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*e rapid development of the automotive industry has brought great convenience to our life, which also leads to a dramatic
increase in the amount of traffic accidents. A large proportion of traffic accidents were caused by driving fatigue. EEG is considered
as a direct, effective, and promising modality to detect driving fatigue. In this study, we presented a novel feature extraction
strategy based on a deep learning model to achieve high classification accuracy and efficiency in using EEG for driving fatigue
detection. EEG signals were recorded from six healthy volunteers in a simulated driving experiment. *e feature extraction
strategy was developed by integrating the principal component analysis (PCA) and a deep learning model called PCA network
(PCANet). In particular, the principal component analysis (PCA) was used to preprocess EEG data to reduce its dimension in
order to overcome the limitation of dimension explosion caused by PCANet, making this approach feasible for EEG-based driving
fatigue detection. Results demonstrated high and robust performance of the proposed modified PCANet method with classi-
fication accuracy up to 95%, which outperformed the conventional feature extraction strategies in the field. We also identified that
the parietal and occipital lobes of the brain were strongly associated with driving fatigue. *is is the first study, to the best of our
knowledge, to practically apply the modified PCANet technique for EEG-based driving fatigue detection.

1. Introduction

As a leading factor in traffic accidents, driving fatigue ac-
counts for 14%–20% of motor vehicle accidents that cause
serious injuries and fatalities to human life [1]. Conse-
quently, growing attention has been paid to driving safety in
recent years. Driving safety is thought to be affected by
multiple factors, including monotonous environments, sleep
deprivation, chronic sleepiness, drug and alcohol use [2, 3],
wherein the most common factor is driving fatigue [4, 5]. In
such situation, drivers are most likely to fall asleep and drive
unconsciously, which is not only a serious threat to the
driver’s own life and safety, but also a serious threat to the
involved pedestrians and other vehicles.*erefore, detection
of driving fatigue is of great importance to reduce the fre-
quency and severity of traffic accidents [6].

In recent years, a variety of methods have been proposed
to detect driving fatigue. For instance, Hiesh and Tai de-
veloped an infrared light-based digital signal processing
(DSP) embedded system to capture driver’s face and detect
driving fatigue by identifying the opening and closing of eyes
[7]. In another study, a calculation method named as the
improved percentage of eyelid closure over the pupil
overtime (PERCLOS) was employed as a standard criteria to
judge whether the driver was tired or not [8]. Although this
method is convenient in fatigue detection, it is vulnerable to
environmental illumination such as the brightness, resulting
in poor detection performance [9]. Later on, a sensor-based
device called the steering wheel monitoring system (SAM)
was developed to detect driving fatigue by monitoring
the abnormal movement of the vehicle’s steering wheel
[10]. Although detection of steering wheel features good
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real-time performance and low cost, it also suffers poor anti-
interference ability and low reliability [11].

Recently, fatigue detection based on physiological signals
such as electroencephalogram (EEG), electrocardiogram
(EOG), electromyogram (EMG), and electrocardiogram
(ECG) signals has been increasingly investigated in this field
[4, 12–19]. Among them, EEG has some major assets in
detecting driving fatigue due to its high temporal resolution,
high portability, and good sensitivity to fatigue. With this in
mind, a variety of studies have attempted to perform EEG-
based classification using different signal processing tech-
niques to accurately detect the fatigue during driving. For
instance, Yang et al. implemented the detection of driving
fatigue using information fusion and dynamic Bayesian
neural network [20]. In another study, Zhao et al. dem-
onstrated that wavelet packet can be used to extract features
from EEG signal and classify the driving condition by a
support vector machine (SVM) [21]. However, the EEG-
based fatigue detection during driving is still faced with
challenges. For instance, EEG signals are usually collected
with low signal to noise ratio (SNR), which requires large
effort in preprocessing raw EEG data. Moreover, the widely
employed EEG-based classification techniques depend
heavily on handcrafted features, which is time-consuming
and highly relies on skilled person in the domain before
predictions are performed.*erefore, there is a clear need to
develop a new strategy to improve the robustness and ef-
ficiency of EEG-based driving fatigue detection.

