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Abstract: GaN-based green light-emitting diodes (LEDs) with different thicknesses of the low-
temperature (LT) p-GaN layer between the last GaN barriers and p-AlGaN electron blocking layer
were characterized by photoluminescence (PL) and electroluminescence (EL) spectroscopic methods
in the temperature range of 6–300 K and injection current range of 0.01–350 mA. Based on the results,
we suggest that a 20 nm-thick LT p-GaN layer can effectively prevent indium (In) re-evaporation,
improve the quantum-confined Stark effect in the last quantum well (QW) of the active region, and
finally reduce the efficiency droop by about 7%.

Keywords: InGaN/GaN multiple quantum well; low-temperature p-GaN layer; photoluminescence;
electroluminescence; localization effect

1. Introduction

Recently, GaN-based light-emitting diodes (LEDs), one of the most important opto-
electronic devices, have attracted much attention owing to significant progress in related
material growth and device manufacturing fields [1–5]. The external quantum efficiency
(EQE) of high-performance GaN-based LEDs has been recorded to exceed 80%, and they
have been extensively used in applications such as general illumination, displays, and
communications [6,7]. However, InGaN-based LEDs emitting light of a longer wavelength
in the green/yellow spectral range usually suffer from reduced emission efficiency, which
is known as the green gap [8–10]. Since the first reports of green light-emitting InGaN LEDs,
these devices have been used in a variety of commercial applications [11–14]. However,
green LEDs suffer from a reduction in EL efficiency under high injection currents, which is
known as “efficiency droop”. Generally, efficiency droop is caused by two main factors:
(i) a high content of In can generate structural defects acting as nonradiative recombination
centers due to a large discrepancy in atomic size between indium (In) and gallium (Ga), and
a large lattice mismatch of 11% between InN and GaN; (ii) a large lattice mismatch between
the InGaN well layer with a high In content and the GaN barrier layer causes strain-
induced polarization, resulting in a strong quantum-confined Stark effect (QCSE) [15–17].
Previous studies showed that the introduction of a low-temperature (LT) p-GaN layer
effectively improved the EL characteristics and reduced the efficiency droop in GaN-based
blue LEDs [18–21]. Nevertheless, the effect of an LT p-GaN layer on longer-wavelength
GaN-based LEDs has not been reported in detail, especially with different thicknesses of
the LT p-GaN layer.

In this study, three GaN-based green LEDs with different thicknesses of the LT p-
GaN layer were grown by metal–organic chemical vapor deposition (MOCVD), and their
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optical properties were studied using photoluminescence (PL) and electroluminescence
(EL) spectroscopic methods. The PL was slightly affected by the LT p-GaN layer, while
the EL showed a large difference in the peak energy, line width, and intensity at both 6 K
and 300 K with the increasing thickness of the LT p-GaN layer. The underlying carrier
dynamics in the GaN-based green LED were determined, as well as the temperature and
current behavior of the EL peak energy and line width.

2. Materials and Methods

GaN-based green LEDs were grown on a trenched Si (111) substrate using MOCVD.
The precursors of Al, Ga, In, N, and Si were trimethylaluminum (TMAl), trimethylgallium
(TMGa), trimethylindium (TMIn), ammonia (NH3), and silane (SiH4), respectively. During
the growth, first, a 25 nm-thick GaN nucleation layer was grown at 530 ◦C, followed by a
2 µm-thick undoped GaN layer, and a 2 µm-thick Si-doped GaN layer grown at 1080 ◦C.
Four pairs of InGaN/GaN multiple quantum wells (MQWs) with 2 nm-thick InGaN wells
and 14 nm-thick GaN barriers were grown under an ambient N2 atmosphere. For sample
A, a 20 nm-thick Mg-doped p-AlGaN electron blocking layer (EBL) and a 150 nm-thick
Mg-doped p-GaN contact layer were directly grown on the last GaN barrier layer of the
MQWs at 1000 ◦C and 950 ◦C, respectively. However, for sample B (or C), before growing
the EBL, a 20 (or 40) nm-thick LT p-GaN insertion layer was first deposited on the last GaN
barrier layer of the MQWs at 820 ◦C. Figure 1a shows the structure with an LP p-GaN layer.
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Figure 1. (a) Schematic diagram of green LED with a 20 nm-thick LT p-GaN layer. (b) Illuminated
green LED chip at 300 K.

