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Abstract: Assessment of respiratory function allows early detection of potential disorders in the
respiratory system and provides useful information for medical management. There is a wide range
of applications for breathing assessment, from measurement systems in a clinical environment to
applications involving athletes. Many studies on pulmonary function testing systems and breath
monitoring have been conducted over the past few decades, and their results have the potential to
broadly impact clinical practice. However, most of these works require physical contact with the
patient to produce accurate and reliable measures of the respiratory function. There is still a significant
shortcoming of non-contact measuring systems in their ability to fit into the clinical environment.
The purpose of this paper is to provide a review of the current advances and systems in respiratory
function assessment, particularly camera-based systems. A classification of the applicable research
works is presented according to their techniques and recorded/quantified respiration parameters.
In addition, the current solutions are discussed with regards to their direct applicability in different
settings, such as clinical or home settings, highlighting their specific strengths and limitations in the
different environments.

Keywords: breathing monitoring; camera-based monitoring systems; respiratory physiological
variables; chest wall deformities; depth sensors

1. Introduction

Breathing monitoring is an important component of clinical detection of vital distress, and is
performed for all patients in a hospital, whether in the emergency room, a general or specific ward,
or in the intensive care unit. The monitoring of a patient respiration mainly comprises an assessment
of the chest wall motion [1–4] and measurement of physiological parameters, such as airflow and
respiratory volumes [5–9], respiratory rate (RR) [10–13], the resulting transcutaneous oxygen saturation
(SpO2), and respiratory CO2 removal [14–18]. Respiration assessment can be classified around these
four elements, as shown in Figure 1.
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Chest wall motion assessment and physiological parameter monitoring are two essential caregivers’
clinical daily tasks. They are key elements in managing patients with respiratory failure, whether this
failure is due to chronic illness or to an acute pathology in the lungs, airway, or muscles, and to assess
the impact of a therapy. Therefore, increased efforts have been made in developing effective respiratory
measurement systems with action- and results-oriented goals, paving the way to new lines of research.
These new research avenues have led to cooperative efforts between physicians and engineers, helping
to propose new methods and systems for respiration quantitative assessment.

Existing measurement systems, while diverse, fall into two broad groups: contact and non-contact [19].
Traditional techniques of measurement are based contact, use a large number of sensors, require direct
contact with the equipment, rely on patient cooperation, and require staff that is sufficiently skilled
and trained to manage the measurement systems and use them correctly [20]. The most widespread
techniques are plethysmography [21] and spirometry [22]. These approaches have been promoted and
deployed in hospital wards. Nevertheless, they may easily disturb the patient from a clinical perspective,
especially in younger children, frail elderly, and cognitively impaired patients.

Plethysmography, for instance, requires connection to the patient using many wires, some attached
to the facial area [19]. This is often uncomfortable and may be poorly tolerated in children. In addition,
patient movements may lead to a high rate of errors in the measurements [23]. Likewise, the spirometer,
although considered as the gold standard for pulmonary function testing, the measurement validity
depends upon many factors, such as gas temperature, humidity, viscosity, and density. It needs
to be recalibrated at least once every two days [24]. In addition, spirometry requires a high level
of cooperation not achievable in infants and toddlers, elderly people, and in acute care [25,26].
Indeed, the subject is requested to have a big breath and then exhale the air through a mouthpiece
attached to the spirometer, while having the nose pinched off. This highlights another important
problem with spirometry, which is that critically ill patients could not endure a mouthpiece or a
facemask [27]. Moreover, the whole process may interfere with the true natural respiratory activity
of the patient (due to stress, unease, etc.). The reported consequences on respiration are falls in the
breathing rate, increases in the tidal volume and amplified CO2 production. Perez et al. have reported
that forced oral respiration may be causing collateral effects on respiratory activity [28].

Consequently, non-contact methods have been of big interest to researchers and clinicians.
These methods aim to reduce or even eliminate the large number of sensors attached to a patient’s
body to monitor breathing.

The advantages of non-contact methods include reducing system complexity, improving their
portability, increasing the flexibility so they can be used by almost anyone (including non-trained
staff) and facilitating the data collection process [19,29]. The trend today shows that non-contact
systems as very powerful, but still less mature then contact ones, primarily in clinical environments.
Concerns related to patient safety, electromagnetic interference with other electronic devices,
rapid interconnection, and integration with existing medical equipment and the complexity of
the early versions, which usually were not optimized to be used daily, are all parameters in their
slothful uptake in hospitals. With further progress, non-contact methods will become more and more
viable, and will have a strong growth potential. However, at the present stage of their evolution, there is
an obvious need to improve the effectiveness of these systems to meet their expected performance
in the different environments [30–32]. This requires a definition of the challenges and opportunities
facing the proposed solutions and motivating this line of research.

In this review, we present the current approaches for breathing assessment across many fields.
The potential advantages of using non-contact systems are emphasized. The strengths and limitations
of the different approaches are discussed, highlighting their performances in various settings and
considering the users’ expectations, including medical staff, patients, athletes, and normal users for
home applications.
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1.1. Related Work

Recently, several studies have reported developments in respiration assessment, which includes
both chest wall motion and physiological parameter estimation. The problem of respiratory motion
has been studied through a comprehensive review, published by McClelland et al. [33]. In this
work, authors proposed to build breathing models to compensate for the motion of internal organs
in radiotherapy and image-guided interventions. Using a respiratory motion model, estimates of
breathing signals can be derived from other input signals, or from surrogate data. Examples of
surrogate data include the displacement of the skin surface, the spirometer signal, the respiratory belt,
and data acquired through imaging techniques, such as magnetic resonance imaging (MRI), ultrasound
(US), and computed tomography (CT). The breathing motion entails non-negligible variations between
and within respiratory cycles, such as amplitude changes. These changes can be broadly categorized
into two main classes: intra-cycle variation and inter-cycle variation [33]. The first category considers
the variations of the motion path between the inspiration and expiration of each cycle, while in the
second category, only variations between breathing cycles are considered. To model these variations,
the researchers used the respiratory phase, in which they assumed that breathing was periodic.
However, this may be not effective in critically ill patients who often present irregular breathing.
Additionally, the focus was on modeling the respiratory motion, especially for radiotherapy and
image-guided intervention applications. Authors described the work conducted to describe and track
the movement of body parts/organs due to respiration. Moreover, the review did not present methods
aiming to quantify physiological variables such as respiratory rate and tidal volume.

There have been several studies reporting techniques for estimating physiological parameters.
For instance, Al-Khalidi et al. reviewed methods measuring respiratory rate [19]. They classified

the existing techniques into two main categories: contact- and non-contact-based. The described
contact techniques include nasal prongs, masks, thermistors, microphones, electrocardiogram (ECG)
electrodes, respiratory impedance plethysmography, pulse oximeter, and electrodes diffusing gas in a
patient’s skin. The described non-contact techniques were mainly based on radar, infrared and optical
imaging techniques. Other non-contact techniques were briefly reported, such as three-dimensional
(3D) vision algorithms and webcam cameras. Moreover, the authors only describe techniques for the
respiratory rate parameter and not for other physiological parameters, such as volumes.

Kim et al. [34] provided a list of methods for human breath analysis, in which exhaled breath
is tested for the evaluation of health status and disease types. However, their review fits more into
clinical diagnosis. Methods for breathing monitoring in clinical environments were also reviewed
by Folke et al. [35]. Their work classified non-invasive methods and devices that provide measures
for respiratory rate, tidal volume, and gas exchange. The methods’ merits and limitations are also
discussed. Although the review offers a good categorization of devices and monitoring principles,
many new methods and devices have been developed since the review was produced. Advances
in imaging technology over the past ten years, and especially with the emergence of new depth
acquisition devices with acceptable accuracy [36–41], have paved the way to new non-contact methods,
which were not addressed in their review.

Recently, Massaroni et al. [42] presented a review for contact-based respiratory rate techniques.
Authors presented the sensors’ working principles, metrological characteristics, and their major
applications in the respiratory monitoring field. However, the focus was on what contact-based sensors
can offer for respiratory rate measurement. Hence, there were no recommendations or discussions
related to contactless-based methods and their suitability in measuring respiration in different settings.
Moreover, the review did not cover methods aiming to quantify volumes or other respiratory variables.

1.2. Paper Contributions and Structure

This paper presents a review of the latest respiratory assessment methods and systems, with a focus
on non-contact devices. Camera-based systems are highlighted. Their direct applications are discussed
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in a variety of settings (i.e., clinical settings, home, prisons, cars, exercise, etc.). Through this work,
we emphasize other challenges with actual research works. The main contributions of our work are:

• An update of the literature covering assessment of human breathing [19,33–35,42] with the latest
works, more recently published meta-analyses and new challenges and perspectives.

• Categorization based on the sensor’s technology.
• Identification of the current needs and prospects in various lines of research and remarks for

future work.
• Surveying advances made in the latest non-contact devices and camera-based monitoring systems.

2. Search Methodology

Following the requirements of Multidisciplinary Digital Publishing Institute (MDPI) Sensors,
a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [43] was conducted. A total of five databases were searched, including:
Scopus, ScienceDirect, IEEE Xplore, PubMed, and Web of Science. The following search phrases were
used: ((Respiratory rate OR Volume OR Respiratory Motion) AND (Assessment OR Measurement
OR Evaluation) AND (Respiration OR Breathing) AND (Systems OR Cameras OR Sensors)).
Other records were identified through resources like Google Scholar search, which allow finding
some works not found in the other databases. A combination of the following strings has been
used as well: “Respiratory assessment”, “Respiratory monitoring”, “Respiratory rate”, “Volumes”,
“Chest wall assessment”, “Respiration Motion”, “Respiration pattern”, “Breathing rate”, “Vital signs”,
“Intensive care environment”, “Non-contact methods”, “Breathing disorders”, “Kinect Camera”,
“Depth sensors”, “Gas exchange”, “Carbon dioxide partial pressure”, “Oxygen partial pressure”,
“Tidal volume”, “Respiratory distress”, “Newborns”, “Infants”, “Adults”, “Surface reconstruction”,
RGB cameras”, “RGB-D cameras”, “Thermal cameras”, “Radar”, “Time-of-Flight”, “Structured
light”, “Active stereoscopy vision”, “3D technologies”, “Consumer grade camera”, “Measurement”,
“Measurement”, “Measurement”. During the search, the keywords were combined with each other to
broaden or narrow the search results. Moreover, the terms in the search phrase were replaced with the
cited strings to create variations of this query.

The searches were conducted between 1 March 2020 and 31 October 2020. The publication period
investigated was from 2010 to 2020. We used the setting “most recent” in PubMed, the range bar in
IEEE Xplore and the setting “since 2010” in other databases, such as Scholar to highlight articles from
the last ten years (from 2010 to 2020). The reason is to have insight on the most recent advances in
methods for respiratory assessment. The results were added to Mendeley database. The selection
process involved the following inclusion/exclusion criteria:

• The paper should be published as a journal article or in conference proceedings.
• The paper should be written in English.
• The paper should aim to characterize or quantify a respiratory element.
• The paper should be based on non-contact systems to assess respiration, especially the

camera-based systems.
• Other vital signs, such as heart rate quantification, are not included in this review.
• If a paper from a specific research group or project had been published in a conference and then in

a journal, only the extended journal paper was reviewed.

Most of the papers present methodological studies, which are conducted to develop, experiment,
and validate new methods, techniques, and systems to assess the respiration. In our inclusion
criteria, we focus on works characterizing or quantifying one or more respiratory elements using
innovative ways. The description of each element is given in Appendix A. This includes respiratory
rate (Appendix A.1), volumes (Appendix A.2), blood gas concentrations (Appendix A.3), and chest
wall movement, patterns, or deformities (Appendix A.4). Moreover, a particular emphasis was given,
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in this work, to the non-contact aspects, methods, systems and their applications through the retrieved
works, especially the camera-based approaches.

