, with BY and 3S encoding glycine and
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serine, respectively, and was validated by nucleotide replacement
in mrp20-A105E segregants (Fig. 3d). Notably, this specific SNP
was previously shown to play a role in mitochondrial genome
stability (Dimitrov et al. 2009).

Epistasis between MRP20 and MKT1 differs in
cross parents and segregants
Yeast is also highly amenable to genetic engineering (Schindler
2020), making it possible to validate results from linkage mapping
using allele replacement. To validate the epistasis between
mrp20-A105E and MKT1, we introduced all 4 possible combina-
tions of the causal nucleotides at these genes into BY and 3S hap-
loids using CRISPR/Cas9-mediated genetic engineering (Fig. 4).
The mrp20-A105E mutation affected growth in both parent
strains (t-tests, P in BY strain¼ 4.3� 10�24 and P in 3S
strain¼ 4.0� 10�4). However, the magnitude of the phenotypic ef-
fect differed between the 2: mrp20-A105E caused inviability in BY
but had a more modest effect in 3S. In addition, response to
mrp20-A105E was modified by MKT1 in a parent background-
dependent manner. Specifically, response to the mutation was
more severe in the presence of MKT1BY than MKT13S in 3S
(ANOVA, P¼ 0.01) but not BY [ANOVA, P¼ 0.99], presumably be-
cause BY mrp20-A105E strains were generally inviable.

Although linkage mapping initially suggested that MKT1

explains most of mrp20-A105E’s variable expressivity, our genetic

engineering results clearly showed this was not the case.

Specifically, BY mrp20-A105E MKT13S, 3S mrp20-A105E MKT1BY,

and 3S mrp20-A105E MKT13S all exhibited different phenotypes

than expected based on mrp20-A105E segregants (Fig. 4). These

results imply additional loci must also genetically interact with

mrp20-A105E and contribute to its variable expressivity.

Many additional loci affect the expressivity of
mrp20-A105E
To enable the identification of other loci influencing the expres-

sivity of mrp20-A105E, we generated 2 new BYx3S haploid F2

crosses using genetically engineered BY and 3S parents (Fig. 5a

and Supplementary Table 2). Both crosses were designed so that

all segregants in the same cross would carry mrp20-A105E and

the same MKT1 allele, either MKT1BY or MKT13S. By engineering

the crosses in this way, we increased the chance of detecting ad-

ditional loci contributing to the variable expressivity of mrp20-

A105E. From these engineered crosses, 749 total segregants were

obtained through tetrad dissection, ensuring these individuals

would have balanced allele frequencies at all loci and random
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multilocus genotypes. These segregants were then sequenced
and phenotyped for growth on ethanol.

In contrast to the bimodal phenotypic distribution observed in
the original mrp20-A105E segregants, these new crosses exhibited
continuous ranges of phenotypes, as well as higher phenotypic
variance (Fig. 5b). This finding suggests that genetically modify-
ing the cross parents altered the phenotypic effects of loci that
genetically interact with mrp20-A105E or MKT1, uncoupled linked
loci that also genetically interact with mrp20-A105E from MKT1,
or both. In both the MKT1BY and MKT13S crosses, mrp20-A105E
segregants ranged from inviable to nearly wild type. The distribu-
tions of phenotypes in the 2 crosses differed in a manner consis-
tent with their MKT1 alleles, with the mean of the MKT1BY

segregants lower than the MKT13S segregants (t-test,
P¼ 4.8� 10�34). These data show that regardless of the MKT1

allele present, additional loci can cause mrp20-A105E to show
phenotypic effects ranging from lethal to benign.

We next mapped these other loci influencing the expressivity
of mrp20-A105E. Excluding MKT1, which explained 18% of the
phenotypic variance in the new crosses, linkage mapping identi-
fied 16 new loci (Fig. 5c, Supplementary Fig. 5, and
Supplementary Table 3). We did not detect genetic interactions
among the loci, suggesting any epistasis between them is weak.
Of the new loci, the BY allele was inferior at 10 and superior at 6.
These loci individually explained between 0.79% and 14% of the
phenotypic variance in the new crosses. Thirteen of these loci re-
sided on a subset of chromosomes but were distantly linked: 4 on
Chromosomes XII, 3 on XIII, 2 on XIV, and 4 on XV. The 3 remain-
ing loci were detected on Chromosomes IV, VII, and XI. We delim-
ited these other loci to small genomic intervals spanning 1 (12
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loci), 2 (3 loci), or 3 (1 locus) candidate genes based on markers
showing peak significance (Supplementary Table 4). The candi-
date genes in these intervals functioned in many compartments

of the cell and implicated multiple pathways rather than a single
molecular process, suggesting the mechanistic basis of mrp20-
A105E’s variable expressivity is complex (Table 1).