An LED chip with a size of about 1.16 × 1.16 mm2 was fabricated using a conventional
mesa structure method, as shown in Figure 1b. The chip was mounted on a Cu cold stage
in a temperature-variable, closed-cycle He cryostat (ARS, Macungie, PA, USA) to vary
the sample temperature over a wide range of 6–300 K. The signals were analyzed using
a Jobin-Yvon iHR320 monochromator (Horiba, Kyoto, Japan) equipped with a thermo-
electrically cooled Synapse CCD detector. For the PL measurements, the 405 nm line of a
semiconductor laser (CNI, Changchun, China) was used as the excitation light source. For
the EL measurements, a Keithley 2400 source meter (Tektronix, Beaverton, OR, USA) was
used as the excitation current source.

3. Results and Discussion

Figure 2 shows the PL spectra of samples A, B, and C at 6 K and 300 K, which were
dominated by a green emission, similar to that obtained from a green InGaN/GaN MQW-
based LED [17,22,23]. For sample A, the peak energy and line width at 6 K, as shown
in Figure 2a, were 2.432 eV and 122 meV, respectively, while those at 300 K, as shown in
Figure 2b, were 2.428 eV and 144 meV, respectively. The variation in the PL peak energy
and line width at different temperatures can be attributed to the conversion of carrier
transfer mechanisms [23,24]. Compared with sample A, the peak energy, line width, and
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intensity of samples B and C slightly changed, as shown in Figure 2. This indicated that
the LT p-GaN layer with different thicknesses slightly affected the PL characteristics of the
GaN-based green LEDs.
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Figure 2. PL spectra of samples A, B, and C measured at 6 K (a) and 300 K (b).

To further evaluate the details of the effect of the LT p-GaN layer on the emission
mechanism of the active region of the MQWs, EL measurements were performed at 6 K
and 300 K with different amounts of injected current. Figure 3a shows the EL spectra of
three samples recorded at 6 K. For sample A, the peak energy and line width were 2.343 eV
and 87 meV, respectively. With the increase in the thickness of the LT p-GaN layer from 0 to
20 nm at 6 K, the peak energy showed a significant red shift of about 49 meV, accompanied
by an increase in the line width of about 40 meV. However, when the thickness of the
LT p-GaN layer increased from 20 to 40 nm at the same temperature, the peak energy
showed a slight red shift of about 10 meV, accompanied by an increase in the line width of
about 4 meV. Figure 3a also shows that the integrated EL intensity significantly increased
with the increase in the thickness of the LT p-GaN layer. The enhancement factor for the
integrated EL intensity was about 1.74 for sample B and 1.79 for sample C. Moreover,
with the increase in the thickness of the LT p-GaN layer at 300 K, as shown in Figure 3b,
the peak energy and line width of the EL spectrum showed a similar trend; however, the
integrated intensity first increased (1.66 for sample B) and then decreased (1.48 for sample
C), unlike that at 6 K. The results indicate that the LT p-GaN layer significantly affected
the EL characteristics and had a weak effect on the PL characteristics. These phenomena
can be attributed to the differences between PL and EL, as described in a previous study:
the PL spectra originated from every QW, while the EL spectra mainly originated from the
last QW due to the difficulty of injecting holes from the p-type region into QWs [21,25,26].
Therefore, it can be inferred that the LT p-GaN layer had a greater effect on the last QW,
rather than the other QWs far away from the LT p-GaN layer.

