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Abstract: Hematopoietic Stem Cells (HSCs) are a unique population of cells, capable of reconstituting
the blood system of an organism through orchestrated self-renewal and differentiation. They play a
pivotal role in stem cell therapies, both autologous and allogeneic. In the field of gene and cell therapy,
HSCs, genetically modified or otherwise, are used to alleviate or correct a genetic defect. In this
concise review, we discuss the use of SFVpsc_huHSRV.13, formerly known as Prototype Foamy Viral
(PFV or FV) vectors, as vehicles for gene delivery in HSCs. We present the properties of the FV vectors
that make them ideal for HSC delivery vehicles, we review their record in HSC gene marking studies
and their potential as therapeutic vectors for monogenic disorders in preclinical animal models. FVs
are a safe and efficient tool for delivering genes in HSCs compared to other retroviral gene delivery
systems. Novel technological advancements in their production and purification in closed systems,
have allowed their production under cGMP compliant conditions. It may only be a matter of time
before they find their way into the clinic.

Keywords: foamy virus; gene therapy; HSC; gene marking; FV gene transfer to HSCs; gene
therapy alternatives

1. Introduction

Hematopoietic Stem Cells (HSCs) are rare cells residing in the Bone Marrow (BM) that can support
blood cell production for the lifetime of an individual. This is achieved through HSCs potential to
differentiate and self-renew [1]. The self-renewal process is the central dogma in stem cell biology and
is a character that is lost when HSCs are extensively manipulated ex vivo; this observation argues for
the substantial contribution of the BM milieu in supporting HSCs. Practically, both HSC nature and
BM nurture, in a coordinated interplay, allow HSCs to express their unique characters [2]. What has
been elusive is the HSC per se; HSC cannot be identified by morphology but only by surface markers
and functional assays.

In humans, HSCs are considered as CD34+ cells residing in the mononuclear cell population
of the BM. Not all HSCs are CD34+ but a significant fraction of CD34+ cells are HSCs; this circular
argument can be rephrased to convey that CD34+ cells are enriched in HSC and CD34 marking is used
to assay whether a certain cell population has enough HSC to serve as a donor for a transplantation
experiment [3]. The latter is the sole surrogate marker to assay whether a population of cells has the
potential to support hematopoiesis in a myeloablated host. In addition, Stem Cell Transplantation
(SCT), is the ultimate marker to support the potential of a viral vector to correct a genetic defect in a
HSC; the marked or corrected cells of the donor will be present in the blood cells of the recipient host
and will provide phenotypic correction for a lifetime.
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Allogeneic SCT (ASCT) has been used since around the ‘70s for the treatment of acute leukemias.
ASCT for genetic defects such as thalassemia was introduced in the 90s and achieved high cure rates
for those who had a suitable donor [4]. In contrast, transplantation with autologous gene-corrected
HSCs entered the therapeutic armamentarium around the year 2000 and was only recently endorsed
as a therapeutic option by the FDA [5]. Gene correction for HSC requires the permanent integration of
the vector in the host-HSC genome; if episomal, the vector is destined to dilute out at some point in
the subsequent cell divisions since episomes do not faithfully follow the cell’s DNA mitotic cycles [6].
Retroviruses are viruses with potential of permanent integration, which is a prerequisite for viral gene
expression and a productive life cycle.

