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Abstract

Transcriptome sequencing (RNA-seq) is widely used to detect gene rearrangements and quantitate 

gene expression in acute lymphoblastic leukemia (ALL), but its utility and accuracy in identifying 

CNVs has not been well described. CNV information inferred from RNA-seq can be highly 

informative to guide disease classification and risk stratification in ALL due to the high incidence 

of aneuploid subtypes within this disease. Here we describe RNAseqCNV, a method to detect large 

scale copy number variations from RNA-seq data. We used models based on normalized gene 

expression and minor allele frequency to classify arm level CNVs with high accuracy in ALL 

(99.1% overall and 98.3% for non-diploid chromosome arms, respectively), and the model was 

further validated with excellent performance in acute myeloid leukemia (accuracy 99.8% overall 

and 99.4% for non-diploid chromosome arms). RNAseqCNV outperforms alternative RNA-seq 

based algorithms in calling CNVs in the ALL dataset, especially in samples with a high proportion 

of CNVs. The CNV calls were highly concordant with DNA-based CNV results and more reliable 

than conventional cytogenetic-based karyotypes. RNAseqCNV provides a method to robustly 

identify copy number alterations in the absence of DNA-based analyses, further enhancing the 

ability of RNA-seq to classify ALL subtype.
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INTRODUCTION

The majority of cases of acute lymphoblastic leukemia (ALL) are characterized by 

chromosomal aneuploidy, gene rearrangements, and sequence mutations with associated 

distinct gene expression profiles supporting the importance of these alterations as initiating 

and subtype-defining events in leukemogenesis 1–3. With the comprehensive, genome-wide 

representation of RNA expression and high sensitivity and accuracy in calling gene 

rearrangements, transcriptome sequencing (RNA-seq) has been proven highly effective in 

detecting the driver genetic lesions and classifying ALL subtypes. In contrast, detection of 

copy number variations (CNVs) from bulk RNA-seq data is rarely addressed.

Recently, several methods have been described to accomplish this. CNVkit4 is a CNV 

caller that uses second-generation sequencing data that provides an option to deploy 

the segmentation algorithms on the RNA-seq data to identify CNVs. CaSpER5 attempts 

to detect both gene level and large-scale CNVs while applying median filtering to the 

expression signal and allelic frequency shift signal. Both tools provide a wide range of 

functionalities but lack a robust approach to identify large-scale CNVs. As a result, there 

is a lack of reliable methods for calling chromosomal and arm-level CNVs, in particular 

for highly aneuploid samples. Large-scale CNVs are pivotal for subtyping up to 30% 

of ALL cases harboring large number of whole chromosome gains or losses 6, such as 

the high hyperdiploid (modal chromosome number ≥51), low hypodiploid (chromosome 

number 31–39) and near haploid (chromosome number 24–30). As RNA-seq is being 

increasingly utilized clinically7, and offers the potential to profile all key modalities of 

leukemia-classifying alterations, it would be highly valuable to extract large-scale CNV 

information from RNA-seq, especially when the DNA level data are unavailable for 

determining the aneuploid subtypes.

The relationship between genomic copy number and RNA expression level is influenced by 

multiple factors in addition to the copy number per se, including regulation by transcription 

factors, DNA methylation, chromatin modification, GC bias, as well as technical factors 

such as methods of library preparation and sequencing. In addition, the relatively sparse 

coverage of the genome by RNA-seq makes the detection of precise CNV breakpoints 

and small CNV segments highly challenging or even impossible. Additionally, for human 

samples with extreme aneuploidy, e.g. greater than 60 or less than 30 chromosomes, gene 

expression normalization can be significantly biased, complicating interpretation of the 

baseline expression level of diploid regions and subsequent CNV inference.