Non-contact methods are also called remote, contactless, wireless, or contact-free methods because
of the absence of contact with the subject. In this category, devices are not attached to the body.
Main contactless sensors can be categorized into radio frequency-based and imaging-based systems.
Imaging devices include RGB video, thermal, ultrasound, and depth sensors. These devices differ
primarily in their data types and technologies, as shown in Figure 2. Some theory related to non-contact
technologies is described in Appendix B. This includes radars (Appendix B.1), cross-sectional,
radiography, and fluoroscopy imaging sensors (Appendix B.2), RGB, and thermal sensors (Appendix B.3)
and depth sensors (Appendix B.4), which are based on Structured-Light (SL), Time-of-flight (ToF),
and Active Stereoscopic Vision technologies (ASV).
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While they are considered as relatively new and not fully mature, many non-contact methods
have achieved good outcomes through a few works. The results are given in Section 3, along with a
comprehensive description of the reported methods.

3. Results

Our initial search identified a total of 582 references. As illustrated in the flow diagram
of Figure 3, 54.46% of the retrieved papers (n = 317) were eliminated after duplicates removal,
title, and abstract screening.

Most excluded publications either required direct and close contact while measuring the respiratory
parameter or quantified other vital signs (e.g., heart rate). A total of 265 publications were included in
the full text review, during which we excluded 141 publications based on the fixed inclusion/exclusion
criteria. Data were extracted from the remaining 124 publications.

Figure 4 shows the number of retrieved papers per year in the period between 2010 and 2020.
We observe that many papers were published during the last five years (more than 70% of the
selected articles). Many groups conducted considerable research in this area, which provided valuable
results. This is due, as well, to the emergence of camera technologies, especially the depth sensors.
Many companies, such as Microsoft and Intel, have produced a variety of low-cost commercial cameras.
Looking more closely into each article, we notice that most works are addressing the respiratory rate
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(48%) and the chest wall motion (37%). Some works addressed more than one respiratory element in
the same paper (e.g., respiratory rate and tidal volume or respiratory rate and chest wall motion, etc.).
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Non-contact hardware system development brought many new innovative methods, some of
which were less efficient or even impossible to use in the past. Most of the retrieved papers included a
methodological section explaining the proposed technique, followed by experiments and the validation
sections. Experiments are aimed to investigate the applicability of the method with supporting data and
analyze it appropriately. Validations are aimed to provide convincing proofs regarding the ability of
proposed systems to approach the accuracy of conventional gold standard methods. Many works used
signal processing and computer vision techniques, such as filtering, optical flow (using Horn–Schunck
algorithm), thresholding, segmentation, principal component analysis (PCA), image analysis, surface
reconstruction, etc. Table 1 shows a comprehensive view of some of the non-contact techniques, along
with their results between 2017 and 2020.
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Table 1. Overview of some recent research in respiratory assessment over the four last years (from 2020 to 2017).

Year Author Name, Reference Respiratory Element
Method/Device (D),

Validation Method (V),
Validation Dataset or Subjects (S)

Results with Respect to Each
Study’s Objective

2020

Lee et al. [44] Respiratory rate D: radar sensor.
V: respiration belt with peak counting.
S: 16 adults

ρ 1 = 0.99 (without movements)
ρ 1 = 0.92 (with weak
movements)
ρ 1 = 0.84 (with severe
movements)

Phokela et al. [45] Respiratory rate D: smartphone and headset microphone.
V: manual record of inhale and exhale points by users
when breathing using an Android application on their
smartphone. Users press on a button after each
inhalation and exhalation.
S: 25 healthy subjects ranging from 10 to 50 years old (11
males and 14 females).

Error = 1% to 9.4% using one
source of noise such as
television or air conditioner.
Error = 1% to 8% in noisy
environments (with the
combination of various noise
sources).

Rehouma et al. [46]
Respiratory rate

Tidal volume
Minute ventilation

D: dual-Kinect V2 (3D reconstruction).
V: mechanical ventilator.
S: a mannequin and 2 infants (1 Male and 1 female).

r2 2 = 0.99 in mannequin
r2 2 > 0.94 in real patients

2019

Reyes et al. [47] Respiratory rate
Respiration movement D: RGB camera.

V: using a reference database comprising 12 video files.
S: 4 subjects.

CorrI 3 > 90%
NRMSE 4~10%

Saegusa et al. [48] Breathing pattern D: Orbbec Astra (depth information) + FLIR (Forward
Looking InfraRed) sensor C2 (thermal information for
person detection).
V: Controlled breathing by listening to a metronome set
at a frequency of 0.27 Hz over 30 s and by stopping
breathing for 20 s for two times.
S: 1 subject.

accuracy ~90%
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Table 1. Cont.

Year Author Name, Reference Respiratory Element
Method/Device (D),

Validation Method (V),
Validation Dataset or Subjects (S)

Results with Respect to Each
Study’s Objective

2019 Mateu-Mateus et al. [49] Respiratory signal D: Microsoft Kinect V2 (infrared and depth frames).
V: Thorax plethysmography system for reference system.
S: 20 subjects.

Agreement between the
proposed method’s signal and
reference method signal:
Mean deviation = 10.13 ms
No BA 5 bias in the BA 1 graph
p 6 < 0.05
global SEN 7 = 77.21 %
global PPV 8 = 80.69 %

2019 Massaroni et al. [10] Respiratory pattern D: built-in CCD RGB webcam (iSight camera) integrated
into a commercial MacBook Pro laptop (by Apple Inc.,
Cupertino, California, USA).
V: reference respiratory pattern from a head-mounted
wearable device recording of the pressure-drop (∆P)
that occurs during the expiratory/inspiratory phases of
respiration at the level of nostrils.
S: 12 subjects (6 males and 6 females).

Better performance on females:
BA 5 bias = −0.01 ± 1.02 bpm
Females BA 5

bias = −0.01 ± 0.73 bpm
Males BA 5

bias = 0.01 ± 1.22 bpm

2018

Pereira et al. [50] Respiratory rate D: infrared thermography.
V: long wavelength infrared (LWIR) camera (Vario
CAMR HD head 820S/30 mm (InfraTec GmbH, Dresden,
Germany)).
S: 12 healthy volunteers + 8 newborns.

� RMSE 9 = 0.31 ± 0.09 BPM
(adults)

� RMSE 9 = 4.15 ± 1.44
(infants)

Yang et al. [51] Respiratory rate D: impulse ultra-wide band (UWB) radar installed in a
vehicle.
V: a USB pressing button to obtain the ground truth of
breathing counts. The button is pressed while a subject
is inhaling.
S: 4 subjects.

ERROR = 1.06 BPM



Sensors 2020, 20, 7252 9 of 55

Table 1. Cont.

Year Author Name, Reference Respiratory Element
Method/Device (D),

Validation Method (V),
Validation Dataset or Subjects (S)

Results with Respect to Each
Study’s Objective

Shoun et al. [52] Tidal volume D: thermal data processing. The correlation with the
ground-truth measurement is performed using
Long-Short-Term-Memory (LSTM) neural network
(used as a predictive model for tidal volume estimates).
V: spirometry.
S: five healthy normal human subjects.

RMSE 10 = 10.61%.

2017

Jorge et al. [53] Breathing pattern (detection of
abnormal signals) D: 3 CCD 11 (Sony ICX274AL®, Sony, Tokyo, Japan)

digital camera (JAI AT-200C®, JAI, Glostrup, Denmark).
V: a total of 107 events were divided into two
independent groups for training and validation and our
algorithm was trained to classify true cessations.
S: 30 neonatal admissions of less than 37 weeks.

FAR 12 reduced of 77.3%

Liu et al. [54] Respiration movement D: wearable strain sensor (WSS).
V: measuring tape (MT).
S: 21 healthy male students.

ICC 13 values for intra-rater
reliability were from 0.94 to 0.98
at all locations

Martinez et al. [55] Breathing rate D: depth camera (PS1080, 640x480@30Hz).
V: dataset of 3239 segments collected from 67 sleep
laboratory patients.
S: 67 patients referred to a sleep laboratory with various
degrees of sleep apnea.

accuracy = 85.9%

1 Correlation coefficient, 2 Coefficient of determination, 3 The correlation index, 4 Normalized root mean squared error, 5 Bland-Altman, 6 no-correlation coefficient, 7 Sensitivity or ratio
between TP (True positive) and TP (True positive) + FN (False negative), 8 Positive predictive value or ratio between TP (True positive) and TP (True positive) + FP (False positive),
9 Root Mean Square error, 10 Root-Mean-Square Error, 11 Charge Coupled Device, 12 False Alarm Rate, 13 ICC is a reliability index that shows both degree of correlation and agreement
between measurements.
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Respiratory rate seems to be one the most attractive parameters using the non-contact methods
and has been addressed in a variety of conferences and journal papers divided as follows: [19,56–79]
(over the period 2010–2015), [9,11,12,29,32,42,44–51,53,55,61,69,80–115] (over the period 2016–2020).

Monitoring of pulmonary function such as tidal volume, minute ventilation, forced vital
capacity, and forced expiratory volume has been studied in many works as well in [65,116–120]
(2010–2015), [6–9,32,46,52,88,91,92,100,103,110,121–124] (2016–2020).

Blood gas concentrations (oxygen saturation and end-tidal carbon dioxide monitoring) has been
addressed in [15,80,125–127].

The characterization of chest wall motion has been addressed in many methodological works,
which presented interesting results, including for the general (e.g., motion quantification) and
specific levels (e.g., illness detection/severity assessment and scoring). This can be grouped as
follows: [57,61,62,64,68,72,117,120,128–149] (2010–2015), [3,10,47–49,53,54,95,97,99,101,105,111,122,150–160]
(2016–2020).

The respiratory rate, ventilation, gases concentration, and chest wall motion were measured in
a variety of subjects, including healthy volunteers, newborns, infants, very ill patients, and elderly
people. Studies on simulated data are reported as well in some of the selected research papers.

Methods used to characterize and quantify these respiration elements were based on the following
non-contact techniques: radar detection, cross-sectional sensing, ultrasonic technology, radiography,
fluoroscopy imaging, RGB conventional imaging, thermal imaging, and depth sensing, which involves
the structured light, time-of-flight, and active stereoscopic vision technologies. An overview of these
technologies is given in Appendix B. The remainder of this section provides a description of different
methods and organizes them based on the technology similarity.

3.1. Radar Sensors

Reference respiratory rates ranges were extracted from a review of observational studies that
used respiratory rates data from 3881 children (from 6 months to 18 years old) [161]. Based on 99th
and 1st centiles for children and young adults, the RR could range from 8 to 60 breaths/min (0.14 to
1 Hz, respectively. The range in adults is much more restricted but would be included in this range.
An extreme range may occur in critical illness, such as an elevated RR (>40 breaths/min in children with
pneumonia) as an early indicator of critical illness. Therefore, the maximum value peak frequencies in
the respiratory frequency band (0.14 to 1 Hz) were automatically extracted, reflecting RR.

One of the first monitoring techniques, radar-based, was described in 1997 by Greneker et al. [162].
The system was called the Radar Vital Signs Monitor (RVSM). It was proposed to examine the
performance of Olympic athletes at distances more than 10 m. The RVSM calculated breathing-induced
movements of the chest based on the Doppler physical phenomenon. A big limitation of the RVSM is
the observed motion artefacts, which degrades the respiratory signals. There have been no available
studies illustrating the testing of this technique in infants.

Use of continuous wave (CW) unmodulated microwave Doppler RADAR at 2.4 GHz and 1.6 GHz
was reported in the context of a thesis work by Droitcour et al. [163]. By analyzing the shift in frequency,
authors estimated the motion of the thoracoabdominal wall. RR was detected from a range of 1.5 m,
from a population of 22 patients. The work was validated using gold standard based-contact systems
(thoracic impedance and inductive plethysmography).

In the last few years, a variety of radar-based sensors has been investigated for respiration
monitoring [44,51,69,82,94–97]. In 2019, Nosrati et al. [94] proposed a phased array approach with a
multiple-input multiple-output (MIMO) beamforming design. The system can detect multiple targets
and hence offers a good accuracy for short-range human vital signs monitoring. Another radar-approach
for respiratory assessment was proposed by Adib et al. [69]. Authors used a frequency modulated
continuous wave (FMCW) in the range of 5.46 GHz to 7.25 GHz, rather than using the Doppler effect.
The subject was in another room then the radar’s room and his RR was accurately measured with a
working distance of 8 m.
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A potential application of this system is to monitor patients with transmissible infectious
diseases, such as the recent severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2).
An important requirement to help caregivers to identify potential infected patients is to detect those
with abnormal breathing using remote sensing from over 2 m away. This radar-based FMCW technique
can be used as well in the context of “smart homes” by incorporating the sensor in a Wi-Fi router for
RR monitoring in a residency given its wide sensing range capabilities [69].