As a simplified deep learning model based on convo-
lution neural network (CNN), principal component analysis
network (PCANet) has been developed and widely used for
feature extraction in two-dimensional image processing
[22]. Referring to a previous study that performed EEG-
based lie detection [23], PCANet was proved to be highly
effective in classification problem as it automatically
extracted features from multichannel EEG data based on the
deep learning technique rather than extracting handcrafted
features in conventional ways. However, PCANet may be
subject to the phenomenon of dimension explosion when
the dimensionality of input data is large, which dramatically
increases the complexity and cost of computation, rendering
it more difficult to be effectively employed in multichannel
EEG signal processing.

To address this challenge, this study aimed to adapt the
PCANet algorithm to enhance the efficiency of conventional
EEG-based driving fatigue detection by incorporating the
principal component analysis (PCA) with the PCANet
technique. Specifically, PCA is used to preprocess the
multichannel EEG signals and reduce the dimensionality of
data prior to the PCANet processing.*e performance of the
proposed modified PCANet method in driving fatigue de-
tection was evaluated by comparing to traditional PCANet
and other conventional features extraction methods widely
used in driving fatigue detection [4].

2. Methods and Material

2.1. General Structure and Purpose. *e main structure of
this study is demonstrated in Figure 1. EEG data was first

collected in a simulated driving environment, and followed
by conventional signal preprocessing procedures. PCA was
then used to reduce the dimensionality of the preprocessed
signals, which were fed into the PCANet for feature ex-
traction. Finally, the extracted features were classified using a
support vector machine (SVM) and a K-Nearest Neighbors
(KNN) classifier with respect to the driving condition.

2.2. Participants. Six male volunteers (right handed, aged
25.00± 2.00 years) with valid driver’s licenses were recruited
to participate in the experiment. All subjects were physically
and psychologically healthy without any sleep disorders. *e
experiment was approved by the research ethics board of
Guangdong Provincial Work Injury Rehabilitation Center
and performed in accordance with the Declaration of
Helsinki. Each subject was fully informed about the purpose
of the research and provided written, informed consent prior
to the start of the experiment.

2.3. Experiment Design and Data Acquisition. A 32-channel
EEG acquisition system (Brain Products GmbH, Germany)
was utilized to collect EEG signals with the sampling fre-
quency set to 500Hz. EEG electrodes were placed on the
scalp according to the international 10–20 standard system.
An advanced driving simulation system (Shanghai Infrared
Automobile Simulator Driving Equipment Co., Ltd., China)
was used in this study to simulate a real driving environ-
ment. Briefly, the driving simulation system could imitate
the real driving scenarios with dynamically changing rep-
resentations of the car and surrounding traffic. As shown in
Figure 2, the driving simulation system consisted of a fixed
car steering wheel, the brake and accelerator pedals, three
large screens, a high-performance computer, driving sim-
ulation software, and a multifunctional data acquisition
board.*is system can be adapted tomeasure the EEG signal
in different driving states in real time.

All participants were given sufficient time to practice and
get familiar with the driving simulation system prior to the
experiment. Datasets in two states were collected for each
subject in this study, including the awake state and fatigue
state. To collect the data in the awake state, all subjects were
required to maintain a natural and adequate sleep for about
8 hours during the night before the experiment. EEG data
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Figure 1: *e overall schematic for the proposed EEG-based
driving fatigue classification.
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was collected at 9 a.m. on the next day for about 30–
60minutes while subjects were driving in the simulated en-
vironment. To collect the data for the fatigue state, all subjects
were allowed to sleep for only 4 hours during the night before
the experiment.*e EEG data was thenmeasured at 9 a.m. for
30 to 60minutes while subjects were driving in the simulated
environment. Specifically, the driving path was set to relatively
long, straight with smooth curves and almost no pedestrian to
increase the drowsiness of the subjects in fatigue group, while
the path was set to relatively complicated to avoid the
drowsiness of the subjects in the awake group. During the
recording, an observer seated 2meters beside the subjects
monitored the subject’s behavior without causing any dis-
turbance to the subjects. *e observer decided whether the
subject was in a fatigue state or an awake state by observing the
subject’s drowsy signs (more than two seconds eye closure and
head nodding, large deviation off the road) [4, 24]. Data re-
cording was terminated 30minutes after the subjects began to
show fatigue signs. If the subject did not show any sign of
drowsiness after 60minutes of measurement, the experiment
was terminated and data from the subject were excluded from
further analysis. *e experiment was conducted in a quiet,
undisturbed laboratory with ambient temperatures around
22°C.