Many CNV calling methods of SNP array or genome/exome sequencing data use both signal 

intensity (similar to total sequencing depth) combined with B-allele frequency (BAF; similar 

to minor allele frequency (MAF) by sequencing) data8–11. The signal intensity correlates 

with the copy number, while the BAF guides discerning the exact copy number. On diploid 

chromosomes, the theoretical BAF value is 0, 1 or 0.5. However, BAF can be influenced 

by CNV (e.g., BAF of 0.33 and 0.66 after 1 copy gain). Based on this principle, we 

developed a user-friendly software package implemented in R to call CNVs from RNA-seq - 

RNAseqCNV. In addition to fast analysis and intuitive visualization, the algorithm has been 

incorporated into a Shiny R package to enable interactive curation of the reported CNVs.
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METHODS

Data processing

RNAseqCNV requires two types of information for each sample: the read count per gene, 

and the minor allele fraction (MAF) of single nucleotide variations (Figure 1). Samples can 

be analyzed in either batch or per sample mode. In batch analysis, all the input samples are 

used for normalization and gene expression centering (log2 fold change calculation). In this 

mode, the majority of samples should not contain multiple large-scale CNVs. For optimal 

results, the samples should be of the same cancer type and library preparation protocol to 

reduce the effect of differential expression due to these factors. In per sample analysis, each 

sample will be analyzed against the in-built or user-provided diploid reference samples. The 

in-built diploid reference contains gene expression data from 40 ALL samples (subset of 

EGAS00001003266) 2 without large-scale CNVs. The diploid nature of these samples was 

confirmed with Affymetrix SNP Array 6.0 analyzed by RawCopy12.

Genes with read counts of less than 3 in at least 20% of the analyzed samples were 

filtered out. Per-gene read counts were normalized with variance stabilizing transformation 

(VST) from DESeq2 package13 for minimizing the noise of genes with low read counts. 

Subsequently, gene expression levels were centered by calculating the log2 fold change 

of the gene expression as to the median expression of the same gene across the cohort. 

Pseudoautosomal regions on chromosome X interfering with the CNV prediction models 

were discarded. Each gene was assigned a weight from the in-built or user-provided weight 

matrix. Weights represent the importance of the gene expression for CNV inference.

To ensure the reliability of SNVs detected from RNA-seq data, only those with adequate 

sequencing depth and described in the dbSNP database were used. In addition, for 

CNV evaluation, only the heterozygous SNVs are informative. Thus, only the ones with 

heterozygous MAF (e.g., between 0.1 and 0.9) were used in the analysis.

Two Random Forest models were used sequentially to automatically improve the 

interpretability of CNV visualization and provide fast and accurate prediction of CNVs 

on chromosomal and arm level. The first model classified chromosome arms as either 

diploid or non-diploid. It improved the accuracy of CNV calling in the second model and 

enables correction of gene expression level for samples with a high proportion of CNVs. 

Then, weighted expression level and MAF density curves were used to visualize CNVs on 

chromosomal and arm levels (Figure 2; Supplementary Figure 1).

Evaluation of RNAseqCNV in an ALL dataset

The ALL dataset consisted of 637 samples (287 high hyperdiploid, 46 low hypodiploid, 

28 near haploid and 276 other subtypes). Among them, 272 samples had whole genome 

sequencing (WGS) data available (https://www.stjude.cloud/)14 that was analyzed by 

CONSERTING8; 206 samples had Affymetrix SNP Array 6.0 data analyzed by RawCopy12 

to provide a reference set of CNVs derived from DNA data. In addition, 159 samples had 

karyotypic data available. Karyotype reports can be associated with inaccuracies such as 

selection bias, endoreduplication, or poor chromosome morphology. For this reason, CNVs 

were validated by our previous CNV visualization method from RNA-seq data, which has 
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been shown with high accuracy compared to SNP array results2. If the copy number of a 

chromosome was not confirmed, it was excluded from the analysis.

Forty-three samples (28 high hyperdiploid, 3 low hypodiploid, 7 near haploid, 5 other 

subtypes) with both karyotype report and SNP array data available were set aside to directly 

compare RNAseqCNV with karyotype with SNP array results serving as a reference. One-

fourth of the remaining samples (n=148: 67 high hyperdiploid, 10 low hypodiploid, 4 near 

haploid, 67 other subtypes) were randomly selected and set aside as a testing dataset.

CNVs were assessed at chromosome arm level. The partial (shorter than chromosome arms) 

and subclonal CNVs were excluded from the dataset. Unclear CNV calls from WGS or SNP 

array data due to low tumor purity were discarded as well. Chromosome arms were then 

assigned into 4 distinct CNV classes: 1 copy deletion, no CNV (two copies), 1 copy gain, 

and ≥2 copy gain. Because of the inactivation of chromosome X, its MAF density curve 

is not as informative as autosomal MAFs in calling CNVs, which makes the detection of 

the exact copy number of chromosome X challenging. In RNAseqCNV, chromosome X is 

assigned into 3 distinct classes: 1 copy deletion, diploid, and ≥1 copy gain. Lastly, the ≥2 

copy gain class and the 1 copy deletion are less common (1.9 percent and 6.7 percent of the 

training data), which would lead to class imbalance in the training dataset (n=446). Instances 

of chromosome arms with two copies were randomly under-sampled by 40%, and the two 

less represented classes were randomly oversampled to contain at least one-fourth of the 

instances of the major class. (Supplementary Figure 2, Supplementary Table 1–2).