To further clarify the effect of the LT p-GaN layer on green InGaN/GaN MQWs,
especially the last QW, Figure 4 shows the temperature dependence of the EL peak energy
and line width of three samples at 2 mA. At 6 K for sample A, carriers exhibited a random
distribution among the potential minima in the MQWs. When the temperature increased
from 6 to 300 K, the temperature behavior of the peak energy showed an approximate
V shape: the peak energy decreased as the temperature increased from 6 to 100 K, and
the peak energy increased as the temperature increased from 100 to 300 K. At the same
time, the line width decreased below the critical temperature of about 100 K, significantly
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increased from 100 to 180 K, and slightly increased from 180 to 300 K. These data indicate
the following: as the temperature increased from 6 to 300 K, first, weakly localized carriers
were thermally activated, relaxed down into other strongly localized states via hopping,
and reached a saturated redistribution below about 100 K; then, the thermal broadening
effect of localized carriers in the MQWs began to dominate the emission process, until most
localized carriers became progressively mobile with a further increase in temperature to
300 K [16,23,27]. Moreover, the peak energy and line width of the three samples showed
similar temperature-dependent behavior, as shown in Figure 4.
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Furthermore, as the thickness of the LT p-GaN layer increased, the EL measurement
results also exhibited the following properties. First, on increasing the thickness of the LT
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p-GaN layer from 0 to 20 nm, the EL spectra showed a red shift and spectrum broadening
in the entire temperature range. This indicated that the active region in sample B had a
higher In content than sample A (without an LT-GaN layer) because a higher In content
in the active region could result in a smaller band gap energy and localized character of
carrier recombination, owing to more significant composition fluctuations in the InGaN
matrix. In other words, inserting an LT p-GaN layer between the active region of the
MQWs and the p-AlGaN EBL could prevent IN re-evaporation from the active region of
the MQWs (particularly in the last QW) during high-temperature p-AlGaN layer growth,
leading to a high In content for sample B. Second, as the thickness of the LT p-GaN layer
further increased from 20 to 40 nm, no significant change was observed in the peak energy
and line width, indicating that inserting a 20 nm-thick LT p-GaN layer was sufficient for
preventing the thermal degradation of the MQWs by suppressing the interdiffusion and
re-evaporation of In in the MQW layers.

In addition, Figure 5 shows the peak energy and line width of EL spectra of samples
A, B, and C as a function of the injection current at 300 K. For sample A, the peak energy
monotonically increased with the increasing injection current, while the line width first
decreased in the low excitation range of 0.01–10 mA and then increased as the excitation
power was further increased to 350 mA. These spectral behaviors indicate that the emission
process of the MQWs was dominated first by the Coulomb screening of the QCSE and
then by the filling of the localized states with the increasing injection current [17,28]. For
sample B, however, different phenomena were observed. In contrast to sample A, the peak
energy was almost unchanged, accompanied by the broadening of the line width with
increasing excitation power from 0.01 to 0.05 mA, as shown in Figure 5. This shows that
the defect-related nonradiative recombination started to affect the recombination process
of the MQWs. With a further increase in the injection current, above 0.05 mA, since the
nonradiative centers gradually became saturated, the Coulomb screening effect of free
carriers started to dominate the recombination process of the MQWs [29]. Therefore, a
similar phenomenon as discussed for sample A was observed in the higher current range
of 0.01–350 mA of sample B. Moreover, as the thickness of the LT GaN layer continued to
increase to 40 nm (sample C), the critical current IMax increased, indicating an increase in the
defect density. Moreover, as the thickness of the LT GaN layer increased, the decrease in the
line width caused by the Coulomb screening of the QCSE became weaker. Thus, it can be
concluded that the LT GaN layer could weaken the QCSE in MQWs, especially the last QW.
The weakening of the QCSE can be attributed to a decrease in stress-induced piezoelectric
polarization. Consequently, the LT GaN layer helped to reduce the intensity of the internal
piezoelectric polarization field generated near the last QW due to the large lattice mismatch
between the last barrier layer and the AlGaN EBL, thus improving the QCSE of samples
B and C compared with sample A. Moreover, the EL peak energy decreased, and the line
width increased with the increasing thickness of the LT GaN layer, as shown in Figure 3.
This can be attributed to a competition between two factors: a higher In content resulted in
a significant red shift and broadening of the EL peak; however, the improvement in the
QCSE partially compensated for the red shift and broadening.