There are two subfamilies of Retroviruses: the first is the Orthoretrovirinae that includes the Genera
Lentivirus and Gammaretrovirus (GV), and the second is Spumaretrovirinae that includes the genera
Simiispumavirus and Felispumavirus [7]. The human foamy virus isolates are actually chimpanzee
foamy viruses. There are three to date: human isolate HSRV clone 13 SFVpsc_huHSRV.13, human
isolate BAD327 SFVptr_huBAD327, and human isolate AG15 SFVptr_huAG15 [7]. For simplicity
and familiarity reasons, in this article, wherever we refer to SFVpsc_huHSRV.13 we shall use the
name PFV, HSRV, or FV vectors. The first vectors to be developed for gene transfer purposes were
those with the gamma-retroviral backbones and were used for genetic correction of immunodeficiency
syndromes after extended preclinical validations [8,9]. However, along with the successes, novel
problems emerged; The not-so-random insertion of the retroviruses close to oncogenes, resulted in
the development of leukemias [10]. The development of high throughput technologies allowed the
mapping of Retroviral Integration Sites (RIS) and shed light on the gammaretroviral vector potential to
cause leukemias, in relation to their preference for specific genomic sites. Gammaretroviral vectors as
well as Lentiviral vectors demonstrate a preference for the integration of their retroviral cDNA into
transcriptionally active sites in the host genome [11]. In addition, the Gammaretroviral vectors showed
an increased preference for landing near oncogenes, a potentially dangerous condition [12]. Further
data showed that different genera of retroviruses have distinct preferences for genomic integrations:
Gammaretroviral vectors and Foamy Viral vectors prefer to integrate in proximity to transcription
start sites and regulatory elements like CpG islands, while Lentiviral vectors tend to integrate within
coding sequences [13–15]. Beyond safety, a problem that retroviruses had in relation to the need for
long-term expression in the context of HSCs, was the frequent observed silencing of the transferred
transgene. Although silencing was related to the methylation of the retroviral DNA [16,17], a problem
that could be solved with the use of insulator elements [18] or partially reversed with hypomethylating
agents [19], the quest for a more efficient gene transfer vehicle did not seize.

In a chronological order, the two other kinds of retroviruses that were tested for their HSC
gene transfer potential were the Lenti- and the Foamy- or Spuma- derived vectors. In a seminal
paper on Lenti-vectors, the authors reported long-term gene marking in CD34+ cells transplanted in
NOD/SCID mice [20]. Reports on the potential of Spuma- (or Foamy Virus, FV) derived vectors to
transduce efficiently both murine and human HSCs and to express the transferred gene in a long-term
manner, came soon after [21]. Although, currently, Lenti has gained tremendous popularity as a gene
transfer tool and has obtained commercial approval for human use, FV-derived vectors are a safe
and efficient alternative for gene transfer into HSCs [22,23]. Beyond HSC gene transfer, FV vectors
of feline origin have been developed as gene transfer vehicles and have been tested so far in cell
lines [24]; an interesting application of these vectors is their use as vehicles for the transfer of genes
that induce immune responses to feline viruses [25]. In this review, we will present all the relative data
that confirm the potential of FV-derived vectors as a non-inferior vehicle for HSC gene transfer and
therapy. The main features of each retroviral gene delivery system are summarized in Table 1.
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Table 1. Features of Retroviral gene delivery systems.

Vector System Lenti- Gammaretro- Foamy-

Transgene Capacity (kb) 9 [26] 10 [27] At least 9 [28]
Self-Inactivating (SIN)

design + [29] + [30] + [31]

Generation 3rd 3rd 3rd
Presence of insulators in

design + + +

Pseudotyping + + -
Cell cycle requirement

cGMP complience + + possible

Preferred integration
sites in host genome

Active transcriptional
units [11]

Transcriptional start sites
and CpG islands [11,32]

Constitutively lamina
associated regions

(cLAD) and less often
CpGs [15]

2. Features of FV Vectors for HSC Gene Delivery

A number of features are essential for any vector to be suitable for HSC gene transfer. Target cell
tropism is the principal condition, and FV vectors have shown that they can transduce a number of cell
lines and murine hematopoietic progenitors and stem cells early on during the vector development
history [21,33,34]. The broad spectrum of permissive cells for FV transduction, suggested that an
abundant molecule on the cell surface was facilitating FV attachment and/or entry. This molecule
was later identified as heparan sulfate [35,36]. The expression of heparan sulfate in a wide variety
of cells and its use by FVs as a non-specific receptor could explain the wide cell tropism that this
vector demonstrates.