To test the performance of RNAseqCNV in other hematologic malignances, 71 acute 

myeloid leukemia (AML) samples with both RNA-seq and WGS data were analyzed 

(https://www.stjude.cloud/) 14. Arm-level CNVs were evaluated by CONSERTING 8 using 

WGS data. Large-scale CNVs are less frequent in acute myeloid leukemia than in ALL – 

CNV was detected only in 61 out of the 2,911 chromosome arms. (2,850 two copies, 50 

1-copy gains, two ≥2-copy gains, and nine 1-copy deletions).

The performance of RNAseqCNV and alternative tools was evaluated on chromosome or 

chromosome arm level through accuracy and contingency tables based on predicted copy 

number states and the reference dataset. Accuracy was calculated as the number of correct 

predictions of a copy number state divided by the total number of instances evaluated.

Design and testing of prediction method

In the majority of cancer samples, the log2 fold changes of true diploid segments were 

centered around zero, and the assessment of expression level of chromosomes or arms 

was straightforward: positive log2 fold change signified gain, and vice versa. However, 

some samples have a high proportion of chromosomal CNVs of the same type, such as 

high hyperdiploid and hypodiploid ALL. In such samples, the log2 fold change of diploid 

segments may be shifted from zero and thus could not be evaluated without the context of 

gene log2 fold change values on diploid chromosomes. Therefore, an additional prediction 

model was used to classify chromosome arms as either diploid or non-diploid to identify the 

baseline expression level on diploid chromosomes. Hence, RNAseqCNV uses two classifier 

models in sequence to predict CNVs.
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To develop optimal CNV prediction models, four classification algorithms (K-Nearest 

Neighbors (KNN), Support Vector Machine (SVM) with polynomial and radial kernel, and 

Random Forest (RF)) were tested for both diploid chromosome arm prediction model and 

CNV prediction model. For each iteration of the algorithm with diploid/CNV classifier, 

recursive feature elimination (RFE) function (10-fold cross-validation) provided by the caret 

R package 15 was used for feature selection. Model tuning across parameters was performed 

by 10-fold cross-validation to maximize accuracy after selecting the best performing features 

with RFE.

MAF-based features were created to describe the key aspects of the MAF density curve, 

such as the amplitude of the density curve, the x-axis distance between the amplitude and 

0.5 point, the distance between the two highest peaks along the x-axis, and density in the 

0.5 point. We also added two MAF-derived features describing the number of chromosome 

arms with the distance between the two highest peaks in certain ranges (0.2–0.4 and 0.4–

0.9) in the sample. The two features were created to provide the model with information 

about the MAF distribution curves in the whole sample, in addition to the information 

about the chromosome arm being evaluated. To construct the expression-based features, 

weighted median, first and third quartile were calculated for each chromosome arm. Sample 

standard deviation and mean of weighted medians across all of the chromosome arms 

were subsequently determined. The features themselves were calculated as the arm-specific 

median, first and the third quartile subtracted by the sample median of weighted medians 

divided by the sample standard deviation. After the first classification step, additional 

features describing the expression pattern in relation to diploid chromosome arms were 

predicted. The standard deviation and the mean of weighted medians on the predicted 

diploid chromosome arms were used to create three features in relation to the expression 

level of diploid chromosome arms as described above. The standard deviation and mean of 

weighted medians overall and based on predicted diploid chromosome arms were included 

as features as well. Chromosome location was also included as a single variable for the RF 

model and as 23 dummy variables for SVM and KNN models (Supplementary Table 3).

The RF model had the highest accuracy for both rounds of predictions (Supplementary Table 

4–7). Features for the final RF model were selected based on RFE and RF importance 

score (Supplementary Figure 3). Chromosome arms with an insufficient number of SNVs 

due to low sequencing depth or short segment length were not used for determining diploid 

status, and CNV prediction for such arms was made with a separate model using only the 

expression information.