Table 2 describes the latest works, particularly those of 2020, using different radar architecture
such as FMCW and pulsed Doppler radars.

Table 2. Examples of works using radar sensors for respiration assessment over the last few years.

Author, Year, Reference Methods and Results

Kim et al., 2020 [95] � Application of a W-band continuous-wave (CW) Doppler
radar sensor ~94 GHz.

� Distance from the chest: 1 m.
� Application of a low-pass filter.
� Frequency of RR signal: 0.27 Hz.
� Chest displacement ~0.26 mm.
� Good accuracy with the reference manual

measurement values.

Islam et al., 2020 [97] � Application of a 24-GHZ phase comparison monopulse radar.
� Recognition of multiple human respiratory

patterns simultaneously.

Lee et al., 2020 [44] � Technique based on harmonic quefrency selection in the
respiration adaptive domain (possible using the nature of
respiration signals).

� Good correlation with the peak counting validation technique.

Carreiro et al., 2020 [82] � Application of a contactless ultra-wideband (UWB) impulse
radar-based sensor.

� Application in laboratory and in the Emergency
Department settings.

Yaakov et al., 2020 [96] � Application of a Frequency Modulated Continuous Wave
(FMCW) radar (ELM-2114) to screen the SARS-CoV-2 virus.

Nosrati et al., 2019 [94] � Application of a phased-array radar.
� Use of a hybrid beamforming architecture to generate two

simultaneous beams.
� Multi-person detection.
� The breathing rates of two individuals can be monitored at the

same time and using a same frequency (~2.4 GHz).

Yang et al., 2018 [51] � Application of a UWB frequency to detect respiration in
a vehicle.

� Detection of the minute chest movement.
� Mean error ~1.06 breathing rate per minute.

Despite this increasing interest of research works in radar-based technologies, the current technology
of radar-based techniques has several major shortcomings. Body movement interferences [104,164] and
the lack of efficient and stable signal processing techniques, which would be capable of handling low
samples of data [70], are two examples of these issues.

3.2. Cross-Sectional Imaging Sensors

Computerized tomography (CT) has been used in many works on chest wall assessment. However,
techniques based on CT scans may suffer from motion artifact. Therefore, PCA has been used to
decrease the number of artifacts and to clean CT images [165]. Another interesting technique using
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4D-CT images acquired in cine mode to model respiratory motion is proposed by Yan et al., applying
optical flow (OF)-based deformable registration [166].

Magnetic resonance imaging (MRI) is another cross-sectional imaging technique, helping to
achieve better characterization of chest wall motion. Since MRI incurs lesser ionization then CT
scanning, it has been used in a number of studies [165–170]. Interesting and promising results have
been achieved in regional chest wall motion assessment using MRI imaging, including chest wall
behaviors during breathing in pectus excavatum [171] and scoliosis [172]. Due to their reliable and
high performance, 4D and cine-MRI images have been used in numerous works, estimating organ or
tumor motion resulting from respiration [173,174]. However, MRI needs expensive technology that
cannot be used outside a dedicated radiology unit.

3.3. Ultrasound Imaging Sensors

For instance, Liu et al. [175] employed an ultrasound system to evaluate the relationship between
the diaphragmatic excursion distance and tidal volume. Their system uses a spirometer and an
ultrasound probe to collect data while a volunteer performs a breathing session. The diaphragm
area is detected in each ultrasound image frame using a histogram of oriented gradient (HOG)
descriptors [176]. The diaphragmatic excursion distance is calculated by tracking the diaphragm
contraction and relaxation. Spirometer data are used as ground truth to find a relationship with the
diaphragm excursion distance. The results show that there is a linear regression relationship between
diaphragm excursion and tidal volume. This relationship is then used to estimate tidal volume when
conducting ultrasound examination.

While these experiments yielded good results, the authors reported possible failures in diaphragm
detection. These failures may be caused by diaphragm image incompleteness or by the detection of
a tissue or of an organ that has a shape similar to that of the diaphragm. Furthermore, the probe
location and its angle significantly influenced the average error between the spirometer record and the
predicted tidal volume. Thus, it is an operator-dependent method.

Similar, but more elaborate techniques have been proposed using ultrasound transmission [177]
and laser displacement sensors to measure ribcage and abdomen movements [178]. In ultrasound-based
techniques, transmitters positioned on the thoracoabdominal zones transmit signals to an external
receiver to evaluate linear movements at various regions of the thorax and the abdomen.

Lafortuna et al. [179] proposed an alternative method measuring the delay between the emission
and reception of ultrasound signals at opposite ends of two rubber tubes surrounding both ribcage
and abdominal areas.

Although most ultrasound techniques showed interesting results in calculating respiration
parameters, such as volume, it has not been tested for infants and children.

3.4. Radiography and Fluoroscopy Imaging Sensors

A major shortcoming of approaches based on radiography and fluoroscopy imaging is that they
present higher cost, slow acquisition, low resolution, and more noise than other imagining techniques,
such as digital imaging, and especially patient exposure to an extra dose of radiation [145,165,180].
Moreover, some of these systems also have the problem of dependence on fiducial markers, making for
complex and slow preparations, which may be extremely disruptive to the patient, and increasing the
treatment time. Additionally, the constraint of having to stay inside the CT/MRI device during the
examination restricts these systems and make their application complicated with children, newborns,
elderly people, and patients with acute diseases. Thus, these approaches cannot always be applied in
pediatric intensive care or other specialized environments.

3.5. RGB Sensors

Many techniques have been proposed for respiration assessment, using RGB sensors, such as
classical webcams [72].
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Researchers have used image processing techniques such as optical flow [181,182],
image subtraction [79], and remote photoplethysmography [29], which consists of illuminating
the skin and then measuring the changes in light absorption.

For instance, Kumar et al. estimates the breathing rate through recording the skin color variation
(specifically near the lips). The variation was recorded with an RGB camera [71]. This technique passes
through a judicious selection of the region of interest. This technique is sensitive to skin color, and results
may be skewed by ambient lighting, etc. A number of research works have been proposed to overcome
these limitations using signal processing and statistical modeling techniques, such as blind source
separation, alternative reflectance patterns, spatial pruning, and temporal filtering [58,75,183,184].

Tan et al. [57] developed a system for respiratory rate estimation. Using a single video camera,
the system uses a 2D image subtraction technique to detect the repetitive movements of the chest and
abdomen caused by breathing. The respiratory rate results were evaluated against a thermistor, a stain
gauge, and a flow monitoring system, but only subjective assessments were reported [6].

Ying-Wen Bai et al. [79] used double video cameras and a temporal differencing algorithm to
calculate the breathing rate. By detecting moving objects between 2D frames, the system monitors and
records the patient’s breathing signal. Their algorithm also detects the chest expansion and contraction,
which allows the respiratory rate to be easily deduced.

Benetazzo et al. measured breathing rates using a weighted averaging filter applied to a region of
interest on the chest wall [75]. While the results were good, the system expects the user to be sitting
in a frontal position with an angular orientation not exceeding 25◦. The region of interest (ROI) is
segmented by using the camera skeleton’s joint information. Their results were validated using a
spirometer, with an outcome of 0.98 correlation. One drawback of this technique is that it cannot be
extended to calculate other respiratory parameters, such as airflow or tidal volume due to its very
limited spatial coverage.

Alinovi et al. used a video processing-based system to estimate the respiratory rate [56].
Their computer vision approach combines two recently presented techniques. The first technique
amplifies small movements that are difficult to observe with the naked eye, such as the respiratory
movements present in a video stream, detecting them by applying a spatial decomposition and
temporal filtering [138]. The second technique estimates a frequency from many signals (using many
cameras simultaneously) [73]. This approach performs a multi-resolution decomposition to the video
frames, transforming the original frame into a pyramidal representation with different spatial scales.
This representation is then temporally filtered pixelwise using the infinite impulse response (IIR) filter.
This same filter is used to extract the components whose periodicity is compatible with the breathing
rate. A single motion signal is then calculated at each level. The breathing rate is deduced from the
extracted signals by applying the maximum likelihood (ML) criterion. This system was validated
against a gold-standard polysomnographic system and showed a good agreement in respiratory
rate estimation. Although the results indicate that the proposed method handles small breathing
movements adequately, the method does present some potential weaknesses. The researchers used a
gold standard (plethysmography) presenting a high degree of uncertainty when the patient is moving
(e.g., newborn babies). This method also has a high level of complexity. In addition, the accuracy of
this assessment depends on the type of temporal filter utilized. The IIR filter these researchers selected
only extracts periodic variations [73]; thus, would not be appropriate to extract the breathing motions
of severely distressed patients in pediatric intensive care unit (PICUs), as they may not be periodic.

Frigola et al. [185] developed an algorithm to continuously monitor a patient and detect any
potential apnea that may occur during sleep. The algorithm monitors inhalation and exhalation by
detecting body movement using optical flow. For validation, the authors used an elastic cloth band as
their gold standard method, but the comparative evaluation results were not reported [6].

The trend is moving towards using embedded devices’ cameras, such as in smartphones and
tablets. Indeed, these intelligent devices present higher resolution improved over time, and are some
of the most important devices available today for consumers. A contactless method, based on a
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smartphone camera, has been developed by Reyes et al. [100]. Breathing rate and the tidal volume
were calculated from intensity variations in the video channels. These variations are generated from
chest wall expansion and contraction during breathing. The authors utilized a spirometer as a gold
standard system to record the tidal volume and to validate their procedure. The smartphone and
spirometer breathing patterns were identical as evidenced by the high values for the coefficients of
determination (r2 = 0.95). Despite these optimistic results, the results may be influenced under varying
lighting conditions.

One of the disadvantages of RGB sensors is the lack of accuracy when tracking the movement of
respiration. To address this issue, many works were based on tracking fiducial markers to improve
tracking accuracy. For instance, Wisner et al. [186] placed color fiducials on the patient’s abdomen
to track their motion. Authors used an RGB color webcam and computer vision techniques, such as
thresholding and PCA to produce 2D color images. To validate their technique, the authors used a
system providing ultrasound images. Results show a high correlation between the signals from both
techniques. The main disadvantage is that placing markers on the patient could disturb the doctors
during their intervention may be the patient as well. Besides, markers can be displaced from their
initial locations during the subject’s movement.

3.6. Thermal Sensors

Measures of thermal changes have been used to monitor respiration rate with infrared (IR)
video [59,65,187–193]. Wang et al. present a real-time IR imaging system for identifying abnormal
breathing and describe its clinical application in the detection of obstructive sleep apnea episodes
during sleep.

Hsu and Chow [193] developed a thermal sensor-based respiration rate monitoring system
designed for use on children. This approach does not require any contact with a child’s skin.
Instead, the sensor detects temperature variations due to breathing and then corrects and analyzes the
data simultaneously using a processor linked to a principal nursery room. To not lose the respiratory
signals, authors have placed many thermo sensors in an ellipsoid-shaped mask. The aim is to estimate
the respiration even if the subject turns his head. The constraint of placing the mask near to the
subject’s face was the main drawback of this technique.

A computer vision method for respiratory rate estimation was proposed by Zhu et al. [194] using
an infrared camera. Authors designed a tracking system following the facial features and then deducted
the breathing rate. These features were manually selected from a reference image (i.e., the first image in
the video) by identifying three windows. Two of them cover the areas between the bridge of the nose
and the inner corner of the eyes (i.e., the periorbital regions). This corresponds to the warmest areas of
the face. The third window is positioned over the apex of the nose to characterize the coolest facial
area. These three windows were tracked in the successive frames. The respiration signal is estimated
from a rectangular zone under the nose.