Another key principal for any gene transfer vehicle is its ability to deliver its cargo into non-dividing
cells such as the HSCs. This principle was assessed through experiments that tested FV vector transgene
expression in vivo after transplantation of transduced HSCs. Given that reporter gene expression can
be traced in transplant recipients, it can be inferred that true, non-dividing HSCs were transduced by
FV vectors [21,37]. However, gene transfer in HSCs occurs after the 5FU treatment of the HSC donor
animals and the ex vivo manipulation of cells under strong cytokine stimulation; in such conditions,
HSCs are practically forced to divide. Thus, conclusions on FV gene transfer into non-dividing cells
from such experiments could not be confidently reached. It was later shown in a different cellular
system that although FV DNA lacks nuclear localization signals, the FV DNA can survive long enough
in the cytoplasm in anticipation of a subsequent cell division that will result in nuclear membrane
break down [38,39]. Under such conditions, FV DNA can enter the nucleus and establish a productive
infection or transduction. However, it should be clarified that FVs are complex retroviruses. Their
replication demands an RNA intermediate from which viral cDNA synthesis occurs by the activity
of viral reverse transcriptase. Furthermore, in in vitro systems, it has been observed that the reverse
transcription of viral RNA is completed before virus budding [13].

Following cellular entry and nuclear penetration, gene transfer vehicles must also have long-term
expression in daughter cells. This is a prerequisite for therapeutic procedures whose results are expected
to span the lifetime of an individual. Vector gene silencing occurs through DNA methylation/histone
acetylation and has been a central problem in gene transfer with retroviral vectors [16,17]. This does
not seem to be a problem with FV vectors, since (i) transgene silencing has not been reported in any of
the in vivo studies published so far and (ii) it has been shown that FV Long Terminal Repeats (LTRs)
have the potential to insulate the vector genome when integrated in the host cell DNA [31,40]. The FV
insulation can be seen as a double-edged sword; it protects the transgene from external effects but
also protects the genomic environment from the effects of the FV vectors. This prompts the issue of
activation of neighboring oncogenes at the integration site. Compared to LVs and GVs in in vitro
immortalization assays, FV vectors had the lowest rate of read-through transcripts. When the LMO2
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site was targeted for insertion, LMO2 mRNA increments were 280x for GV, 200x for LV, and 45x for FV
vectors, normalized for genomic integration site, indicating insulator properties of the LTR. This low
read-through transcription of an integrated FV vector occurs due to a 36 bp long CTCF binding motif
inside its LTR. CTCF is the major chromatin insulator protein in vertebrates and binds the CCCTC
sequence via various combinations of 11 zinc fingers [41].

After cell tropism and long-term expression is the issue of safety. From data on zookeepers that
are chronic FV carriers, we have reassuring evidence that wtFV, causes no harm to its hosts [42,43].
However, beyond the wtFV non-pathogenic characteristics, foamy viral vectors possess a number
of features making them attractive for use in gene therapy. Current FV designs consist of a split
four plasmid system: the transfer vector and three accessory or helper packaging plasmids [44,45].
The packaging plasmids encode the Gag, Pol, and Env proteins; the Tas (or Bel1) and Bet proteins
required for the infection and replication of the wtFV are dispensable for vector production and can be
omitted. Furthermore, the vectors have a self-inactivating (SIN) design; deletion of the 3’LTR U3 region
in the transfer plasmid is copied in in the 5’LTR sequence during packaging, rendering the deleted FVs
safe for gene therapy applications. Bet deletion also renders the host cell susceptible to superinfection
(multiple rounds of infection), a desirable feature for difficult to transduce cell targets [15,31,46]. PFV
vectors were developed independently in the States and in Europe by Russel’s [44] and Rethwilm’s [47]
groups, respectively. Here, we shall elaborate on the vectors developed by the Russel group. The FV
vectors originated from the wtFV strain SFVpsc_huHSRV.13 [48]. The wt provirus map is presented in
Figure 1. The viral cDNA contains three overlapping open reading frames (ORFs). The viral cDNA also
encodes the genes gag, pol, and env. The latter three are typical of all retroviruses. The aforementioned
overlapping ORF encodes the genes bel1/tas, bel2, and bel3. Tas is a transactivator protein that binds
into the internal promoter present in env and 5′LTR promoters and enhances the transcription of the
wt integrated FV viral genome. Additionally, Bet results from the translation of spliced bel1 and bel2
ORF mRNA. Bel1-3 and Bet are not required for viral replication in vitro. Thus, they are omitted from
vector designs. The current vectors comprise of four plasmids. A transfer vector with deleted viral
LTRs. Some important cis-acting elements exist between the 5′LTR and gag, a part of the 5′ gag (CAS I)
sequence, a part of the 3′ pol (CAS II) sequence, and a part of the 5′ env sequence. The 3′ LTR bears
a deletion in the U3 region. Additionally, the 5′ LTR is fused with the CMV promoter to render the
vector Tas independent. In order to avoid the generation of the replication competent virus in the
packaging cell lines, the Gag, Pol, and Env are expressed by separate plasmids. The coding sequences
bear minimal overlap [21,28,44,49].