2.4.Data Preprocessing andAnalysis. All the data analyses in
this study were implemented using MATLAB (2014a,
MathWorks, Natick, Massachusetts). 20-minute EEG signals
in each state were selected for analysis.*e rawmultichannel
EEG signals were first downsampled from 500Hz to 200Hz.
A third-order bandpass filter (0.1–45Hz) was then applied to
remove artifacts such as slow drift, high-frequency noise,
and powerline interference. *e 20-minute preprocessed
EEG data for each state were then segmented by a 10-second
time window, resulting in 120 samples for each state and
each subject. It is worthy of noting that in this study one
sample was a two-dimension matrix (32 channels× 2000
data points). Overall, a total of 1440 samples were obtained
from all subjects for classification (720 samples for awake
and 720 samples for fatigue).

2.5. PCA Dimensionality Reduction and Extraction of Main
Features. In this study, the proposed modified PCANet

consisted of two steps, PCA-based dimensionality reduction
and PCANet-based feature extraction (Figure 1). To over-
come the dimension explosion problem caused by con-
ventional PCANet, PCA was first employed to reduce the
dimensionality of each EEG sample. Briefly, for a given EEG
sample data (32-channel× 2000-point), the PCA trans-
formed the data to 2000 linearly uncorrelated components
known as principal components, ordered by the amount of
variance of the original data that each component accounts
for [25, 26]. By keeping the first r components with the
largest variances and removing the remaining components,
the size of original sample data could be reduced to 32 by r.
In order to keep the original signal information as intact as
possible, we kept the previous r components that accounted
for at least 99% of the original signal as threshold, which was
20 for all samples in this study.*erefore, size of each sample
was reduced to 32 by 20 after PCA optimization, and the
optimized EEG data was analyzed using PCANet for feature
extraction in the next step.

2.6. PCANet-Based Feature Extraction. As we introduced
previously, PCANet is widely used in 2-D image processing,
such as face recognition [27]. In this study, each optimized
EEG sample was treated as a 2-D data matrix (32× 20) and
fed into PCANet for feature extraction.

*e workflow of the PCANet network is shown in
Figure 3, and details of the algorithm can be found in
[22, 28]. In brief, the PCANet consists of two PCA-based
filtering layers and an output layer that includes processing
of binary hashing and blockwise histogram.

Assume we have N input samples after the EEG data
preprocessing. Here, each EEG sample is treated as a two-
dimensional signal of size m× n (channel number× sample
number). Given an input EEG sample Xi, a sliding window of
size k1 × k2 is used to centralize the EEG sample by subtracting
the mean value of each window’s data from the corresponding
window. Each centralized window is further vectorized into a
single column, from which the input EEG sample is converted
to a new 2-D matrix Xi consisting of all centralized windows.
*e same processing is applied to all input EEG samples
( Ii􏼈 􏼉

N

i�1) to obtain the following data structure:

X � X1, X2, . . . , XN􏼂 􏼃εRk1k2×Nc
, (1)

where c � (m− k1 + 1)( n− k2 + 1) is the number of col-
umns in Xi.