Considering the abovementioned EL characteristics, we found that the different thick-
nesses of the LT GaN layer could affect the In content, the QCSE, and the defect density in
the InGaN-based green MQWs, especially the last QW. For sample A (without an LT GaN
layer), the EBL was grown at 1050 ◦C after the last GaN barrier was grown. This caused
the re-evaporation of In, reducing the In composition and making the In distribution more
uniform in the active region of the MQWs. At the same time, the large lattice mismatch
between the EBL and last barrier layer generated a strong internal piezoelectric polarization
field near the last QW, increasing the major QCSE, as shown in Figure 6a. For sample B
(with a 20 nm LT GaN layer), the active region should have had a higher In content and
more significant potential inhomogeneity compared with sample A (without an LT-GaN
layer) because inserting an LT p-GaN layer between the active region of the MQWs and
the p-AlGaN EBL can effectively prevent In re-evaporation from the active region of the
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MQWs during high-temperature p-AlGaN growth. In addition, it should be noted that the
LT p-GaN layer reduced the internal piezoelectric polarization field generated near the last
QW, thus improving the QCSE of sample B. However, when the thickness of the LT GaN
layer continued to increase to 40 nm, the In content and distribution, as well as the QCSE in
the active region, were no longer affected. This was because the 20 nm-thick LT GaN layer
was sufficient to prevent In re-evaporation and improve the QCSE according to the almost
unchanged spectra of samples B and C. In addition, the growth temperature of the LT GaN
layer was much lower than the general growth temperature of GaN, inevitably leading to
an increase in the number of defects or dislocations, and even affecting the active area, i.e.,
the nonradiative recombination was enhanced, as shown in Figure 5.
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To evaluate the effect of the LT p-GaN layer on the efficiency droop in these three
samples, the integrated EL intensity divided by the current, i.e., relative EQE, was plotted
as a function of the injection current at 300 K, as shown in Figure 7. As the injection current
increased from 0.01 to 350 mA, these samples showed a significant efficiency droop: the
EQE first increased due to the gradual saturation of nonradiative recombination centers
and then decreased (i.e., efficiency droop), mainly due to electron leakage [19,20]. To
qualitatively compare the efficiency droop for the three samples, efficiency droop can be
defined as follows:

F =
ηMax − η350 mA

ηMax
(1)

where ηMax is the maximum value of EQE from 0.01 to 350 mA; η350 mA is the value of EQE
at 350 mA.
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As shown in Figure 7, when the thickness of the LT p-GaN layer increased from 0 to
20 nm, and even to 40 nm, the efficiency droop clearly decreased from 46% to 39% and then
increased to 41%. Together with the previously observed enhancement of the EL intensity
for sample B (Figure 3), this improvement in the efficiency droop for sample B can be mainly
attributed to the increase in the hole injection efficiency and the suppression of electron
leakage, owing to the enhanced localization effect by suppressing the evaporation of the In
component, and the reduced QCSE by reducing stress-induced piezoelectric polarization.
Furthermore, the increase in the efficiency droop for sample C can be attributed to the
fact that the LT p-GaN layer was so thick that it produced defects and reduced the crystal
quality of the p-AlGaN EBL and the p-GaN layer, even to the last QW, thus decreasing the
hole injection efficiency.

4. Conclusions

In summary, we evaluated the effect of an LT p-GaN layer with different thicknesses
on GaN-based green LEDs by EL and PL measurements in a temperature range of 6–300 K
and an injection current range of 0.01–350 mA. The PL spectra were not affected by the
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LT p-GaN layer; however, the EL spectra showed a large difference in the peak energy,
line width, and intensity at both 6 K and 300 K with the increasing thickness of the LT
p-GaN layer. These results show that the In content of the active region of the MQWs
significantly increased by preventing In re-evaporation from the active region of the MQWs
and improving the QCSE after increasing the thickness of the LT GaN layer from 0 to 20 nm.
Deterioration in the crystal quality occurred with a further increase in the thickness of the
LT p-GaN layer from 20 to 40 nm, according to the temperature and current behavior of
the EL peak energy and line width. In addition, the sample with a 20 nm-thick LT p-GaN
layer showed the smallest efficiency droop over the entire injection current range tested at
300 K. The significant improvement in the optical performance can be mainly attributed to
the increase in the hole injection efficiency and the suppression of electron leakage owing
to the insertion of the LT p-GaN layer.
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