Other works measured the breathing rate by measuring the temperature variations around the
neck region, the carotid vessel complex, and the nasal region [188]. In their work, the authors utilized a
long-wave thermal camera consisting of a focal plane array for an infrared (6–15 µm) sensor. The FLIR
A40 thermal camera was used to record the skin surface temperature variation in a region centered
on the tip of the nose [189]. This sensor was presenting a good thermal sensitivity of 0.08 Kelvin
and a high frame rate of 50 images per second. In the experiment, the respiration of a patient was
recorded over two minutes. The sensor was fixed on a support in front of the subject at about one
meter. The images were acquired, segmented, and processed by tracking a circular area centered on
the tip of the nose. The tracked area is split into eight equal concentric segments. The skin temperature
of the segment is calculated through averaging the pixels values in the segment. By calculating skin
temperatures in each frame, authors compute plots of temperature over time. The breathing rate was
deducted from the calculated plots.
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3.7. Depth Sensors

One of the most insightful and complete comparisons of commercial depth cameras was
proposed by Giancola et al. in [195]. Authors compared twenty commercial depth cameras and their
technologies in indoor environments, such as Kinect v2 (ToF), Orbbec Astra (SL), and Intel D435
(ASV). They demonstrated that the uncertainty in the depth sensing using a Time-Of-Flight camera,
such as Kinect v2 scales linearly with the depth, thus giving accurate measures at longer ranges.
Structured-light based sensors give measures with uncertainty increasing quadratically. Giancola et al.
concluded that structured light-based sensors are preferred in short-range applications. The work,
however, did not provide examples of the application of depth sensors in the medical field and
specifically for respiration applications.

Respiration assessment were explored through a few works based on commercial RGB-D sensors
for color and depth images acquisition. Computer vision and graphics techniques have been
applied for data processing for both color and depth images, such as image filtering [56,63,72,138],
image subtraction [79], principal component analysis models formed from images to describe breathing
variation [146], averaging depth values in thorax regions from depth images [141], estimating statistical
modes of motion field variation during respiration [143], or by fitting existing motion models [33],
and using Iterative Closest Point algorithms to improve surface reconstruction techniques [132,140,196].

3.7.1. Structured-Light (SL) Sensors

Several works investigated [67,77,78,116,129,134,135,141,151,158] the performance of the commercial
SL sensors in respiration assessment. For instance, Noonan tracked the respiratory signal waveform by
computing depth maps from a single SL camera [134].

Martinez et al. [78] projected a few dots on a patient’s chest and tracked them using their SL
camera’s IR sensor for over 30 s. Their method then filtered trajectories using principal component
analysis (PCA) and calculated the respiratory rate using autoregressive spectral analysis. The main
drawback of this work is the limited spatial coverage since authors were based on a specific number
of points and not the entire surface. Thus, the method cannot be extended to extract pulmonary
function parameters.

Bernacchia et al. proposed a measurement method for the monitoring of heart rate and respiratory
rate in healthy subjects at home [67]. Breathing activity was measured simultaneously with a spirometer
on a time window of 30 s. While their results show good correlation with the spirometer, their method
suffers from low spatial coverage since it only allows a part of the abdominal area to be covered.

In [135], Xia and Siochi used only depth images to calculate the average depth over a thoracoabdominal
area, manually extracted by positioning a translation surface over the image. However, both works [134,135]
are basic feasibility studies of how to compute breathing motion waveforms from depth maps and do not
allow a concrete assessment of respiration by quantifying breathing parameters, such as respiratory rate
and tidal volume.

Burba et al. [77] defined the chest cavity as a rectangular region, outlined using the joint positions
in the skeletal model provided by the sensor software development kit (SDK). Only the top half of
the torso was taken into consideration to characterize the displacement due to breathing motions.
The subject movement may, however, affect the method’s accuracy.

Ostadabbas et al. [118] used a single SL camera to calculate two respiratory volumes: the forced
volume vital capacity and the forced expiratory volume of air one second after full inspiration, and then
deduced the airway resistance. The chest was defined as a rectangular region of interest bounded by
the following points: “right shoulder”, “left shoulder”, “right hip”, and “left hip”. These points were
calculated from the skeletal information in the SDK camera. They then estimated the lung volume by
numerically integrating the depth value in the ROI. Their approach showed a good agreement with a
standard spirometry test, with a 95% confidence interval and an average 0.88 correlation between the
volume/flow estimations measured by their method and those measured by a spirometer.
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Yu et al. [116] developed a system to estimate tidal respiratory volume by deducting it from the
calculated length per pixel and the depth map acquired from a single SL camera. They designed their
system to accommodate users in a sitting position at 1.4 m in front of the RGB-D sensor. Three regions of
interest were defined at three specific positions (left thorax, right thorax, and abdomen). A predefined
chest wall mask must be adjusted (position and size) to fit the patient’s thoracoabdominal region.
The regional morphological changes in the chest wall are then directly calculated from the depth image.
The experiment was conducted indoors and reported an overall correlation of 0.96 against a standard
spirometer. However, the authors reported that the estimated respiratory volumes of the system were
less than those obtained from the spirometer, due to the low spatial coverage of the regions involved
in respiration. Their system does not measure the morphological changes in the side region of the
chest wall.

Seppanen et al. [129] followed the chest wall breathing airflow patterns using a depth camera
based on SL technology. Their results were endorsed by those of a spirometer. Authors reported a high
value of the coefficient of determination between the two signals (r2 = 0.93).

The respiratory motion data variance was analyzed by Tahavori et al. [141] using a single SL depth
sensor. The camera was positioned on the top of the chest, then on the top of the abdomen, to estimate
the average depth value of sixteen regions of interest on the thorax and the abdomen. By applying
the PCA algorithm, authors found that more than seventy percent of the motion data variance of the
thoracoabdominal surface are indicated in the first component.

The respiratory systems using a single camera such as in [116], may suffer from a limited spatial
coverage. To address these limitations, a number of works used multiple SL cameras for surface
reconstruction. For instance, Harte et al. [151] used four RGB-D sensors to analyze the thoracoabdominal
small amplitude movements, corresponding to the breathing activity. The sensors were positioned
around the patient at 1 m to reconstruct the patient’s thoracoabdominal area. The volume changes
obtained by this technique were compared to those obtained by a spirometer. The experiments have
yielded good correlation between the proposed system and the spirometer in volume estimation.
Nonetheless, the system was unsuitable to fit the clinical environment because of the system’s complex
settings and the big number of used sensors [91]. Moreover, the system measures were not correctly
synchronized in time and frequency, yielding a number of errors in the 3D reconstruction [158].
A system using two Kinect v1 sensors has been developed by Heß et al. [148] for respiratory gating in
a positron emission tomography (PET) study. The aim of using more than one camera is to enlarge
the spatial coverage of the respiration zone. Authors validated their procedure by using a moving
high-precision platform. The platform position was calculated with a small mean margin of error of
0.2 ± 0.11 mm at a 75-cm measurement distance, and 1.27 ± 0.30 mm at 125 cm. Additional experiments
involving 10 healthy subjects and 10 cancer patients showed that abdominal signals were more suited
for PET gating data than the thoracic signals.

3.7.2. Time-of-Flight (ToF) Sensors

ToF sensors, such as Kinect v2, have been explored for close range sensing in many recent
works, such as in [39,197]. The Kinect v2 ToF sensor does not only provide higher resolution RGB
image than its previous SL version (Kinect v1), but it also yields more accurate and denser depth
measurements [39]. It has been shown that Kinect v2 depth resolution are 2 mm under 3 meters’
distance [197]. Moreover, it has lower axial and lateral noise in the acquired depth information than
the SL Kinect v1. The Kinect v2 sensor is able to operate under a variety of conditions, such as
performing measures under shadow and direct sunlight exposition and even under significant near
infrared (NIR) interference from halogen lamps or sunlight. [39,198–202]. Moreover, the systematic and
non-systematic errors of depth measurements are reduced in Kinect v2 compared to its SL predecessor.
Despite this, both Kinect SL and ToF versions, present advantages, and shortcomings, depending on
the task to be performed [36].
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The Kinect v2 sensor has been compared with another SL sensor in [203] (the Carmine
1.08). Authors show that the Kinect v2 presents better depth precision and angular resolution.
Another comparison between the Kinect v2 and the SL Asus Xtion Pro comes to similar conclusions [204].
In Addition, the Kinect v2 provides more accurate depth data for both indoor and outdoor use.

Other works investigated the performance of different commercial ToF sensors in respiration
assessment [91,131,205–207]. Penne et al. made one of the first attempts to compute breathing pattern
using a low-cost commercial depth camera based on time-of-flight technology [205]. In their method,
authors were calculating the best-fitting planes for the thoracoabdominal area. Then, breathing patterns
were deducted by tracking the displacement of each plane relative to a reference plane corresponding
the subject’s bed. Finally, the authors validate their system against an ANZAI belt system (AZ-733V,
ANZAI Medical Co Ltd., Shinagawa City, Tokyo, Japan,), by evaluating the correlation between the
quantitative measures. The experiments were performed by positioning the belt on the thorax first,
and then on the abdomen. The analyses revealed a correlation of 0.85 (in the thoracic region) and 0.91
(in the abdominal region) between the two systems.

Falie et al. proposed a system for apnea detection, by recording the thoracoabdominal movements
during sleep [206]. By using a ToF camera (SR3000 sensor model), the authors divided the
thoracoabdominal zone into 12 regions, in which they distinctly evaluated the motion. The aim
was to monitor the subject’s respiration and detect any irregularity, which may be associated with
potential sleep apnea. Schaller et al. utilized the same camera model (SR3000) to compute the real time
respiratory pattern without markers [207]. The authors reported that it is feasible to acquire a 3D model
in real time using a single camera and to simultaneously compute the thorax and abdomen breathing
motion. They note that it is possible to split the chest wall into many regions and estimate those
regions’ relative breathing patterns using their methods. To validate their technique, they acquired the
thoracic and abdominal breathing patterns of 13 (healthy) volunteers using an external gating system,
the ANZAI belt. The two system measures were highly correlated. Ulrich et al. developed a novel
anatomic-like mannequin to reproduce the thoracoabdominal breathing movements [131]. The aim
was to handle moving tumors in the thorax and in the abdomen during radiotherapy, which can be
by irradiated through respiratory gating. The phantom was designed to simulate the thorax and
abdominal motion for surface-based respiratory gating systems. They used the ToF technology for
chest wall assessment. The breathing pattern of the phantom was already known. The correlation
between the gold-standard signal performed by the phantom and the estimated pattern by the ToF
sensor is 0.65 for respiratory amplitude of 1.5 mm and above 0.80 for amplitudes greater than 5 mm.
In addition, authors reported that the designed system can detect a frequency of at least 25 respiratory
cycles per minute. The phantom is a promising practice tool to handle the tumor or organ motion
resulting from breathing motion.

In a study carried out by our group [91], two optical commercial ToF cameras were used to
calculate respiratory rate and tidal volume for age group categories ranging between birth and 18 years.
The respiratory rate was derived from the dynamic volume calculation between consecutive frames.
This method was tested in an environment designed for critically ill children, where it was compared
to the mechanical ventilator, a gold standard method used in intensive care units.

In Figure 5, we conduct an experiment using a ToF Kinect v2 to calculate the average depth
variation from a rectangular torso region of an artificial test lung simulator (MAQUET Medical Systems,
1 Liter Test Lung 190). The respiratory rate can be directly derived from these variations.
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3.7.3. Active Stereo Vision (ASV) Sensors

The performance of ASV depth cameras in capturing depth data indoors and outdoors, have been
investigated through a number of works [37,208]. Keselman et al. evaluated the Intel R200 ASV
sensor for indoor environments. Authors concluded that the R200 is appropriate for lower-tolerance
3D applications. The R200 can acquire data in outdoor environments as well, unlike the traditional
SL sensors.