In the recent years, more light has been shed on the integration site profile of FVs on the host cell
genome. On studies performed on human HSCs transduced with FV vectors, the vectors seemed to
prefer integrating upstream of transcription start sites specifically within CpG islands, with only 4.4%
of the integration sites to be 50kb proximal to proto-oncogenes [13,31,41]. Although Integration Sites
(IS) proximity to the genes remains largely random, the preference that the FV vectors display makes
them relatively safer than GV and LV vectors, as they prefer constitutively lamina associated regions
(cLAD) and less often CpGs [15] to integrate.

An issue of interest in gene therapy applications is the transgene payload that a vector can carry.
Transgene payload is of paramount importance because regulated gene expression requires non-coding
sequences of significant length. As a rule of thumb, one should not exceed the length of the wt genome
or a significant drop in titer is inevitable. Foamy viruses have the largest genome among retroviruses
and as a result, FV vectors have enough space to accommodate a little over 9 kb of exogenous DNA [44].



Viruses 2020, 12, 332 5 of 13

Viruses 2020, 12, x FOR PEER REVIEW  5 of 12 

 

and ultracentrifugation [51]. Both purification approaches are performed in closed systems compliant 

with  cGMP  and  yield  significantly pure preparations. Lastly,  in  regard  to  storage,  although  not 

reported  in  the  literature  per  se, we  have  developed  a  freezing medium  that  allows  repeated 

freeze/thaw cycles with 80–90% yields in vector titer. 

 

Figure 1. Third generation Foamy Virus (FV) vector system. At the top wtPFV provirus genome is 

depicted. The LTR  contains  the entire U3  region of  the Human Foamy Virus  (HFV.). Red arrows 

indicated the promoters driving the expression of FV genes, as well as the internal promoter present 

inside the env sequence driving the expression of tas. tas is expressed at basal levels when the provirus 

integrates into host cell genome. Upon translation, Tas binds to the LTR and internal promoter and 

enhances the transcription of gag, pol, and env. Additionally, Tas enhances the transcription of bel1, 

bel2, and bel3. bel1 and bel2 transcripts splice into a single mRNA whose translation generates Bet. In 

third  ‐generation  systems,  the FV genome  is  split  into a  four‐plasmid  system  comprised of  three 

helper  plasmids  encoding  gag,  pol,  and  env  under  the  control  of  a  CMV  promoter  and  a  pA 

(polyadenylation  signal)  to  allow  the  packaging  cell  lines  to  express  the  proteins  at  high  levels. 

Transfer vector is comprised of deleted LTRs. Viral RNA expression is driven by a CMV promoter 

and an important cis‐acting element sequence between the 5′LTR and gag, a part of the 5′ gag (CAS I) 

sequence, a part of the 3′ pol (CAS II) sequence and a part of the 5′ env sequence. These sequences are 

necessary for efficient virion assembly. The CMV 5′LTR fusion renders the viral vector production in 

packaging cell lines (HEK293T) Tas independent. Moreover, there is a deletion of the U3 region of 

LTR. Following  integration  into  the  transduced  cell genome,  the Tas dependent LTR promoter  is 

regenerated. This fact renders the vector SIN and shuts the expression driven by 5′ LTR off. Transgene 

expression is driven by internal promoters. 