*e new vectorized matrix X is then used to perform the
PCA filtration in the first layer. Specifically, the covariance
matrix of X, denoted as Xcov � XXT/Nc, is computed and
applied to select the eigenvectors corresponding to L1
principal eigenvalues as PCA filters W1

l . For the ith EEG
sample, the output of the first PCA layer is then given by the
convolution of the input EEG sample and the PCA filters:

I
l
i � Ii ∗W

1
l , i � 1, 2, . . . , N and l � 1, 2, . . . , L1, (2)

where Il
i denotes the lth output of the ith EEG sample and Ii

is the zero-padded form of Ii to ensure the same size of Il
i and

Ii.

Figure 2: *e setup of the experiment, including the driving
platform and EEG recording system.
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*e second PCA layer is similar to the first layer. *e
output of the first PCA layer is centralized with the same
sliding window and applied to select the eigenvectors cor-
responding to L2 principal eigenvalues as PCA filters W2

p.
*e output of the second PCA layer is given as

O
l
i _� I

l

i ∗W
2
p, i � 1, 2, . . . , N and p � 1, 2, . . . L2. (3)

With the result obtained from the filtrations of two PCA
layers, the output of the PCANet (Tl

i) is further processed by
binary hashing as

T
l
i � 􏽘

L2

p�1
2p−1

H I
l

i ∗W
2
p􏼒 􏼓, l � 1, 2, . . . , L1, (4)

where H(·) is a Heaviside step function that sets positive
values as one and zero for others.

Finally, for the ith input EEG sample, each of the L1
components in Tl

i is partitioned into B blocks.*e histogram
(with 2L2 bins) of the decimal values in each block is
computed and concatenated into one vector represented as
Bhist (Tl

i). *e PCANet-derived feature of the ith EEG
sample is then denoted as

fi � Bhist T
1
i􏼐 􏼑, . . . ,Bhist T

L1
i􏼐 􏼑􏽨 􏽩

T
∈ R

2L2( )L1B
. (5)

*e PCANet processing is applied to each EEG sample
for feature extraction.

2.7. Classification. Support vector machine (SVM) and
K-Nearest Neighbors (KNN) were employed as classifiers in
the classification of awake and fatigue states for each subject.
*e performance of each classifier was evaluated using a
10-fold cross-validation strategy. At each iteration, 90% of
the samples were randomly selected as the training set, and
the accuracy, defined as the ratio between correct pre-
dictions and the total number of predictions, was computed
on the remaining 10% of the samples, the testing set. Ac-
curacies among the 10 steps of the cross validation were then
averaged, yielding the mean accuracy for each subject. To
evaluate the superiority of the proposed method, the ob-
tained accuracy was compared to the performance obtained

from the traditional PCANet method and two commonly
used feature extraction methods, i.e., the power spectral
density (PSD) [29, 30] and wavelet packet decomposition
(WPD) [31].

In this study, the PSD features of each EEG channel in a
segmented EEG sample (32-channel× 2000-point) were
estimated through Short-Time Fourier transform (STFT) with
a 128-point Hanning window and 50% overlap rate. For each
EEG channel, the PSD feature of a specific frequency band
was computed by averaging all squared magnitude values of
STFTwithin the corresponding frequency range. In this study,
five typical EEG bands were investigated, including delta
(0.1–4Hz), theta (4–8Hz), alpha (8–13Hz), beta (13–20Hz),
and gamma (20–45Hz). *is resulted in 160 PSD features for
each EEG sample (5-band× 32-channel).

*e WPD features of each EEG channel in a segmented
EEG sample (32-channel× 2000-point) were calculated
based on discrete wavelet decomposition (DWT). In brief,
the DWTdecomposed the selected EEG signal into a number
of layers by filtering the signal with quadrature mirror filters
(a low-pass filter and a high-pass filter). *e output of each
layer was a series of detail coefficients (from the high-pass
filter) and approximation coefficients (from the low-pass
filter), which were extracted as features for classification
[32]. In this study, we decomposed each EEG channel data
(2000 points) with a 3-layer “Daubechies” wavelet, resulting
in 8 groups of coefficients (256 points).*erefore, there were
in total 65536 (8-groups× 256-point× 32-channel) features
extracted for each EEG sample.