In [209], authors compared, through an experimental study, the three technologies using one Asus
Xtion Pro (SL), one Kinect v2 (ToF) and finally one Intel R200 (ASV) for indoor 3D reconstruction.
The performed experiments yielded higher performance in Kinect v2 ToF sensor with less noisy
and denser 3D information. Another comparison in [210] was performed based on two SL sensors
(Kinect v1, Asus Xtion Pro), one ToF (Kinect v2), and one ASV sensor (Intel R200). The comparison
yielded to the same results and conclusions as [209], and showed that the Kinect v2 ToF sensor surpasses
the rest of the three devices and presents higher spatial resolution

The number of works based on ASV sensors for respiration assessment is relatively limited.
The reason is that the commercial ASV sensors are very recent. The R200 sensor (2015) was first in
the Intel ASV family, which includes D415 and D435 (2018) as well. Another reason is that the Kinect
family were the first and most used commercial RGB-D sensors in respiration assessment, not only for
their dense acquired depth data, but also for the Microsoft rich SDK functions.

Schätz et al. used a variety RGB-D sensor, including the D415, and D435 ASV sensors to capture the
breathing rate of a sleeping person [111]. Authors showed that depth sensors could be used to record
breathing rate with the same accuracy as contact sensors used in polysomnography (PSG). They also
showed that signals obtained from the depth sensors have the same sensitivity to breathing changes as
in PSG records. Table 3 shows the properties of the D415, and D435 ASV sensors, among different
types of recent depth sensors.

A hybrid radar camera prototype was proposed in [109], to monitor the respiration of multiple
subjects, simultaneously. The system involves an ASV D415 sensor working jointly with a low-cost
impulse-radio ultra-wideband (IR-UWB) radar to detect the person location and then extract his
respiratory rate information.
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Table 3. Comparison of depth sensors.

Structured-Light (SL) Time-of-Flight (ToF) Active Stereo Vision (ASV)

Parameter/Sensor Microsoft Kinect v1 ASUS Xtion Orbbec Astra S Microsoft Kinect v2 Kinect Azure DK 3 Intel R200 Intel D415 Intel D435

Frame Rate
(FPS 1)

30 30 30 30 5–15–30 90 90 90

Color Resolution
(px 2)

640 × 480 SXVGA 4

(1280 × 1024)
1280 × 960 @ 7 FPS
640 × 480 @ 30 FPS
320 × 240 @ 30 FPS

1920 × 1080 Up to
3840 × 2160

1920 × 1080 1920 × 1080 1920 × 1080

Depth Resolution
(px 2)

640 × 480 VGA 5 (640 × 480)
QVGA 6 (320 × 240)

VGA 5

(640 × 480)
QVGA 6

(320 × 240)
QQVGA 7

(160 × 120)

512 × 424 NFOV 8 unbinned
640 × 576

NFOV 8 2 × 2 binned
(SW 9)

320 × 288
WFOV 10 2 × 2 binned

512 × 512
WFOV 10 unbinned

1024 ×1024
Passive IR 11

1024 × 1024

640 × 480 1280 × 720 1280 × 720

Field of view 57◦ × 43◦ 57◦ × 43◦ 60◦ × 49.5◦ 70◦ × 60◦ Up to
90◦ × 59◦

59◦ × 46◦ 63.4◦ × 40.4◦ 85.2◦ × 58◦

Range (meter) 0.8–4.0 0.8–4.0 0.4–2.0 0.5–4.5 0.25–5.46 0.5–6.0 0.16–10 0.2–4.5
1 Frame per Second, 2 Pixels, 3 Developer Kit, 4 Super eXtended Video Graphics Array, 5 Video Graphics Array, 6 Quarter Video Graphics Array, 7 Quarter-Quarter Video Graphics Array,
8 Narrow Field-of-View, 9 Short Wave, 10 Wide Field-of-View, 11 Infrared.



Sensors 2020, 20, 7252 20 of 55

4. Discussion

In this review, we provide a synthesis on non-contact technologies for respiration assessment and
characterization. The results of a variety of methods based on non-contact technologies were illustrated
in the previous section. We grouped the articles based on different non-contact technologies. We want
to explore what the applications are of these works, in what area they can be used, and how far we can
go. We believe that the answer is best understood in terms of answers to these three questions:

• In which operating environments do non-contact systems perform?
• What are the limitations on what can be achieved in respiration assessment, using non-contact systems?
• How can non-contact systems help address some of the current and urgent health issues in the

present year (2020)?

Below follows a discussion on these three questions in relation to prior and current research.

4.1. In Which Operating Environments Do Non-Contact Systems Perform?

Despite the availability of many non-contact systems for respiration monitoring, they are all
still far from being in broad commercial use. These systems are especially sensitive to artifacts of
various origin, such as patient, background movement, and ambient light changes. Thus, they cannot
be used without the guidance of qualified personnel. In addition, some environments are more
demanding than others. Thus, a knowledge of the environment is very important and may directly
affect the effective application of the respiratory system. We discuss some requirements related to
each environment. There is no universal solution to work in all environments; however, the ultimate
respiratory monitor would provide continuous information about respiratory parameters without
causing any sort of disturbance to the subject. That system should accommodate the environment,
fitting its conditions and requirements. A mobile respiratory system, for instance, would be easy to use
in various environments, such as in transports (on airplanes and/or in trains in case of an emergency).

Standardization and facility of use will allow anyone to measure respiratory parameters and send
the data to a health professional. The current proposed solutions are still far from being in wide use in
the different environments due to their many constraints, such as a system’s complexity and ease of use,
space occupation, the need for connection to computers for data processing, system mobility, and the
presence of a trained health professional, as well as other constrains related to each environment.
Some environments are overly strict and more demanding than other environments.

Table 4 summarizes recent respiratory systems that have potential ability to perform in one or
more of real-life environments. Their applications are addressing problems associated to respiration
such as general health assessment, respiratory symptoms or diseases detection, sleep assessment,
athletic performance monitoring, lung conditions monitoring, driver drowsiness detection, etc.

Table 5 shows the tolerance levels for the main common constraints related to the different
environments. For example, authors in [91] address respiratory parameter assessment in a pediatric
intensive care unit (PICU), in which the different services are affected by complex settings and
unexpected urgent interventions. PICU rooms are not big enough for their designated daily procedures,
devices, and the number of infants/children. It is extremely crucial to fully control the free space.
Any occupied area should not cause disruptions. Authors also address emergency cases. The proposed
system can effortlessly and rapidly separate/disconnect from the bed permitting the transportation of
the subject.
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Table 4. Summary of recent respiratory systems and their applications.

Year Author Name, Reference Respiratory Element
Method/Device (D),

Validation Method (V),
Validation Dataset or Subjects (S)

Results with Respect to Each
Study’s Objective

Environment/
Applications

2020

Chen et al. [99] Respiration rate D: Doppler and passive radio sensing.
V: video recordings.
S: 1 subject with four testing positions.

� Average Phase Variation
between 0.8 and 1.05

Home Environments

� Quality of sleep assessment.
� Apnea detection.
� Sudden infant death

syndrome (SIDS).
� Children and neonates’

health supervising.
� Respiration monitoring.

Schätz et al. [111] Respiratory pattern D: depth data processing from a variety
of depth sensors (MS Kinect v2,
RealSense SR300, R200, D415, and D435).
V: a neural network classifier (simple
competitive NN) was trained on a set of
whole night polysomnographic records
with a classification of sleep apneas by a
sleep specialist.
S: 57 patients (32 healthy and 25 patients
having sleep apnea).

� Precision ~95.4%

2019 Delimayanti et al. [157] Respiratory pattern and
breathing activities D: depth data processing from Kinect v2,

using FFT 1 & PCA 2. Then, a
classification is performed using SVM 3

classifier.
V: cross-validation using complementary
subsets (learning + testing).
S: 4 subjects with 10-fold cross validation.

� Accuracy ~90%
Clinical Environments

� Health assessment.
� Respiration and vital

signs monitoring.

2018 Rehouma et al. [91] Respiratory rate
Tidal volume D: dual-Kinect sensor (surface

reconstruction).
V: mechanical ventilator.
S: mannequin + 1 patient.

Respiratory rate:

� (RE 4 = 3.25%, RSD 5 = 9.87%)
� Tidal volume:
� (RE 4 = 9.17%, RSD 5 = 12.3%)

Intensive Care Unit

� Respiration monitoring in
spontaneous
breathing patients.

� Breathing
disorder detection.
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Table 4. Cont.

Year Author Name, Reference Respiratory Element
Method/Device (D),

Validation Method (V),
Validation Dataset or Subjects (S)

Results with Respect to Each
Study’s Objective

Environment/
Applications

2017

Aoki et al. [103] Minute ventilation (VE) D: extraction of motion waveform using
a Kinect v2 sensor under a high exercise
intensity of ≥100 W.
V: expiration gas analyzer.
S: 6 subjects.

� ventilation threshold = ±10 W
� p 6 < 0.001
� ρ 7 > 0.79
� Maximum Bias ± 95%,

CI: 0.1119 ± 0.33.

Sport

� Athletic
performance improvement.

� Track and measure
breathing during training.

Schoun et al. [52] Tidal volume D: measures are obtained from thermal
images, correlated with ground-truth
measures, and then trained into a
recurrent network model using
TensorFlow library.
V: spirometry.
S: 5 subjects.

� RMSE 8 = 10.61%
(tidal volume).

� RMSE 8 = 21.81%
(raw flow signal).

Clinical/Home Environments

� Lung
conditions monitoring.

� Health assessment.

Sharp et al. [122] Respiratory function testing D: 3D reconstruction of the subject’s
thorax using depth data of a Kinect v2.
V: spirometer,
S: 251 recorded efforts.

� FVC 9 (r = 0.999, p < 0.001)
� FEV1 10 (r = 0.937, p < 0.001)
� VC 11 (r = 0.998, p < 0.001)
� IC 12 (r = 0.995, p < 0.001)

Clinical Environments

� Monitoring of disease
severity and progression by
performing PFT 13.

Soleimani et al. [6] Forced vital capacity measures D: chest wall surface reconstruction
using depth data of a ToF 13 sensor.
V: spirometer.
S: 85 patients.

r2 14 = 0.98 Clinical Environments

� Assessment and detection
of respiratory pathologies.

2016 Ripoll et al. [98] Respiratory rate D: chest wall surface reconstruction
using depth data of a ToF 13 sensor.
V: data recorded by a
plethysmography band.
S: 5 subjects.

α 15 = 0.99 Vehicle (driving)

� Fatigue indicator.
� Alcohol and drug-impaired

driving detection.
� Driver drowsiness detection
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Table 4. Cont.

Year Author Name, Reference Respiratory Element
Method/Device (D),

Validation Method (V),
Validation Dataset or Subjects (S)

Results with Respect to Each
Study’s Objective

Environment/
Applications

2016

Reyes et al. [100] Respiratory rate
Tidal volume D: estimation of a volumetric surrogate

signal on a smartphone. Authors analyze
the intensity changes in the video
channels caused by the chest wall
movements during breathing.
V: spirometry.
S: 15 subjects.

� Respiratory rate (r2 13 = 0.99,
RMSE 8 = 0.414 + 0.178 bpm)

� Tidal volume (r2 13 = 0.95,
RMSE 8 = 0.182 ± 0.107 L)

Transport/Home

� Detection of
respiratory arrest.

� General health assessment.

Reinaux et al. [123] Tidal volume D: optoelectronic plethysmography
(OEP).
V: comparison with pneumotachograph
data.
S: 20 infants.

� Mean Vt 16 difference ~0.02 mL,
� Limit of agreement 4.11 to

4.08 mL (95% CI 17),
� Contribution to V 18

T, OEP
� 12.4 ± 9.7% (pulmonary

rib cage)
� 5.2 ± 5.1% (abdominal rib cage)
� 82.4 ± 11.4% (abdomen)

Clinical/Home environments in
infants.

� Health assessment.
� Respiration and vital

signs monitoring.

Procházka et al. [93] Respiratory rate D: video sequences of thorax movements
are recorded by MS Kinect sensor to
enable their time analysis in selected
regions of interest.
V: contact-based sensor (Garmin Ltd.).
S: record of 120 s of image, depth, and
infrared video frames.

� Accuracy ~0.26%
Home environment

� Health assessment.
� Quality of sleep assessment
� Diagnosis of obstructive

sleep apnea severity.
� Diagnostic of

physical activities.