3. Gene Marking Studies in Small Animals 

Replication incompetent FV vectors were shown to transduce nearly every cell line including 

hematopoietic  cell  lines  [33,34]. As  the next  leap  forward, FV vectors were  tested  for  their  gene 

marking potential with murine HSCs after transplantation into lethally irradiated hosts [21]. The data 

showed that FV vectors could transduce murine HSC with a marking efficiency of about 50% and 

after transplantation there was sustained expression of the transgene for over 6 months. Similarly, 

when human HSCs (CD34+) cells were transduced and transplanted in ablated NOD/SCID animals, 

high levels of gene marking were observed across all lineages, indicating the transduction of a true 

Figure 1. Third generation Foamy Virus (FV) vector system. At the top wtPFV provirus genome is
depicted. The LTR contains the entire U3 region of the Human Foamy Virus (HFV.). Red arrows
indicated the promoters driving the expression of FV genes, as well as the internal promoter present
inside the env sequence driving the expression of tas. tas is expressed at basal levels when the provirus
integrates into host cell genome. Upon translation, Tas binds to the LTR and internal promoter and
enhances the transcription of gag, pol, and env. Additionally, Tas enhances the transcription of bel1, bel2,
and bel3. bel1 and bel2 transcripts splice into a single mRNA whose translation generates Bet. In third
-generation systems, the FV genome is split into a four-plasmid system comprised of three helper
plasmids encoding gag, pol, and env under the control of a CMV promoter and a pA (polyadenylation
signal) to allow the packaging cell lines to express the proteins at high levels. Transfer vector is
comprised of deleted LTRs. Viral RNA expression is driven by a CMV promoter and an important
cis-acting element sequence between the 5′LTR and gag, a part of the 5′ gag (CAS I) sequence, a part
of the 3′ pol (CAS II) sequence and a part of the 5′ env sequence. These sequences are necessary for
efficient virion assembly. The CMV 5′LTR fusion renders the viral vector production in packaging cell
lines (HEK293T) Tas independent. Moreover, there is a deletion of the U3 region of LTR. Following
integration into the transduced cell genome, the Tas dependent LTR promoter is regenerated. This fact
renders the vector SIN and shuts the expression driven by 5′ LTR off. Transgene expression is driven
by internal promoters.

Finally, and aiming at practical applications, comes the issue of titers and storage. FV vectors can be
concentrated by ultracentrifugation [44,45]. The codon optimization and expression design optimization
of packaging and transfer vector plasmid sequences have allowed for the generation of high titer FV
vector supernatants. These modifications rendered FV vectors as efficient as lentiviral vectors producing
10 × 107 TU/mL of crude supernatant [44]. Finally, FV supernatants can be concentrated and purified in
closed systems using affinity chromatography with POROS-Heparin columns, followed by Tangential
Flow Filtration and ultracentrifugation [50] or size exclusion chromatography using CaptoCore
columns followed by sepharose-heparin affinity chromatography and ultracentrifugation [51]. Both
purification approaches are performed in closed systems compliant with cGMP and yield significantly
pure preparations. Lastly, in regard to storage, although not reported in the literature per se, we
have developed a freezing medium that allows repeated freeze/thaw cycles with 80–90% yields in
vector titer.
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3. Gene Marking Studies in Small Animals

Replication incompetent FV vectors were shown to transduce nearly every cell line including
hematopoietic cell lines [33,34]. As the next leap forward, FV vectors were tested for their gene
marking potential with murine HSCs after transplantation into lethally irradiated hosts [21]. The data
showed that FV vectors could transduce murine HSC with a marking efficiency of about 50% and
after transplantation there was sustained expression of the transgene for over 6 months. Similarly,
when human HSCs (CD34+) cells were transduced and transplanted in ablated NOD/SCID animals,
high levels of gene marking were observed across all lineages, indicating the transduction of a true
human HSC [37]. In a direct head-to-head comparison between GV, LV and FV vectors with identical
constructs, FV vectors performed as efficiently as the LV vectors, indicating FV vectors’ potential for
clinical applications [52].

Another notable mention is that in close to 500 animals that we have transplanted, we never
encountered an adverse outcome such as leukemia or lymphomaThese early observations on murine
and human HSCs were the first indications that FV derived vectors were a relatively safe vector system
that did not cause any harm in the HSC genomes and could thus be further tested in preclinical animal
models as a therapeutic gene transfer vehicle.