Develop weighted gene expression in CNV prediction model

Many factors apart from CNV can also affect gene expression level. Therefore, 

RNAseqCNV assigns a weight value on each gene based on a well-curated CNV dataset 

to leverage the importance of each gene in predicting CNVs. A weight matrix was 

precalculated based on the ALL training dataset of samples with curated CNV results.

Multiple methods and parameter iterations were tested to construct weights that can 

reach the highest accuracy of CNV prediction by the RNAseqCNV model by 10-fold 

cross-validation on the training dataset. The best-performing weights were based on the 
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correlation of gene expression with CNV divided by expression variance across the 

cohort. Pearson correlation coefficients were calculated between CNV and normalized gene 

expression data. Genes with correlation lower than 0.3 and Benjamini-Hochberg adjusted 

p-value higher than 0.1 were excluded. The accuracy of prediction was highest when 

correlation was raised to the third power. The gene expression variance was calculated 

based on 40 diploid samples (confirmed by SNP array data) with the rationale that genes 

with a high variance of expression are affected by factors other than CNV. However, a 

higher variance of the raw read counts with higher sequencing depth is a desirable gene 

trait pointing toward its reliability. Therefore, VST was applied to minimize the correlation 

between the variance and per gene read count. Only then, the variance can be used as an 

inverse value for gene weight calculation. Finally, rescaling the exponentiated correlation 

and inverse variance to a range of 1–100 has increased accuracy compared to no rescaling or 

different ranges. (Supplementary Table 8).

weigℎt = 1
rescaled variance ⋅ rescaled correlation3

Assuming that the correlation between gene expression level and DNA copy may vary 

between different tissues and cancer types, it is recommended to provide a customized 

reference dataset for each tumor analysis.

Rather than using the in-built weights, RNAseqCNV provides the option to generate a 

customized weight matrix from user input data. These weights employ a similar strategy, but 

gene correlation is omitted, and weights are calculated only from the inverse of the rescaled 

variance.

weigℎt = 1
rescaled variance

Diploid adjustment

The premise of DESeq2 normalization is that most genes between samples are not 

differentially expressed, and when they are, that for one sample, over-expression and 

under-expression are approximately balanced. However, there are some samples with high 

numbers of chromosomal CNVs of one type, for which the normalization is biased, and the 

expression is not comparable across samples.

To solve this issue, the diploid chromosome arm classifier was developed. The median shift 

from zero on a log2 fold scale was calculated for the classified chromosome arms with two 

copies, which was then subtracted from all relative gene expression values in the sample 

(Figure 3).
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Code availability

RNAseqCNV and the tutorial are freely available from https://github.com/honzee/

RNAseqCNV. Docker image with RNAseqCNV (v 1.2.1) installation is available at: https://

hub.docker.com/repository/docker/honzik1/rnaseqcnv

RESULTS

ALL test data results

Overall accuracy for the testing dataset was 99.1% (5 704 out of 5 758 chromosome arms) 

and the result was consistent across the cohorts analyzed by SNP array, WGS or karyotype/

RNA-seq (98.8%, 99.2%, 99.1%). Most of the chromosome arms were diploid and showed 

high accuracy (99.3%). For the non-diploid data, RNAseqCNV agreed in 1 257 out of 1 

279 (98.3%) CNVs with accuracy of 98.4% for 1-copy gains, 92.9% for ≥2-copy gains and 

99.7% for 1-copy deletions. Six out of the 7 incorrectly classified ≥2-copy gains were called 

as 1-copy gain and 1 as no CNV by the model. The arm-level results were summarized 

into karytope report and the predicted ALL anueploid subtypes were correctly determined in 

97.3% of samples (144 out of 148). In the 4 incorrectly classified samples, the subtypes were 

missed by maximum 2 chromosome copies (Supplementary table 9).

Comparison with SNP array and karyotyping

SNP array is widely accepted as a robust platform for CNV detection, therefore it was used 

to generate the gold standard CNV dataset to evaluate RNAseqCNV through the 43 ALL 

sample dataset. The CNVs estimated by RNAseqCNV were highly consistent with the result 

by SNP array (1,681 out of the 1,696 chromosome arm CNVs, concordance=99.1%). For 

non-diploid chromosome arms, the results from RNAseqCNV also achieved high accuracy 

compared to SNP array (684 out of 691 chromosome arm CNVs, concordance=99.0%). The 

accuracy for arms with two copies was 99.2%, 100% for 1-copy gains, 85.1% for ≥2-copy 

gains and 100% for 1-copy deletions. 5 out of the 7 incorrectly classified ≥2-copy gains 

were called as 1-copy gain and 2 as carrying no CNV by the model. The aneuploid subtype 

was correctly determined in 100% of samples (Supplementary Table 10).