The Chromosome XIV locus contains multiple
causal variants
Among the newly detected loci, the largest effect (14% pheno-
typic variance explained) was on Chromosome XIV near the first
locus we had detected at MKT1. The position of maximal signifi-
cance at this new site was 2 genes away from the end of MKT1,
with a confidence interval that did not encompass the causal var-
iant in MKT1 (Supplementary Table 4). Thus, the originally identi-
fied large effect XIV locus in fact represents multiple distinct
closely linked nucleotides that both genetically interact with
MRP20 and occur in different genes (Fig. 6a).

The new locus on Chromosome XIV was delimited to 2 genes,
one of which was SAL1, encoding a mitochondrial ADP/ATP
transporter that physically interacts with Mrp20 (Singh et al.
2020). A SNP in SAL1 that segregates in this cross was previously
linked to increased mitochondrial genome instability in BY
(Dimitrov et al. 2009), suggesting it is likely also causal in our
study. For this reason, we refer to this additional Chromosome
XIV locus as “SAL1.” We found no evidence for epistasis between
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MKT1 and SAL1 (interaction term in a full-factorial 2-way

ANOVA, P¼ 0.77). Although the MKT1-SAL1 locus had a large ef-

fect, it explained a minority of the phenotypic variance among

mrp20-A105E segregants in a model including all detected loci

(32% for MKT1-SAL1 vs 36% for all other loci collectively). Thus,

by enabling MKT1 and SAL1 to segregate independently through

genetic engineering and examining a large number of mrp20-

A105E segregants with different MKT1-SAL1 genotypes, we ob-

served a greater diversity of phenotypes among individuals with

the mutation than was originally seen and detected many addi-

tional loci contributing to the mutation’s expressivity.

Aneuploidy also contributes to the expressivity of
mrp20-A105E
Despite the fact that the identified loci explain most of mrp20-

A105E’s expressivity, some individuals exhibited growth that was

appreciably lower than expected, suggesting yet another uniden-

tified genetic factor was present (Fig. 6b). This finding led to the

detection of a Chromosome II duplication that reduced growth

(ANOVA, 1.2� 10�48). The aneuploidy was common among

mrp20-A105E segregants, with a higher prevalence when MKT13S

was also present (Fisher’s exact test, P¼ 1.5� 10�43;

Supplementary Table 5). The Chromosome II aneuploidy was not

seen among wild-type segregants. These data suggest that mrp20-

A105E increases the rate of aneuploidization and that genetic

variation in MKT1 influences the degree to which mrp20-A105E

segregants duplicate Chromosome II. The aneuploidy’s contribu-

tion to phenotypic variation was relatively minor, explaining 5%

of phenotypic variance among mrp20-A105E segregants in a

model also including all identified loci.

Multiple cellular mechanisms underlie poor
growth in the presence of mrp20-A105E
Evidence suggests mitochondrial genome instability contributes

to the variable expressivity of mrp20-A105E. First, mitochondrial

genome instability is known to cause poor growth on respirable

carbon sources, such as ethanol (Shadel 1999; Lipinski et al.

2010). Second, the exact variants that segregate in our cross at

MKT1 and SAL1 were previously linked to mitochondrial genome

instability (Dimitrov et al. 2009). Third, both Mrp20 and Sal1 func-

tion in the mitochondria (Koc et al. 2001; Kucejova et al. 2008).
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Fourth, 2 other candidate genes in the newly detected loci encode
proteins that function in the mitochondria (Table 1).

To examine whether mitochondrial genome instability con-
tributes to the variable expressivity of mrp20-A105E, we quanti-
fied petite formation, a measure of spontaneous mitochondrial
genome loss (Fig. 7) (Ephrussi and Slonimski 1955; Sherman 2002;
Dimitrov et al. 2009). This phenotype can be examined by plating
individual cells on media containing a respirable carbon source
and inspecting the resulting colonies; cells with defective mito-
chondria will produce petite colonies, while cells with functional
mitochondria will produce normal-sized colonies (Ephrussi et al.
1949; Dujon 1981; Dimitrov et al. 2009). The proportion of petite
and normal colonies produced by a strain provides an estimate of
its mitochondrial genome instability. Petite formation and colony
growth are distinct but related phenotypes: a high rate of petite
formation is one, but not the only, reason a strain might grow
poorly on ethanol.