4. Therapeutic Gene Transfer in Murine Preclinical Models

The testing ground for any gene therapy vector has traditionally been the genetic correction of
β-thalassemia. Two such FV vectors have been developed and tested side-by-side. The expression
cassette had the complete human β-globin gene under the control of the short native β-globin gene
promoter with either an α-globin HS40 sequence, or a mini-LCR with the core sequences of the HS2
and HS3 regulatory elements from the β-globin LCR. Both vector viral stocks were used to transduce
erythroleukemia lines, murine Lin- HSCs from normal and thalassemic mice and human CD34+ cells
from β-thalassemia patients. The vectors had comparable efficiency in all settings, although the
HS40 was marginally superior and more stable in vivo. In the thalassemic mouse model Hbbth3/+,
the transplantation of FV-transduced HSCs with the HS40 vector resulted in 43% of peripheral blood
expressing human β globin at 6 months post transplantation. This level of expression is adequate to
establish a thalassemia carrier phenotype and a therapeutic effect [53].

Another monogenic recessive disorder amenable to treatment with gene therapy is chronic
granulomatous disease (CGD) [54]; the X-linked form of the disease results from mutations in the CYBB
gene that encodes the gp91phox, the larger subunit of the oxidase flavocytochrome b558. Patients with
CGD lack production of microbicidal superoxide, resulting in recurrent infections and early deaths
in childhood. An FV vector carrying the gp91phox gene under the control of a PGK or a MSCV-LTR
promoter was tested for its ability to restore superoxide levels in transplanted animals. With an average
of 41.5% chimerism, the transplanted animals displayed phagoburst activity that reached 40% of the
wt animals, clearly indicating a robust therapeutic effect in the preclinical model [55,56]. Overall,
superoxide production reached 70% of normal with low vector copy numbers per cell (<2), a finding
that argues for copy number dependent expression and minimal cytotoxic effects. These levels of
superoxide production are similar to what has been reported for lenti-based vectors [57].

FV vectors have also been used for the genetic correction of the Wiskott-Aldrich syndrome (WAS)
mouse model [58]. WAS is an X-linked disorder characterized by eczema, immunodeficiency, and
micro-thrombocytopenia resulting in bleeding tendency [59]. Uchiyama et al., used a WAS cDNA under
the control of two different promoters (an endogenous and an A2UOCE-derived 631 bp fragment) and
demonstrated the correction of the WAS phenotypic disorders. T-cell receptor-mediated responses,
B-cell migration, platelet adhesion, and podosome formation in dendritic cells (DCs) were restored
at levels that can translate into a therapeutic effect. In addition, they showed improvement in gene
transfer rates with repeated transduction cycles and confirmed earlier integration site analyses. The IS
distribution showed FV vectors landing within transcriptional units at a frequency of 22%–44%, versus
46%–72% for a similar WAS protein-expressing Lenti vector and a low tendency for integration near
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oncogenes (<5%). As the authors state, the combination of complete phenotypic restoration with
low copy numbers (<2) and a relatively safe IS profile, make the WAS protein-expressing FV vectors
attractive for clinical applications.

One of the first attempts of gene therapy in humans targeted the SCID-X1 disorder with retroviral
vectors. The attempt was considered a success [8] but it was also an alarm on the side effects that
should be addressed before the wide application of gene therapy [10]. The disease was targeted with an
FV vector to test whether FVs could be an alternative vector system and to test whether the integration
sites in T cells were relatively “safer” when FVs were used to transfer the γc gene [60]. In the ED40515
(γc-) T cell line, the FV vector integration sites were located in close proximity to the transcriptional
start sites in 13% of integration events relative to 25% with the retroviral vectors. In addition, in
the 100 IS analyzed, there were none located within oncogenes, as opposed to three, present in the
retrovirally-transduced cells. Finally, animals transplanted with FV-corrected HSC cells, recovered
their T and B cell counts and their serum levels of IgM, IgG, and IgA.