Karyotyping by cytogenetics is routinely used to identify large-scale CNVs in clinical 

diagnosis for hematologic malignancies. Since the cytogenetic report can include multiple 

cell populations with different karyotypes, to determine the concordance between SNP 

array and karyotype, the copy number was considered as matching if it was identical 

with SNP array in at least one of the reported clones. This resulted in a concordance of 

95.2% (1 615 out of 1 696) for all chromosome arms and 89.4% (618 out of 691) for non-

diploid chromosome arms. The accuracy for arms with two copies was 99.2%, 95.4% for 

1-copy gains, 76.6% for ≥2-copy gains, and 84.4% for 1-copy deletions. Ten out of the 11 

incorrectly classified ≥2-copy gains were called as 1-copy gain and 1 as no CNV. The largest 

karyotype clone correctly determined the aneuploid subtype in 93% of the samples. In one 

near haploid sample with 28 chromosomes according to SNP array, karyotype reported 49 

chromosomes (Supplementary Table 11).
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RNAseqCNV agreed with SNP array in 93.8% (76 out of 81) of the karyotype misclassified 

chromosome arms, while karyotyping agreed in 66.7% (10 out of 15) of the RNAseqCNV 

misclassified chromosome arms (Supplementary Figure 4).

Validation in an AML cohort

The arm-level CNVs called by RNAseqCNV showed 99.8% concordance (2,906 out 

of 2,911) with the WGS-based CNV result, even under the RNA-seq CNV prediction 

model trained by ALL dataset. High concordance was also observed for the non-diploid 

chromosome arms (98.4%, 60 out of 61). The accuracy for arms with two copies was 99.9%, 

98.0% for 1-copy gains, 100% for ≥2-copy gains, and 100% for 1-copy deletions. The 

one incorrectly classified 1-copy gain was called as having no CNV. This indicates that 

the default model within RNAseqCNV is robust for analyzing hematologic malignancies 

(Supplementary Table 12).

Comparison with alternative algorithms

CNVkit 4 provides an option to analyze CNV from RNA-seq. The main difference between 

RNAseqCNV and CNVkit is that the latter employs segmentation to detect regions with 

CNVs. However, RNA-seq data is often insufficient for such operations and results in a 

high false-positive rate (Supplementary Figure 5). Also, the issue of mis-normalization for 

samples with high numbers of CNVs is not addressed by CNVkit, making it prone to 

misinterpreted CNVs. RNAseqCNV and CNVkit (v.0.9.7 default parameters) were run on 

the same set of 20 testing samples on a standard laptop. Segmentation performed by CNVkit 

proved to be more time-consuming (74 minutes) than RNAseqCNV (10 minutes; Table 1) 

in analyzing the testing samples. In addition, without an option to report large-scale CNVs 

from CNVkit, direct comparison with RNAseqCNV output was not feasible.

CaSpER R package 5 detects both gene level and large-scale CNVs (Supplementary Figure 

5). In the same 20 testing samples analysis, CasSpER (v 0.1.0) took comparable time (14 

mins; Table 1) as RNAseqCNV. It also includes a function to estimate arm level CNVs, 

which was further tested on the ALL testing dataset. The X chromosome was excluded 

in the comparison since CaSpER omits sex chromosomes in its analysis. In addition, ≥2 

copy gain and 1 copy gain classes are not distinguished by CaSpER but merged as copy 

gain in the output. Compared with the curated CNV result from SNP array, 83.2% overall 

concordance (4,580 out of 5,503) was reached by CaSpER, and the non-diploid arm level 

CNVs agreed with 43.6% of the SNP array-based CNVs (501 out of 1,141). The accuracy 

for arms with two copies was 93.7%, 44.0% for ≥1-copy gains, and 42.7% for 1-copy 

deletions (Supplementary Table 13).