3. Results

Referring to previous studies [4, 24], it was found that the
alteration in brain regions during awake and fatigue states
were more prominent at the parietal lobe at alpha and beta
frequency bands [33, 34]. Figure 4 shows the group-averaged
PSD distribution of the relevant EEG signals in alpha (8–
13Hz) and beta (14–20Hz) bands in awake and fatigue
states. *e PSD values were computed based on the average
of all 10-second EEG samples in each state for each subject.
In brief, in the fatigue state, the PSD in the parietal and
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occipital lobes of the brain was more pronounced compared
to the PSD distribution in the awake state.

In order to determine the optimal number of PCA
filters (L1 and L2) when using the PCANet, the classifi-
cation performance varied with the number of PCA filters
was acquired for each subject. Figure 5 shows the vari-
ation of classification performance for each subject when
using a SVM, with number of PCA filters increasing from
2 to 14 for both layers, respectively. Overall, for most
subjects (except sub. 3 and sub. 4), the classification
performance was enhanced as the filter number increased,
and gradually decreased when filter number was over 10
or 12.

Additionally, the performance of classification using
two classifiers and various feature extraction strategies,
including the traditional PCANet, WPD, PSD, and the
proposed modified PCANet method, is shown in Figure 6
and summarized in Tables 1 and 2. Overall, for both
classifiers, when selecting the optimal PCA filter number
for each individual subject, the traditional PCANet and
the proposed modified PCANet method achieved better
performance in the classification of awake and fatigue
states. *e result of the paired-t test between four feature
extraction methods revealed that the PCANet-based
methods significantly outperformed the other two methods
(p< 0.005), as shown in Figure 6 and Table 2. Although no
significant difference in classification accuracy was observed

between the traditional PCANet and the modified PCANet,
the time used in the feature extraction, model training, and
testing was drastically reduced when using the modified
PCANet method, indicating the high efficiency of this
method (Table 3).

In addition, the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve [35], which
evaluates how well a model separates the groups being
classified, was employed to assess the performance of
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different feature extraction strategies. As summarized in
Tables 1 and 2, for both classifiers, the AUC values obtained
from the traditional PCANet and the proposed modified
PCANet method are significantly higher compared to PSD
and WPD features (p< 0.005). Similarly, no significant
difference in AUC values was observed between the tradi-
tional PCANet and the modified PCANet.

4. Discussion

*is study sought to validate the feasibility of using modified
PCANet to enhance the performance of EEG-based driving
fatigue detection. *e neuronal electrical activity was recorded
using EEG in a simulated driving environment with subjects
experienced both awake and fatigue states. We employed PCA
to alleviate the dimension explosion caused by PCANet before
classification.*e experimental results indicated a significantly
enhanced performance in the fatigue detection compared to
the traditional PCANet and other conventional approaches.

Alterations in low and high frequency bands were
previously observed by EEG in the drowsy state [36]. In
summary, investigations that included the transition from
awake to sleepy states have demonstrated an increase in the
alpha rhythm [24]. *e alteration of the alpha band during
drowsiness in both simulated and actual driving conditions
was also reported in a previous study [37]. In this study, we
compared the PSD between both states for alpha and beta
frequency bands and found an increased PSD at occipital
and parietal areas in both alpha and beta bands (Figure 4).
*is finding is in line with the results from these studies,
demonstrating the possibility of using EEG as a portable and
reliable approach to monitor and detect the driving fatigue.

In order to monitor the brain state during driving, it is of
great importance to achieve high accuracy and reliability in
detecting the driver’s fatigue state. With high classification
accuracy between the awake and fatigue states achieved by
the modified PCANet approach, our study proved the
usefulness of EEG to study driving fatigue. In particular, the
substantial increase in classification accuracy using the
proposed method, compared to conventional feature ex-
traction methods, offers a new perspective to deal with
classification problem when using multichannel biosignals
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Figure 6: *e average accuracies obtained by SVM (a) and KNN (b) when using different features extracted through WPD, PSD, modified
PCANet, and PCANet. “∗∗” denotes significantly different from controls (p< 0.005). “∗∗∗” denotes significantly different from controls
(p< 0.0001).