In the petite assays, we examined MRP20 and mrp20-A105E BY
and 3S parent strains, as well as 16 MRP20 segregants and 42
mrp20-A105E segregants. Despite causing reduced growth in both
parents, mrp20-A105E only led to elevated mitochondrial genome
instability in BY (t-test, P¼ 0.013 in BY and P¼ 0.39 in 3S; Fig. 7a).
Also, although mrp20-A105E segregants exhibited increased mito-
chondrial genome instability relative to MRP20 segregants
(Wilcoxon rank-sum test, P¼ 0.023), especially at lower levels of
growth, a subset of inviable segregants did not show elevated pe-
tite formation (Fig. 7, b and c). These results show that mitochon-
drial genome instability is 1 cellular process contributing to
mrp20-A105E’s variable expressivity, but also imply that other
mechanisms are involved as well. This finding agrees with our

mapping results, which suggested that a number of distinct mo-
lecular pathways influence the phenotypic effect of mrp20-A105E
(Table 1).

Genetic underpinnings of mrp20-A105E’s
expressivity in segregants and parents
We determined the extent to which the identified loci explained
phenotypic variability among mutants. We fit a fixed effects lin-
ear model of growth as a function of all identified loci and the an-
euploidy. This model accounted for most (78%) of the broad
sense heritability among mrp20-A105E segregants. Furthermore,
phenotypic predictions for segregants based on this model were
strongly correlated with their observed phenotypes (Pearson’s
r¼ 0.85, P¼ 4.4� 10�209; Fig. 8a). A ten-fold cross-validation
analysis found this result was robust, with the ten-fold producing
correlations between observed and predicted phenotypes that
ranged from 0.78 to 0.91 (mean Pearson’s r¼ 0.84). In addition, ge-
nomic best linear unbiased predictions (gBLUPs) had a Pearson’s r
of 0.82 with observed phenotypes, which was roughly equal to
the correlation obtained using predictions from the fixed effects
linear model. These results suggest we have explained nearly all
of the genetic basis of mrp20-A105E’s variable expressivity.

These results show that the variable expressivity of mrp20-
A105E is driven by many loci. Confirming this point, the fixed
effects linear model including all detected loci was also effective
at predicting the phenotypes of genotypes that were not present
in the new engineered crosses, but had been generated through-
out the course of this work. For example, the model accurately
predicted the phenotypes of the original mrp20-A105E segregant
population (Pearson’s r¼ 0.90, P¼ 1.6� 10�39), as well as the
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Fig. 8. Detected loci quantitatively and qualitatively explain mutant phenotypes. a) We fit a linear model accounting for the effects of all detected loci
and the aneuploidy on the growth of mrp20-A105E segregants. This model not only explained the growth of the new BYx3S mrp20-A105E crosses
generated in this study, but also accurately predicted the phenotypes of the mutant parents and previously generated segregants. b) We examined
growth relative to the sum of detrimental alleles carried by a segregant. This relationship shows how collections of loci produce a quantitative
spectrum of phenotypes, including instances of qualitative phenotypic responses. This relationship explains the full range of responses, from inviable
to wild-type growth, across MKT1-SAL1 genotypes. The gray dashed line indicates the threshold used to call inviability.
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phenotypes of cross parents engineered to carry mrp20-A105E
(Fig. 8a). Moreover, the model explained both qualitative and
quantitative variation within and between the 2 XIV classes that
were originally seen among mrp20-A105E segregants.

Finally, we examined how diverse combinations of loci collec-
tively produced similar phenotypic responses to mrp20-A105E.
We examined the relationship between growth and the total
number of detrimental alleles carried by mrp20-A105E segregants,
keeping track of each individual’s genotype at MKT1 and SAL1,
the largest effect loci (Fig. 8b). The number of detrimental alleles
carried by a segregant showed a strong negative relationship with
growth, which was not observed in wild-type segregants
(Supplementary Fig. 6). Furthermore, regardless of genotype at
MKT1 and SAL1, the phenotypic effect of mrp20-A105E ranged
from lethal to benign in a manner dependent on the number of
detrimental alleles present at other loci. These findings demon-
strate that many segregating loci beyond the large effect MKT1-
SAL1 locus influence the expressivity of mrp20-A105E and enable
different genotypes in the cross to exhibit a broad range of
responses to the mutation, including inviability.

Conclusion
We have provided a detailed genetic characterization of the ex-
pressivity of a spontaneous mutation, mrp20-A105E. Response to
this mutation in a budding yeast cross is influenced by at least 18
genetic factors in total, with the largest effect due to 2 closely
linked variants. However, at least 15 additional loci segregate and
jointly exert greater effects than the largest 2, MKT1 and SAL1.
Different combinations of alleles across these loci produce a con-
tinuous spectrum of phenotypic responses to the mutation. Due
to tight linkage between MKT1 and SAL1 in the original cross
parents, the full extent of this continuum was not originally ob-
served, leading to an initial understanding of the expressivity of
the mrp20-A105E mutation that was simplistic. It was only once
we disrupted linkage disequilibrium between MKT1 and SAL1
through genetically engineering the parent strains and producing
new segregants that the full extent of mrp20-A105E’s variable ex-
pressivity was visible.