SuperFreq is a tool that analyses and filters somatic SNVs and short indels, calls copy 

numbers and tracks clones over multiple samples from the same individual16. This package 

detects copy number changes from RNA-seq at the gene level and large-scale CNVs, and 

requires 2–4 CPUs, approximately 10 GB memory per CPU, and a high-performance 

server to analyze a single sample in around 2 hours (Table 1). Notably, SuperFreq 

does not automatically report chromosomal copy number changes. Therefore, comparison 

with RNAseqCNV model was done by manually curating the results from SuperFreq’s 
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CNV visualization (Supplementary Figure 6) on a subset of the testing dataset (n=93, 

Supplementary table 14). Only whole chromosomes, in which all segments had identical 

copy number state according to the SuperFreq’s results were selected for the analysis. Both 

RNAseqCNV and SuperFreq achieved 100% concordance with the reference CNVs curated 

from SNP array, WGS and/or cytogenetics karyotype. The high concordance with the 

reference is attributed to the evaluation of only whole chromosome CNVs already reported 

with high consistence across the chromosomes, which may introduce favorable bias towards 

SuperFreq. Noticeably, the estimated clonality by SuperFreq is often in contradiction with 

the log fold changes and MAF in both its own and SNP array-based results, further 

highlighting the challenges of calling CNVs from RNA-seq data (Supplementary Figure 

6).

DISCUSSION

The RNAseqCNV package has a clear focus on hematologic malignancies, such as 

leukemia for which large-scale CNVs are frequent and important for their initiation and 

risk-stratification. Although the in-built reference data and RF models are based on ALL 

samples, users can provide their own training data to customize the analysis.

The RNAseqCNV model had high accuracy overall but somewhat poorer performance for 

≥2 copy gains. That said, 86% of the incorrectly classified ≥2 copy gains were still classified 

as 1-copy gains and there was no deletion classified as a gain and vice versa. This likely 

reflects the sparser representation of high level gains in the training dataset and multiple 

possible MAF values for higher copy gains, often not uniquely linked to a certain CNV, 

making the prediction more challenging.

Results of RNAseqCNV were highly concordant with the CNVs called from SNP array 

results as well as from WGS. RNAseqCNV is also shown with higher sensitivity than 

cytogenetics-based karyotyping for detecting large-scale CNVs in ALL. While unable to 

detect multiple subclones, RNAseqCNV provides extra features such as detecting loss of 

heterozygosity and it is not as susceptible to clonal outgrowth or selection bias. Poor 

chromosomal morphology may result in the wrong chromosome being detected as gain 

or deletion by cytogenetics. In addition, some hypodiploid leukemic cells may undergo 

endoreduplication, which cannot be distinguished from gain of chromosomes by routine 

cytogenetics karyotype 17, but can be accurately identified by RNAseqCNV based on 

the features of MAF distribution. One such sample was even detected in our SNP array 

validated cohort resulting in a misclassified ALL subtype by karyotyping, but was correctly 

identified by RNAseqCNV. In addition, the majority of the misclassified CNVs by karyotype 

were correctly determined by RNAseqCNV.

The package provides a Shiny application for interactive analysis and a robust visualization 

method to manually infer chromosomal and arm-level CNVs. Manual checking of the 

graphical output should further improve the accuracy, especially for cases for which there 

may not have been similar instances in the training data.
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RNAseqCNV provides clear and easily interpretable visualization tools and better suited 

for chromosomal and arm level CNV detection than CNVkit or CasSpER. Most CNV 

detection tools have difficulties adjusting for samples with high numbers of chromosomal 

CNVs of one type – high hyperdiploid or near haploid samples. Such shortcomings 

lower the accuracy of automated detection algorithms and complicate the interpretation 

of the visualization methods of genome-based methods, including SNP array and WGS 

data. RNAseqCNV solves this issue by predicting chromosome arms with two copies 

automatically, avoiding the often-needed manual adjustment. SuperFreq, another alternative 

tool for calling CNVs from RNA-seq, also performs extremely well even in highly aneuploid 

samples. In addition, it provides higher resolution of detecting gene-level CNVs from RNA-

seq, plus many other functionalities. On the other hand, it is computationally intensive in 

terms of hardware and runtime, and does not provide an automatic chromosomal and arm 

level CNV report, which complicates the interpretation of the result and limits its application 

in leukemia research and disease subtyping.