A relative problem with HSC gene transfer applications, specifically where in vivo selective
advantage of transduced cells does not apply, has been the low gene transfer rates. A potential
solution to this problem could be the use of pharmacologic agents that could selectively eliminate
non-transduced cells. In an attempt to test whether resting HSC can be transduced and selected in vivo,
investigators used the MGMT(P140K) DNA repair protein in an FV backbone. Transplanted mice were
treated at 4 weeks post Bone Marrow Transplantation (BMT), with sub-myeloablative conditioning with
O6-BG (O-6-Benzylguanine) and BCNU(bis-chloroethylnitrosourea) at different doses and analyzed 6
months later, the mock-transduced animals had undetectable levels of MGMT expression as compared
to 55% of positive animals in the FV transduced group [61]. These results confirm the potential of
FV vectors to transduce relatively resting HSC cells at low Multiplicity Of Infection (MOIs) and to
selectively enhance their presence in the peripheral blood with pharmacologic manipulations. This
approach was also used in the design of FV vectors that could block HIV replication. A cassette,
that carried three anti-HIV targets in the form of short hairpins (tat/rev at site I and site II and to
human CCR5), was able to confer 4 log reductions in HIV replication assays [49]. FV vectors are
particularly useful for anti-HIV gene therapy, since using Lenti-based vectors for RNAi delivery could
be problematic since the anti-HIV sequences can jeopardize the vector packaging process [62]. Beyond
therapeutic gene transfer targeting single gene disorders, FV vectors designed to deliver shRNA
through PolIII promoters after HSC transfer and transplantation provided a significant long-term
downregulation of target genes [63].

Overall, the potential of FV vectors to correct the genetic defect in monogenic disorders amenable
to HSC gene addition has been well established in various disease settings. In addition, FV vectors
perform as good as their LV counterpart and have not been linked to any adverse effects.

5. Large Animal Preclinical Models

Large animal models offer the potential to simulate conditions that are much closer to the clinical
setting as compared to the murine preclinical models. FV vectors have been used to treat two such
conditions, the leukocyte adhesion deficiency (LAD) and the pyruvate kinase deficiency (PKD).

LAD is a stem cells disorder that affects white blood cell migration in response to chemotactic
signals and as a result, affects immune responses. Patients suffer from bacterial and fungal infections
that most commonly occur on the skin and mucous membranes. The defects affect the leukocyte
integrin ITGB2 gene (CD18) that prevents the expression of the CD11/CD18 adhesion complex on the
cell surface [64]. The canine form of the disease (CLAD) recapitulates the severe deficiency phenotype
of LAD-1 in children [65].

Canine HSCs were transduced with an FV vector expressing normal CD18 cDNA and were
transplanted to affected dogs [66]. After a year, the dogs had their WBC counts restored to normal and
survived without antibiotics, both signs of a functional cure of their disease. The observed long-term
(24 months) lymphocyte marking rates of 5–10% are compatible with normal life expectancy. This result
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was achieved with a single overnight exposure to the vector and a nonmyeloablative conditioning
regimen. Furthermore, the copy number per cell was low and in the order of 0.83-1.25 provirus copies
per diploid cell.

In the canine setting, FV vectors have also been used to treat a Basenji pyruvate kinase deficient
dog model. Pyruvate kinase deficiency causes severe hemolytic anemia, which is potentially lethal [67].
Since PKD does not provide survival advantage to the successfully transduced cells, the vector was
enhanced by co-expressing the mutant MGMTP140K that provides resistance to O6-benzylguanine and
BCNU, potent inhibitors of the wt MGMTP protein that is expressed in all normal tissues. At 100 days
post HSC transplantation with transduced cells, the gene marking rates were 3.5% for granulocytes
and 0.4% for lymphocytes. After three rounds of treatment with O6BG and BCNU, gene marking
raised to 33% in granulocytes and 5.5% in lymphocytes [68]. This also translated to the correction of
the phenotypic disorder, as evidenced by the normalization of LDH (an indicator of hemolysis) and
the achievement of transfusion independence.