Table 1: *e classification performance using different feature
extraction approaches.

Methods Classifiers
Classification performance
Accuracy (%) AUC

WPD SVM 55.42± 5.09 0.51± 0.11
KNN 54.00± 5.00 0.46± 0.08

PSD SVM 64.44± 15.06 0.55± 0.12
KNN 76.00± 13.00 0.55± 0.08

Modified-PCANet SVM 95.14± 4.87 0.97± 0.04
KNN 89.00± 10.00 0.89± 0.12

PCANet SVM 96.00± 4.00 0.98± 0.03
KNN 87.00± 15.00 0.91± 0.10

Table 2: *e summary of the statistical analysis (t-test) of the
classification performance between all feature extraction methods.

Methods Classifiers
p values

Accuracy (%) AUC

Modified-PCANet-WPD SVM 1.36e− 07 1.02E− 04
KNN 6.15e− 05 5.18E− 04

Modified-PCANet-PSD SVM 0.0023 2.24E− 04
KNN 0.0018 3.10E− 03

Modified-PCANet-
PCANet

SVM 0.3541 0.6612
KNN 0.6823 0.2884
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such as EEG and EMG signals. It is noteworthy that PCAwas
necessarily adopted before PCANet was employed to extract
features in this study. As shown in Table 3, the proposed
modified PCANet method remarkably reduced the time for
the classification while maintaining a comparable perfor-
mance relative to the traditional PCANet approach. *is
provides evidence that PCA is able to alleviate the curse of
dimensionality induced by PCANet, reducing the compu-
tational cost when using the traditional PCANet. By taking
this great advantage, the proposed method is considered a
more effective strategy in a practical scenario such as
monitoring driving fatigue in real time. In addition, the
components compressed by PCA retains the main charac-
teristics of original signals, which is the inherent benefit
offered by PCA. *e pre-refined signals can be further
improved by PCANet to achieve the significantly enhanced
classification accuracy. Particularly, the classification per-
formance across all subjects not only exhibited high accu-
racy, but also yielded lower variance, demonstrating the
good robustness of the proposed method.

Despite the improvement achieved in this study, there
are still several limitations in this study. Firstly, only off-line
analysis and small sample size were elected in this study.
Real-time fatigue classification should be conducted on
larger population base in the future to validate the potential
of the proposed approach in actual driving environment. In
addition, two-layer PCA structure was applied for feature
extraction in this study, and 8–12 filters were considered
optimal setting for achieving best performance. Apparently,
the number of PCA filters within each layer affected the
quality of feature extraction, which significantly affected the
performance and efficiency of the fatigue classification.
Further investigation on how to automatically select the best
filter number for each subject is required. Finally, in the
present study we solely focused on adapting a deep learning-
based technique to the conventional EEG-based driving
fatigue classification and provide a new perspective to deal
with classification problem when using multichannel bio-
signals. Although compelling result was achieved in current
study, it is expected that future work will evaluate and
employ the state-of-the-art algorithms to enhance the
performance of this application. Even though the mentioned
limitations may prevent us drawing a solid conclusion, the

preliminary results demonstrate the capability of the pro-
posed PCANet-based algorithm to monitor and detect the
driving fatigue in advance so that it can prevent motor
vehicle collision caused by driver drowsiness.

5. Conclusion

In this paper, a novel feature extraction strategy incorporating
the PCA and PCANet techniques was proposed to enhance the
classification performance in EEG-based driving fatigue de-
tection. Significantly enhanced classification performance
was achieved using the proposed modified PCANet method
compared to the traditional PCANet algorithm and two
conventional feature extraction strategies. Additionally, the
power spectrum analysis of EEG signals indicated a higher
power alteration at occipital and parietal areas in alpha and beta
bands. *e findings in this study not only demonstrated the
effectiveness of using EEG to monitor driving fatigue but also
provided a new perspective to adapt a novel machine learning
algorithm to investigate the nature of philological signals.
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