2016

Sirevaag et al. [101] Respiratory rate,
Respiratory pattern D: laser Doppler vibrometry (LDV).

V: data from Biopac SS5B circumferential
belt, at a lower thoracic level.
S: 32 healthy participants.

� ρ 7 = 0.99

Harsh environments (e.g.,
including the MR scanner where
the laser head can be separated
from the magnetic field).
Clinical environments.

Ostadabbas et al., [92] Airway Resistance
Tidal volume D: depth data processing of a segmented

ROI, called chest bounding box. The
segmentation is performed to optimally
demonstrate the lung volume changes
during respiration.
V: clinical results using spirometry and
plethysmography tests.
S: 14 patients.

� Tidal volume error =
0.07 ± 0.06 L.

� Accuracy in predicting three
levels of severity of airway
obstruction = 76.2%.

� Accuracy of airway obstruction
detection = 80%.

Clinical/Home environment

� Lung
conditions monitoring.

� Obstructive pulmonary
disease detection.

� Asthma detection.
� Respiration monitoring.
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Table 4. Cont.

Year Author Name, Reference Respiratory Element
Method/Device (D),

Validation Method (V),
Validation Dataset or Subjects (S)

Results with Respect to Each
Study’s Objective

Environment/
Applications

2015 Heß et al. [148] Abdominal and thoracic patterns D: 3D reconstruction based on two
Structured light cameras data.
V: moving a high-precision platform
with 10-micrometer accuracy.
S: 10 patients.

� Abdominal region:
ρ 7 = 0.74 ± 0.17

� Thoracic region:
ρ 7 = 0.45 ± 0.23

Clinical environment

� Breathing
disorder detection.

� Respiration monitoring.

2014 Tahavori et al. [141] Respiratory motion D: multi-ROI analysis, to investigate the
dominate variations using PCA, based on
depth data from a structured light sensor.
V: multi-ROI analysis performed on 3
separate sessions.
S: 20 subjects.

The first principal component
describes more than 70% of the
motion data variance in thoracic and
abdominal surfaces.

Clinical environment

� Abnormality detection.
� Analysis of disease severity.

2014 Benetazzo et al. [75] Respiratory rate D: a system based on structured light
sensor detects the human chest and
calculates its distance from the camera to
predict the respiratory rate.
V: spirometry.
S: 5 subjects.

� p 6 < 0.001
� ρ 7 > 0.92

Sitting person in an indoor
environment such as clinical
environment, home environment.

2010 De Boer et al. [119] PFT 19 changes (FEV 10, FVC 9) D: structured light plethysmography
(SLP) based on structured light cameras.
V: spirometer and
pneumotachograph data.
S: 40 patients.

� r2 14 = 0.91 (volume).
� r2 14 = 0.97 (forced expiration).

Anesthesia and intensive care
environments.

1 Fast Fourier Transform, 2 Principal Component Analysis, 3 Support Vector Machine, 4 Relative Error, 5 Relative Standard Deviation, 6 no-correlation coefficient, 7 correlation coefficient,
8 Root mean squared error, 9 Forced vital capacity, 10 Forced expiratory volume of 1 s, 11 Vital capacity, 12 Inspiratory capacity, 13 Time-of-Flight, 14 Coefficient of determination,
15 Cronbach’s alpha coefficient, 16 Tidal volume, 17 Confidence Interval, 18 Measurements of tidal volume by Optoelectronic plethysmography, 19 Pulmonary Function Test.
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Table 5. Assumptions under which the optimum performance reported in different literature works are achieved.

Home Applications Clinical Environment Sporting Environment Vehicles Intensive Care Environments Prisons Universal

Low-cost 44 7 44 4 7 7 4

Continuous monitoring 7 4 7 4 44 44 7

Non-contact 4 4 4 4 44 44 44

Integration in environment 4 4 4 44 44 44 44

Real-time 7 4 7 44 44 44 44

High accuracy 7 44 7 4 44 44 44

Many respiration parameters 7 44 7 7 44 7 4

Results self-interpretation 1 44 7 4 44 7 44 4

Low complexity 44 44 44 44 44 44 44

Low space occupation 4 4 4 44 44 44 4

Embedded processing 2 7 7 44 44 4 44 44

Mobility 7 7 4 7 44 7 44

Demanding high user experience 3 44 44 44 44 44 44 44

Network availability (Wi-Fi) 7 7 7 7 44 44 44

44 indicates that the constraint is absolutely required for deployment in the corresponding environment; 4 indicates that the constraint is required for the deployment in the corresponding
environment; and 7 indicates the constraint is not required or is optional for the effective deployment in the corresponding environment. 1 Results are comprehensible and accessible to
users, 2 Not connected to a computer. 3 Comfortable and easy to use without the guidance of qualified personnel.
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In this section, we give some examples of works that addressed the following environments:
home, clinical, sports, cars, and intensive care. Other types of applications are briefly described, such as
real-time detection of suicide attempts and respiration assessment in aircrafts.

4.1.1. Home

Respiratory systems devices can now be used at home for a variety of applications (Table 4).
For instance, the general state of health of the newborns (good sleep quality, calm behavior, etc.) can
be monitored using the depth cameras. By monitoring a baby’s sleep, the cameras-based systems
may help to prevent sudden infant death syndrome (SIDS) in children of less than one year of age.
Other applications include the detection of respiratory illness (asthma, obstructive sleep apnea, etc.).
In chronic obstructive pulmonary disease (COPD) patients, lung conditions may be monitored using
non-contact systems. Non-contact systems may be used as an aid in reducing anxiety states, as well,
by controlling the respiration rate. This activity is known as respiratory training.

In 2016, Procházka et al. [93] have suggested a structured light camera-based system to monitor
the respiratory rate. The authors claimed that there is no significant difference between biomedical
features described by different biosensors and the non-contact depth sensor. The system can be used at
home to monitor the general health assessment or even to analyze physical activity of elderly people to
facilitate performing some tasks in old age.

4.1.2. Clinical

In clinical practice, a variety of diagnoses are based on respiratory assessment as early indicator
of severe illness or to evaluate the progression of illness. The applications range from general health
assessment to the management of respiratory motion in PET/computed tomography.

Sharp et al. [122], for instance, conceived and implemented a breathing system for thoracoabdominal
three-dimensional movement tracing and lung volume assessment. The system can be employed to
examine breathing rate without contact with the patient, screen for abnormal spirometry and to support
ventilators in quantitative assessment of respiration. Sharp et al. mention that the system also has the
potential to monitor regional thoracoabdominal motion in more detail (e.g., for the detection of pleural
pathology, such as effusion and pneumothoraces). The system can be used in both hospital and home
settings. However, the authors specify that patients were installed upright with their arms by their
sides on a standard chair with no armrests, facing an RGB-D sensor placed at 1.5 m from the subject,
at a height of 0.6 m. Patients were afforded with figure-hugging t-shirts to increase the precision of the
thoracoabdominal motion evaluation. These conditions are not suitable in real clinical environments.
Even though this technique in not expensive and does not require specialist equipment and training as
with spirometry, the conditions applied are still rather strict and do not accommodate many categories of
population, such as elderly people, very ill patients, infants, and newborns.

4.1.3. Sports

Respiration has always been closely linked in athletic training and performance improvement.
Camera-based systems can be used to help athletes control their breathing without a visual guide,
by tracking and measuring their breathing during training.

Aoki et al. [103] developed a non-contact system for respiration measurement during bicycle
pedaling exercise using a Kinect sensor facing the test subject. The authors used an incremental
extraction technique starting from the detection of the human body using depth data to the extraction
of the region where the respiration component is more dominant. Next, they extract the pedaling
motion component using a Fast Fourier Transform (FFT) band pass filter. Finally, the respiration
waveform is calculated by computing the volume change in the respiration region.

The system is very promising in environments, such as sports clubs. However, it presents some
substantial drawbacks. The authors assume that the athlete is always in a sitting position. However,
the athlete may change his or her position during pedaling (standing, sitting, and otherwise moving
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their body). Moreover, the system is only valid for a bicycle ergometer. The size of the Kinect sensor
may be inappropriate for a standard real bicycle. Furthermore, the system is attached to a computer
for processing. Indeed, it cannot be tested on a real bicycle. One possible way to improve this system
would be to replace the computer by an embedded processing system.

4.1.4. Cars

Detecting drowsiness while driving is an important topic of research. Several research studies
attempt to detect the state of distraction while driving [211], by means of electrocardiogram
(ECG) [212] or electroencephalogram (EEG)-based brain-computer interfaces (BCI) [213]. The analysis
of respiration regularity is one of main techniques used to detect the driver’s drowsiness or impaired
driving [66,106,214]. For instance, detecting the attempts of fight against falling sleeping while driving
has been investigated in [106]. The proposed system evaluates the respiratory rate variability to detect
the fatigue patterns.

Ripoll et al. [98] proposed an on-board camera system for the detection of drowsiness. The system
performs analyses of the driver’s physiological parameters, such as the respiratory rate, and then
associates the changes in respiratory rate to the driver’s state of fatigue or drowsiness. Although the
idea is very innovative and potentially lifesaving, the system presents a major difficulty: the driver’s
arm may cause interference when measuring the respiration based on the chest or abdomen, making the
measurement process inaccurate and unreliable.

Mateu-Mateus developed a non-contact system based on the Intel RealSense ZR300 ASV sensor [49].
The small size of the ZR300 module provides a high flexibility for its deployment into a vehicle,
which makes the system suitable for this application. The sensor simultaneously uses infrared and
depth streams to calculate the driver’s respiratory signal. The driver’s face is initially tracked by
applying the optical flow algorithm on infrared frames. Then, the most suitable ROI is detected to
extract the respiratory signal based on the depth frames. The algorithm performs in real-time and
the system can be used for drowsiness detection while driving in adult population. The experiments’
results showed a good correlation between the acquired respiratory cycles from the proposed system
and those recorded by a commercial thorax plethysmography system, used as a gold standard method.

4.1.5. Intensive Care Unit

The intensive care unit is a specific zone in the hospital offering intensive care services for critically
ill patients. Admitted patients in intensive care units (ICUs) are closely monitored on a continuous
basis. There are two categories of patients in intensive care rooms: ventilated and spontaneous
breathing patients. Ventilated patients are usually those facing critical, life-threatening situations,
such as respiratory failure. Spontaneous breathing patients present a better condition, but may need to
stay in the ICU to promptly provide the necessary care in case of sudden worsening.

While respiration elements are continuously monitored and controlled using mechanical
ventilators, there is currently no reliable method to quantitatively assess respiratory function in
spontaneous patients. Estimating the tidal volume, for instance, is solely done visually, by the clinician,
approximately and subjectively.

Non-contact systems based on cameras can be a very good solution to monitor respiratory volume
and detect any breathing disorder in spontaneous breathing patient in ICU. Moreover, non-contact
systems should not disturb caregivers’ work or cause distractions that could hurt patients.

A three-dimensional camera-based system has been proposed in [91], for quantitative assessment
of spontaneous breathing in the pediatric intensive care environment. The system registers the motion
information for the top of the thoracoabdominal surface and the chest lateral regions, performs a
surface reconstruction, and then estimates the volume change. However, the respiratory system
exhibits a performance difference between small and large volumes, due to the hardware deployed.
Indeed, the Kinect’s depth accuracy limit is reached when estimating small volumes between 10 mL
and 50 mL.
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Nazir et al. [110] recently presented a contactless real time system, based on a single ToF sensor,
for quantitative assessment of respiration in ICU patients. By analyzing the patient’s chest wall surface
geomorphologic changes, the authors calculate multiple respiratory function parameters: RR and
volume. The patient’s torso is automatically detected using a deep neural network model trained
on the Common Objects in Context (COCO) dataset, a large-scale object detection, segmentation,
and captioning dataset. The validation of the proposed system was performed using both simulated
and real patient’s data (16 mechanically ventilated patients admitted in the ICU of the Brest University
Hospital). The results were compared to the reference values provided by a mechanical ventilator,
which yielded accurate real-time quantitative measures of the pulmonary function.