RNAseqCNV cannot accurately evaluate CNVs on sub-arm level or even large-scale CNVs 

in samples with low tumor purity. In contrast to cytogenetics-based karyotyping, multiple 

subclones cannot be detected. Also, usage for solid tumors necessitates providing additional 

data to customize the package for optimal performance.

In summary, RNAseqCNV is a fast, accurate and user-friendly tool for analyzing CNVs 

on chromosomal and arm level scale, which provides the ready-to-use result for cancer 

karyotyping and classification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow of RNAseqCNV.
Per-gene read counts and SNVs information are input for the analysis. Each sample 

is analyzed against standard samples (in-built or user provided). The DESeq2 variance 

stabilizing transformation (VST) is used for gene expression level normalization. Then log2 

fold change per gene is calculated against the median expression of the gene across the 

cohort. Each gene is assigned a weight according to the (in-built or user provided) weight 

matrix. Subsequently, weighted quantiles per-chromosome are used to generate boxplots. 

High quality SNVs are kept based sequencing depth and record in the dbSNP database. 

Since only heterozygous SNVs are informative for calling CNVs, only SNVs with MAF 

between 0.1 and 0.9 are kept as default. Weighted boxplots and MAF density curves are 

visualized on chromosomal and arm level, and serve as predictors for CNV calling. The 

diploid arms are estimated in the first model and used to adjust the expression data for 

correct prediction of CNVs in the second model. Sex of the sample is estimated based on 

gene expression on chromosome Y.
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Figure 2. Chromosomal level CNVs detected by gene expression and MAF of SNVs.
The upper panel shows the chromosomal gene expression level. The Y axis shows log2 

fold change of gene expression of the test sample compared to the reference. The X axis 

shows chromosome 1–22 and X (Y is excluded). The X axis also depicts the position 

of genes on each chromosome. On each chromosome, a weighted boxplot (¼, ½, ¾, 

quantile and maximum and minimum are second and third quartile ± 1.5*interquartile 

range) is drawn based on the distribution of normalized gene expression. Random Forest 

predictions of chromosome gains or losses are marked in colored boxes at the top of each 

chromosome panel. The CNV calls voted with less than 85% of trees in the random model 

are associated with lower confidence (Quality in the figure legend) and thus CNV boxes 

for such chromosomes are highlighted in red. E.g. the 2-copy gain on chromosome 21 is 

predicted with low quality because it is not the common form of homozytous 2-copy gain as 

chromosome 14. The lower panel shows the density curves of MAF for each chromosome. 

Only the MAF of heterozygous SNVs (e.g, MAF from 0.1 to 0.9) are informative in 

calling CNVs. Heterozygous SNVs on chromosomes without CNVs are expected to have 

MAF centered around 0.5 and shown with a single peak at 0.5. Consequently, distortions 

of MAF density indicates CNVs and are highlighted in red. Peak distance measures the 

distance between the two highest peaks in the MAF density plot on x axis. This exemplar 

sample shows 1-copy gain on chromosome 4, 6, 8, 10, 12, 17, 18, X, and ≥2-copy gain on 

chromosome 14 and 21, which agrees with the results from SNP array data.
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Figure 3. Diploid adjustment in a sample with a high proportion of CNVs
Correct normalization of gene expression levels for samples with large number of copy 

number gains or losses is challenging. Although gene expression levels are comparable 

within samples, they cannot be compared across samples. Therefore, when the gene 

expression is centered using a reference cohort, bias could be introduced. To solve this, 

a diploid chromosome arm caller was used to determine the diploid chromosome arms. 

Subsequently, on the estimated diploid arms, median shift from zero is calculated and then 

subtracted from the expression level of all genes. (A) No diploid adjustment is applied and 

the expression level of chromosome 14, 18, 21, X suggest copy number gain. (B) After 

diploid adjustment, it is evident that chromosome 14, 18, 21 and X are actually diploid and 

the rest carry a 1-copy loss, which agreed with the results acquired from the SNP array data.
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TABLE 1.

Capabilities of RNAseq-based DNA copy number calling algorithms

Per-sample runtime Arm/Chromosomal CNV High aneuploid adjustment Gene-level CNV

RNAseqCNV 10 minutes Yes Yes No

CNVkit 74 minutes No No Yes

CaSpER 14 minutes Yes No Yes

SuperFreq 2 hours No Yes Yes

Table notes: Per sample run time refers to average per-sample runtime on a standard PC, except SuperFreq on an high performance computing 
server
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