The identified loci largely explain mrp20-A105E’s variable ex-
pressivity and thus make it possible to answer practical and theo-
retical questions about background effects. For example, our
work helps to connect the manifestation of discrete, qualitative
mutational responses to their quantitative genetic underpin-
nings. Whether responses to a mutation appear qualitative may
depend on the combinations of responsive alleles in examined
individuals. In our case, tight linkage between the largest effect
loci, MKT1 and SAL1, made it appear at first that response to
mrp20-A105E might be more discrete in nature, as 2 phenotypic
modes were observed among mutants such that segregants with
the MKT1BY allele were often inviable (Fig. 1b). Yet, later work
showed these results were misleading and that segregants in all 4
genotype classes involving MKT1 and SAL1 in fact exhibit contin-
uous responses to mrp20-A105E. Our data suggest this is because
of the large number of additional loci that contribute to variable
expressivity in our study, which despite having small effects indi-
vidually are able to exert a large influence over segregants’
responses to mrp20-A105E collectively.

In addition, our findings imply that different individuals may
show similar responses to the same mutation due to distinct mo-
lecular and cellular mechanisms. When we examined mitochon-
drial genome instability, we found that most, but not all, mrp20-
A105E segregants that were inviable on ethanol exhibited

substantially elevated instability. However, a minority of the invi-
able mrp20-A105E segregants had highly stable mitochondrial
genomes, implying they grew poorly on respirable carbon sources
because of a different cellular mechanism. The cause of inviabil-
ity in these individuals is less clear, as identified candidate genes
functioned in many different processes (Table 1). This finding
likely reflects the fact that growth is a composite phenotype
shaped by many cellular processes. Supporting this point, gene–
gene deletion studies in yeast have shown genes in diverse cellu-
lar processes can genetically interact to affect growth (Costanzo
et al. 2016), illustrating the distinction between genetic interac-
tions and direct functional relationships between gene products
(Boone et al. 2007). With this said, we note that in other work on
discrete traits (Taylor and Ehrenreich 2014, 2015b; Lee et al. 2016,
2019; Taylor et al. 2016), we found a different outcome: identified
genes underlying background effects functioned in common
pathways and impacted the regulation of a single key gene.
These findings illustrate how the genetic basis of a background
effect may depend on the mechanisms giving rise to the affected
phenotype.

Another major area of interest regarding background effects is
their impact on evolution. Within a population, background
effects may influence whether beneficial alleles enable adapta-
tion or deleterious alleles are purged (Lang et al. 2011;
Kryazhimskiy et al. 2014; Johnson et al. 2019). Regarding the lat-
ter, in the case of mrp20-A105E, a highly deleterious allele in re-
spiratory conditions, we found that some segregants with the
mutation exhibited wild-type levels of growth. This finding dem-
onstrates how variable expressivity that is caused by epistatic
loci may enable some individuals to avoid phenotypic or fitness
impairments in the presence of deleterious mutations (Siegal and
Leu 2014), potentially muting purifying selection on these alleles.
Depending on the prevalence of background effects across differ-
ent mutations, epistasis between mutations and segregating loci
could have a substantial impact on the persistence of deleterious
mutations within populations over time.

Our results also inform efforts to understand variable expres-
sivity in other systems, including humans. For example, there is
interest in determining why people who carry highly penetrant
alleles known to cause disease do not develop pathological condi-
tions (Chen et al. 2016; Narasimhan et al. 2016; Riordan and
Nadeau 2017). Such resilience could provide insights into poten-
tial therapies, but our work indicates it is likely to involve numer-
ous loci. This speaks to the complicated and unexpected epistasis
that can arise between mutations and segregating loci in geneti-
cally diverse populations (Carlborg and Haley 2004; Shao et al.
2008; Dowell et al. 2010; Chari and Dworkin 2013; Mackay 2014;
Chandler et al. 2014, 2017; Taylor and Ehrenreich 2014, 2015a,
2015b; Paaby et al. 2015; Vu et al. 2015; Lee et al. 2016, 2019;
Taylor et al. 2016; Forsberg et al. 2017; Campbell et al. 2018;
Mullis et al. 2018; Hou et al. 2019). At the same time, our study
also provides reason for optimism. Despite the highly complex
genetic basis of mrp20-A105E’s variable expressivity, a gBLUP
model lacking any explicitly defined loci explained the muta-
tion’s expressivity as well as a model explicitly including all iden-
tified loci. This implies that directly mapping the epistatic loci
causing variable expressivity may not be necessary to achieve a
predictive understanding of genotype–phenotype relationships
among individuals carrying particular mutations. These insights
illustrate how characterizing background effects in genetically di-
verse populations is immediately relevant to inheritance, disease,
and evolution.
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