4.1.6. Other Environments

Mobile devices, such as smart phones, tablets, smart glasses, and smartwatches are increasingly
used in respiration research nowadays to capture study endpoints. Indeed, these devices may offer a
high-quality medical assistance with their improved cameras’ resolutions, great hardiness, and bearing
capacity, being at the same time available, comfortable, and very easy to use. Some papers have proposed
to quantify respiration as mentioned in the previous section. Reyes et al. [100] developed a method based
on a smartphone to quantify respiratory rate and tidal volume (Table 4). Phokela et al. used an android
smartphone and headset microphone to quantify the respiratory rate (Table 1). These two works provided
satisfactory results when validated with the ground-truth results, making these systems an advantageous
alternative for an assessment that goes beyond the exclusive clinical use. They can be used in a variety of
environments such as transport and home environments (Table 4).

Studies in the other environments are interesting to report. For instance, Schumm et al. developed a
respiratory system for airplanes [60], which they named the smart airplane seat. Their system directly
integrates the respiratory sensor into an airplane seat’s safety belt. The respiration can then be directly
correlated with the expansion of the seatbelt. While this work opens many promising avenues towards
deploying respiratory assessment systems in airplanes, the technique presents many shortcomings.
Passengers must have their seatbelt fastened to meet the system operating conditions. While passengers
always have their seatbelts fastened during takeoff and landing, that is not always the case while an
aircraft is at cruising altitude.

Another potential application would be the real-time detection of suicide attempts in individual
prison cells. Suicide attempts by hanging has been one of the most common suicide methods in
correctional facilities in Canada [215]. In [216], authors used a ToF Kinect v2 sensor to represent
human movements and model the action of putting the knot from overhead down to the neck.
While authors reported that their algorithm achieved 90% accuracy, their system failed to detect some
suicidal attempts. One of the main reasons is that some suicidal actions are very similar to some
normal activities, such as wearing clothes action, which usually requires moving the hands from
bottom to top around the neck. We believe that detecting the respiratory rate using a hidden camera
system in prisoner’s individual cell would help to improve their system accuracy and reduce the
number of false alarms. In the past, Barland et al. proposed a system to detect deception in prisoners
by recording electrodermal, respiration, and cardiovascular activity, and analyze the quantitative
evaluations of the physiological responses [217]. The system opens some promising avenues for
their deployment in prisons. However, the work presents many disadvantages. First, the subject
must be attached to a polygraph. The system also employs a mock-crime paradigm with a prisoner
population. Finally, the system require contact with the prisoner, and no quantitative assessment of
respiration was reported by the authors. We believe that non-contact systems will be advantageous in
correctional facilities.

To summarize the lessons learnt from prior research, each respiration assessment system may
operate under certain conditions related to a specific environment. Table 4 shows the common
lists of assumptions under which the optimum performance reported in different studies has been
achieved. For instance, the low price of electronic components facilitates the deployment of some
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recent respiratory systems in the user’s home and in sporting environments, as well. By improving the
user experience (being contactless and easy to use), researchers (and eventually manufacturers) will
allow the use of respiratory assessment in a larger population, including those associated with a lack
of cooperation such as children and acute care patients.

Future research should tackle the challenges of developing these systems towards their use in
broader and more suitable home applications, making respiration assessment easy, reliable, and not
requiring in terms of skilled nursing staff. In clinical settings, accuracy is a crucial constraint, which has
important implications on the reliability of patient’s health assessment. In addition to accuracy,
real time and continuous monitoring are key parameters in high-risk environments, such as in intensive
care units or prison individual cells. Indeed, a short response time is critical for life-threatening
events needing immediate intervention. Respiratory systems should be able to evaluate various
parameters depending on the environment (home, intensive care unit) and the population (children or
adult). Eventually, these systems could include additional features such as automatic interpretation to
allow the early response to the caregivers. Low complexity is essential in clinical and intensive care
environments. System integration is an important parameter in almost all environments. More compact
systems are needed in restricted space settings, such as in vehicles, intensive care environments, etc.
The aim is to avoid any disturbance that may be caused by the system itself.

4.2. What Are the Limitations on What Can Be Achieved in Respiration Assessment, Using Non-Contact Systems?

Many other parameters are also important for the effective deployment of the respiratory systems
proposed in recent studies. These parameters are discussed here, with both an overview of their
importance in the different environments and an examination of the tolerance level of each environment.
The main parameters include hardware limits, cost, accuracy, and precision, the effects of certain
external events, and the patient’s age, sex, and position. Some of these are specific to one environment
and are not of crucial importance in other environments.

4.2.1. Spatial Coverage

In imaging- and 3D reconstruction- based works, the number of cameras significantly influences
the accuracy of the algorithm. Indeed, the higher the number of camera numbers, the better the spatial
coverage of the respiration zone. Until quite recently, researchers had to use at least two cameras
to calculate a 3D scene [136,147,218,219]. With the emergence of the new depth cameras [36–41],
it has become possible to perform 3D reconstruction with only one camera in order to estimate
respiratory parameters [6,116,124]. However, researchers still use many cameras in order to improve
the spatial coverage [32,91,148] of the respiratory zone, and thereby augment the algorithm’s accuracy
and precision.

Accuracy is very important in a clinical environment, where the accuracy and precision of
measurements are crucial for patient health assessment. However, a higher number of cameras may be
unsuitable for environments, such as intensive care, where the system cannot occupy any additional
space, so as not to disturb the patient and health professionals. While the use of a high number of
cameras, offers better spatial coverage of the respiratory zone [151,220], covering the whole respiratory
zone is not essential when a patient is in their bed.

The zones that reveal respiration motion are the thorax, abdomen, lateral sides, and the back.
Covering all of these zones will give a very accurate estimation of respiration. However, covering some
parts still gives a good accurate estimation, but with certain limitations, including being sure that the
patient does not have a retraction. The abdomen and thorax zones provide more spatial information
on respiration than the lateral sides and back. For example, estimating the volume using only the back
information will not be enough to estimate tidal volume. To date, using only one camera has not really
been enough to accurately cover the whole respiratory zone.
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Even if the respiratory information of the back can be neglected, the respiratory information of the
lateral sides is essential for a faithful 3D model. Rehouma et al. demonstrated that a minimum of two
cameras is enough to cover the breathing region by involving the information of the thoracoabdominal
region and the chest lateral parts [32,91]. They compared their method to the reference technique used
in pediatric intensive care units. In their findings, they demonstrated that their dual camera-based
imaging system provides very high accuracy and precision in estimating the respiratory rate and tidal
volume. Indeed, the error between the two methods is very small. However, for greater certainty,
it would be worthwhile to conduct the same experiments using four cameras at the bed corners to
determine the approximate error between using two and four cameras. Minimizing the camera number
adds flexibility to systems-based imaging while accommodating the clinical environments, especially in
intensive care units where space occupation has always been a very strict constraint.

4.2.2. Hardware Limitation

Researchers have used the Kinect sensor as data acquisition hardware for many respiratory studies
over the years. However, the Kinect sensor was originally developed for a different purpose. Indeed,
the first version of the Kinect sensor came with the Xbox 360 for gaming purposes. One hypothesis
states that these sensors can be used in medical applications [38]. Another hypothesis states
that the Kinect can detect respiratory motion whose magnitude is as small as a few millimeters.
The objective was to compare the maximal magnitude detected by the Kinect with the amplitude of
respiratory motion and to experimentally validate to what extent this technology can substitute current
contact-based solutions [38]. To date, two versions of the Kinect sensor have been used for respiration
assessment: Kinect 1 and Kinect 2. Kinect 1 came with the Xbox 360, while Kinect 2 came with the
Xbox1 [40]. A description of the depth measurement principle of the Kinect 1, the mathematical model,
the calibration parameters, the error sources, and the theoretical error model are presented in [221].
The studies in [222] and [36] offer in-depth comparisons between the two sensors. These works
highlight the technological differences between, and the range of data characteristics delivered by
the two devices. The stability of the imaging sensors used by the two models (RGB and IR) was
compared. While Kinect 2 shows superior performances than Kinect 1, both sensors present depth
errors and their noise can be described as second-order polynomial functions. The cameras’ error has
been plotted against the distance between the sensor and the scene. The Kinect 2.0 camera is defined
by a precision level that decreases linearly with the distance [222]. Based on several experiments,
a distance ranging between 1 m and 1.5 m between the camera and the patient has been determined
as optimal in the majority of studies. In all cases, a distance greater than 3 m may lead to poor
results [197]. Research aiming at understanding the limitations of Kinect sensors have been very
helpful in improving algorithm accuracy in respiratory parameter estimation. In [91], the authors have
better results for larger volumes than for smaller volumes due to the hardware limitation. Indeed,
the Kinect depth camera is not able to accurately detect very small variations of less than 2 mm.

4.2.3. Cost

From a cost perspective, some solutions are more expensive than others, and simply may not be
deployable in some environments due to their high cost. On the other hand, the accuracy tolerance
level varies from one environment to another. In clinical environments, the cost is generally not very
important, but a high accuracy is crucial to avoid skewing of results, especially when a patient is in
severe and potentially life-threatening condition. Reliable, innovative solutions providing sufficient
accuracy for clinical practice are encouraged regardless of the high costs to deploy such systems.
Unlike clinical environments, the cost is very important in-home applications. Therefore, medium
accuracy could be accepted if the application is low-cost, as the device could be made more available.

Finding the optimal compromise between accuracy and price would allow such systems to more
deployable in such environments. Current depth cameras and mobile phones have the potential for
such applications, presenting many advantages such as being portable, low-cost, and contactless.
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A solution using mobile phones in public transport would be ideal. Making use of an RGB-D sensor,
whose cost ranges from $100 to $300, may be a solution for home use, achieving a particularly fine
balance between low-cost and accuracy.

4.2.4. Occlusion in Imaging Systems

For several applications, such as continuous monitoring, apnea detection and respiratory-gated
whole-body PET/CT imaging, the case of occlusion by a health professional has never been treated
in the literature. However, while current imaging systems are not flexible enough to manage such
situations, health professionals would only need a few minutes to calculate respiratory parameters.
Therefore, such occlusion is not really a disturbing parameter. Nevertheless, we would recommend
that the system automatically notify users in case of occlusion. In cases of strict monitoring applications
or during surgery where doctors can often cause occlusion, it would be advisable to provide multiple
angles of view by using many cameras.

4.2.5. Patient Position Change

During monitoring, the subject may move from his initial position. Wand et al. introduced a
novel motion to recognize breathing patterns and detect any sleep apnea using IR data. This method
avoids adding restrictions on the patient positioning, allowing patients to sleep on their back or
side, with or without facing the camera, completely or incompletely occluded by the bed covers [68].
Using a robust clustering method to identify breathing patterns and irregular respiration, the method
achieves high accuracy in detecting apnea episodes and is robust to many occlusion degrees, body
poses/movements (i.e., minor head movement, limb movement, body rotation, and slight torso
movement), and respiratory behavior (e.g., shallow versus heavy respiration, mouth respiration,
thoracic, and abdominal respiration). Nevertheless, patient position change has not been seriously
addressed in the literature for the other respiratory parameters, such as tidal volume estimation.
In [6] and [92], the subject was in front of the camera in a sitting position during the experimental
validation. In [151], the cameras were placed around the patient, who had to remain in a standing
position. Unfortunately, the algorithm could not operate if the patient was not in the fixed marked
position in front of the camera. A number of studies have designed restraint systems intended to
accommodate the patient in a supine [64,130,132,223,224] and prone [142,223] position. Their aim was
to accommodate the patient, unlike previous works [151] where the patient stood in a fixed marked
position to accommodate the system.

Most works did not treat the position change problem. Some algorithms cannot operate if the
patient changes his position, and the others would lose accuracy. For example, accuracy decreases
when the patient changes from a supine to a prone position in 3D reconstruction- and imaging-
based methods. While observation of the chest and abdomen would provide more surrogate data
on respiration, the observation of the lateral sides without chest and abdomen data would provide
less accuracy in respiration monitoring, especially when calculating volume. We recommend an
investigation to reveal the error when changing position during sleep. In strict real-time monitoring
environments requiring continuous monitoring over long periods of time, many of the proposed
systems would not be sufficient to give an accurate assessment. In some environments, the applications
need at least a few minutes to calculate the respiratory parameters.