Finally, it has to be mentioned that FV vectors are resistant to lysis by human serum, a property
that has sparked interest for direct in vivo delivery of the vectors, avoiding all ex vivo manipulations
of HSCs. This has been tried with the X-SCID canine model [69]. A total of five newborn SCID-X1
dogs received i.v. infusions of FV vector preparations with doses ranging from 4.0-8.4 x10ˆ8 particles.
The functional outcomes showed marginal immune reconstitution. The dogs did not survive past
one year and succumbed to infections. In regard to off target viral integrations, two such sites were
recorded: one in the gut, another (potential) at the virus infusion site and none in the germ cells. An
improved protocol was later implemented from the same group that included stem cell mobilization
with G-CSF/AMD3100 prior to FV vector delivery and the substitution of the EF1a promoter with that
of the pgk gene in the FV vector [59]. The data argue for the faster recovery of T cell numbers and a
broad TcR repertoire, and are clinically relevant when considering the overall survival that climbed to
2.5 years as compared to 330 days in the previous study. On the issue of safety, a major concern when a
vector with broad cell tropism is tested, two conclusions emerged from this study: (i) the vast majority
of integration sites were shared between tissues and blood indicating blood contamination and (ii) the
gonads had the smallest number of integration events (37 and 56 for ovaries and testes, respectively, as
compared to 766 and 469 in blood) with none of them being unique except for one integration site in
the ovaries that may have been derived from non-germ cells.

6. Conclusions

Foamy virus vectors have been extensively tested in marking and in gene therapy studies with
small and big preclinical animal models. The gene therapy trials featured in this review are summarized
in Table 2. Their non-pathogenic nature is an attractive feature for clinical applications. This is further
supported by all the positive outcomes that the gene therapy community has communicated from two
decades of testing.It is therefore strange that these vectors have not found their way into the clinic. It
seems from the relative literature that most manufacturing issues have been overcome and what is
missing is the interest of pharmaceutical companies to develop it as a product. In the meantime, the
gene therapy world has been dominated by LV vectors that are offered as pharmaceutical products often
at extraordinary prices [70]. FVs with the relative ease of production, concentration, and purification
could become a poor man’s Ferrari for nations and insurance systems that cannot afford million-dollar
price tags for a relatively simple and one-off treatment.
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Table 2. Gene therapy trials with FV-derived vectors.

Disease Animal Model FV Vector
Systems Promoter Transgene Target Cells Method of

Application Outcome Reference

β-thalassemia β-Thal3 mice 3rd Hu-α-globin HS40-short
hu-β-globin hu-β-globin Lin- BM HSCs Ex vivo

Conversion to
thalassemia carrier

phenotype

[53]

3rd Hu-β-globin HS2-HS3
LCR-short hu-β-globin

Chronic Granulomatus
Disease (CGD)

B6.129S-Cybbtm1Din/J
mice

3rd PGK c-o hu-gp91phox
Lin-BM HSCs Ex vivo Complete phenotypic

restoration
[55]

3rd MSCV-LTR c-o hu-gp91phox
IRES.EGFP

Wiskott-Aldrich Syndrome
(WAS) WAS KO mice

3rd Native promoter
hu-was Lin- BM HSCs Ex vivo Complete phenotypic

restoration
[58]

3rd UCO631

SCID-X1 NOD/SCID γc KO
mice 3rd UCO631 Human γc gene (IL2RG) Lin- BM HSCs Ex vivo

Reconstitution of T
and B cells. No NK

correction
[60]

SCID-X1 SCID-X1 dogs 3rd EF1a (intronless) GFP.T2A.hIL2RG
i.v. infusion

In vivo
Partial lymphocyte

reconstitution [69]

i.v. infusion in
HSC mobilized

animals

Lymphocyte
reconstitution.

Successful treatment
[59]

SCID-X1 SCID-X1 dogs 3rd PGK GFP.T2A.hIL2RG i.v. infusion in
mobilized HSC In vivo

Lymphocyte
reconstitution.

Phenotypic correction
Leukocyte adhesion

deficiency CLAD dogs 3rd MSCV hu-CD18 BM derived
CD34+ cells Ex vivo Phenotypic correction [66]

Pyruvate Kinase deficiency Basenji Dog PKD 3rd PGK SFFVMGMT.T2AEGFP.PGK.cPK Mobilized
CD34+ HSCs Ex vivo Phenotypic correction [67]
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