4.2.6. Obscuration by Bed Clothing or Bed Sheets

It has been demonstrated that respiratory assessment is easy to detect with a naked torso
subject or with a subject wearing lightweight clothes and other types of clothing [75,102,151].
However, the breathing motion is barely perceptible in the case of obscuration by bed clothing
or bed covers. Wang et al.’s technique is robust to occlusion by a standard hospital bed cover or
sheet [68]. However, the aim of their work was limited to abnormal breathing pattern detection and to
recognizing apnea episodes. Moreover, they used infrared data, which are more stable than depth data,
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making the noise filtering and the detection of subtle breathing patterns easier. Wang et al. did not
report any quantitative measures of the physiological parameters, such as respiratory rate, and tidal
volume. Some techniques, such as those including 3D reconstruction algorithms, are complex and are
not robust enough to function if there is occlusion by a hospital bed clothing or bed cover. Moreover,
the lack of distinctive patterns on the bed cover makes use of depth data inefficient. We recommend
that more efforts should be made in managing this challenging situation using depth data. For example,
the system could notify the user that the results are being distorted by disruptive elements, such as
bed sheets.

4.2.7. Real-Time Constraint

As described by Martin et al., a real-time system is a system interacting with an environment
by acquiring information, processing/computing them, and giving the results sufficiently promptly
to influence the environment at that time [225]. Some respiratory applications reported in the
literature are real-time systems, and are very strict in their response time. Other works are not
subject to a real-time constraint. Examples of real-time applications include systems used in surgical
interventions, apnea detection, sudden infant death syndrome monitoring, and suicide prevention in
prisons. In PET acquisition, for instance, the real-time requirement is very strict for artifact avoidance
when correcting the respiratory motion [226]. Examples of non-real time applications, also known
as batch data processing systems, include unobtrusive approaches for sleep monitoring, in which
data collection and processing are two separate steps. These two steps are not necessarily attached
or related in time. Once data are collected, they are processed as packages or blocks of data later,
which also means the result is received later. Data processing can sometimes take hours or even days.
For example, data packages may be processed at night, or the day after data collection, and the subject
will get their results only after the processing has been completed.

4.2.8. Number of Respiratory Elements Estimated Simultaneously

In some environments, respiratory applications only estimate one parameter. Other environments
require the estimation of many parameters simultaneously. For example, only the respiratory rate is
required when driving, and only apnea detection during sleep. The prison environment is another
environment where only one respiratory parameter needs to be estimated. Specifically, for suicide
prevention applications, the detection of RR may be useful in avoiding false alarms in individual jail
cells. In the past, some actions, such as taking off a T-shirt or touching and/or stroking the neck could
be confused with the action of setting a rope around the neck [216]. Combining the RR estimation with
the ability to detect the setting of a rope around the neck could reduce false alarms or frequent alarm
triggering. An example of environments where many respiratory parameters are needed is the intensive
care unit, where health professional are observing many parameters together, such as respiratory rate,
tidal volume, minute ventilation, and gas exchange (pulse oximetry and transcutaneous carbon dioxide).

4.2.9. Algorithm Complexity

Algorithm complexity is crucial to ensuring a good user experience with a respiratory system.
The complexity of an algorithm is highly associated to its processing capacity, accuracy, precision,
response time, and computational efficiency. There are two principal complexity metrics of the
efficiency of an algorithm: time and space. Time complexity describes the computational complexity,
or the amount of time required in relation to the amount of input data, while space complexity
describes the amount of memory or space taken by the algorithm in relation to the amount of input
data. Several studies are aiming to reduce both the time and space complexity for more efficient and
deployable algorithms. Moreover, and as advances continue to be made in technology, the challenging
and very complex algorithms of the past are becoming achievable today. Some works were limited to
tracking a point in a 2D image, or to using 2D optical flow. Tracking a point/set of points in a 3D scene
has become faster and easier. The advent of affordable RGB-D cameras, such as the Kinect sensor,
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has brought about a profound advancement in scene reconstruction methods [227–229], making the
whole surface reconstruction and tracking very achievable in real-time, and thus simplifying the
volume calculation [91,122].

4.2.10. Age Category

Different age categories have been considered in respiratory assessment works. A number of
contactless respiratory systems were designated for adults and did not report results for children and
infants. In the case of thorax 3D reconstruction, the particular morphology plays a crucial role in
having accurate volume results.

Thorax morphology changes with age and sex. The size, shape, motion magnitude, and velocity are
not the same for men, women, and children. For example, neonates tend to have an irregular respiratory
pattern that changes between fast and slow, with occasional pauses. Their volumes and flows are much
lower compared to adults. For instance, the volumes considered in [100] ranged from 300 mL to 3 L,
which does not match with the pediatric volumes. Small children/infants can have a tidal volume as
low as 10 mL, but this can reach 500 mL in teenagers. The ventilation requirements in pediatric patients
differ from those in adult patients. This has significant potential implications for patient care [230–232].
In [91], the accuracy and precision were demonstrated to be lower in smaller volumes compared to larger
volumes due to sensor hardware limitations (the depth accuracy limit reached).

4.2.11. Chest Wall Anomalies

The volume calculation methods based on 3D reconstruction and imaging may not give good
results in the case of chest wall anomalies, such as retractions and thoracoabdominal asynchrony.
Normal thoracoabdominal motion consists of expansion and retraction of the chest and abdomen in
the same direction during inspiration and expiration, respectively. Asynchronous thoracoabdominal
movement (TAA) is the opposite movement of the rib cage and abdomen during air inhalation [233–235].
During TAA, the calculated volume from the 3D reconstruction of the thorax may not correspond to the
real inspired/expired volume due to the large pressure difference between the thorax and the abdomen.
Indeed, the thorax shape is does not reflect the real inspired/expired volume. While new approaches
have been suggested for chest wall spatial motion quantification in critical ill children [160], there is
still a lack of methods and techniques to better assess the physiological parameters in patients with
acute respiratory failure.

4.3. How Can Non-Contact Systems Help Address Some of the Current and Urgent Health Issues in the Present
Year (2020)?

Since late December 2019, an outbreak of a novel highly contagious viral coronavirus disease 2019
(COVID-19) pneumonia was reported in Wuhan, China. This virus, which can be deadly to vulnerable
people, has spread to almost every country (more than 26 countries worldwide), in a very short time.

Healthcare workers, including physicians, nurses, paramedics, and all other healthcare staff,
are facing huge challenges in managing the increasing number of patients. When screening patients,
healthcare providers are at high risk of becoming infected and passing on the infection to others. Since the
incubation period of coronavirus disease 2019 is around 14 days after exposure, the sick person can be
highly contagious without developing clear symptoms of illness. Moreover, the range of COVID-19
symptoms are very similar to those of seasonal flu. One of the most important challenges is how to
avoid cross-infection by transmitting the COVID-19 to the care provider, in addition to immediately
managing their respiratory failure and other pathophysiological disturbances. Personal protections
include two aspects: wearing protective equipment [236] and applying universal precautions, such as
keeping at least one-meter distance from a potential sick person [237].

Respiratory systems are very important for identifying patients infected with Covid-19. However,
contact methods may expose caregivers to infection while measuring peoples’ vital signs [236,238].
Moreover, all installations, sensors, clothes, and other equipment must be disinfected and/or sterilized



Sensors 2020, 20, 7252 34 of 55

after each patient to prevent transmission of disease by either airborne or droplet routes [236]. In a
recent study carried out to evaluate the viability of the COVID-19 virus in different environments,
it has been shown that the virus is stable on plastic and stainless steel and remains viable up to 72 h
after application to these surfaces [238]. Consequently, for these reasons, it is pressing to deploy
non-contact systems in clinical environments to minimize risks of the virus transmission. An important
requirement to help caregivers in managing COVID-19 patients is to provide them with remote sensing
from over 2 m away.

For instance, a new system using radar- and electro-optical-based sensors was announced by
Yaakov et al. [96] at the end of March 2020 in Jane’s Defence magazine (Jane’s Information Group
Ltd., London, UK), an information company specializing in military, national security, aerospace,
and transportation topics. The aim of this project is to identify the persons infected with COVID-19,
by remotely measuring their vital signs (pulse, respiratory rate and temperature). The reported
system consists of two main modules: a high-resolution perimeter surveillance radar ELM-2114 (ELTA
Multi-beam) transmitting and receiving a frequency modulated continuous wave (FMCW) signal
combined with an electro-optical sensor. The system designers used the very low frequency K-band
to avoid harmful radiation effects on workers and patients. Parameters calculated by the contactless
system are the body temperature and inhalation and exhalation rates. The system has a working
distance for up to 3 m and can estimate these parameters accurately in real time. The data are sent
remotely to the healthcare workers, located in another room.

The system, in its current state, is just an initial step and a first release, designed to respond to
an urgent need for protecting healthcare workers. The aim of the radar-based system is mainly to
provide a warning/alert to the caregivers of potential infected people. The system provides support and
supplements by working alongside existing medical devices rather than replacing them. The next step
will involve data processing using advanced computer vision algorithms to remotely provide accurate
quantitative measures. Nevertheless, the system in its current release can be deployed in hospitals to
answer the urgent need of protecting healthcare professionals. Two trials were conducted and produced
accurate results. In the very short term, the company will mainly focus on performing experiments on
a big number of patients to move to serial production of the current release. The radar-based system
was announced on 31 March 2020 and then was deployed in hospitals, starting from mid-April 2020,
for more clinical trials.

In a recent study, Saegusa et al. [48] developed a robot system to detect humans and measure their
respiration. The proposed robot incorporates two imaging systems: an Orbbec Astra mobile 3D depth
sensor for breathing measurement and a FLIR C2 thermal sensor for human detection. The system is
aiming to support the care providers by measuring human volume variation. Different configurations
of body postures have been tested. The experimental results showed that the proposed system is
accurate to more than 90%. Authors plan to improve the robot interactivity and decision aid ability by
adding more advanced features such as breathing anomalies detection.

Many contactless optical systems, based on RGB-D cameras have been previously described by
our group in [32,46,91,160]. The experiments were performed for simulated breathing scenarios and
for a mechanically ventilated 4-month and 20-day old female, weighing 6.6 kg [91]. Data were collected
simultaneously from the proposed system and a mechanical ventilator. For simulated scenarios,
different air volumes corresponding to different age categories and weights (ranging from 10 mL to
500 mL) were delivered to the artificial lung by the ventilator to simulate respiration. The performed
experiments yielded high accuracy and showed significant agreement with the ventilator, the gold
standard method. However, results on the mannequin were slightly better. Relative error between
the system RR estimations mean value and RR ventilator value were 3.2516% in the real patient and
between 0.99%, and 2.19% for the simulated data.

A contactless system is being developed by our group to identify COVID-19 potential cases,
based on the quantitative measures of their respiration. The workload in Sainte-Justine hospital is
being intensified, as are the risks to healthcare workers of being infected. The system involves two
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cameras, a thermal FLIR lepton 3.5 sensor [239] and a 3D Kinect Azure sensor [240]. The two cameras
are measuring vital signs in a parallel and complementary way. Using the FLIR sensor, the system
can calculate the respiratory rate and the body temperature. In a recent work [241], Lin et al. used a
FLIR Lepton 2.5 sensor to continuously measure the human body temperature from a distance up to
0.8 m between the camera and the subject. We aim to improve the system working distance using the
next thermal FLIR lepton 3.5 sensor. The respiratory rate is measured as well by tracking the subject’s
chest movements using the 3D RGD-D Kinect Azure camera [240]. The heart rate can be calculated
by tracking the patient’s face RGB color changes using the Kinect Azure depth sensor. Correlation
between the thermic and depth camera is calculated in real time allowing to endorse the accuracy of
respiratory rate estimation and to avoid frequent false positives. This real time validation will lead to
low false alarm rate, allowing caregivers to positively identify those suffering from shortness of breath
while examining all potential COVID-19 infected patients.

The system suggests the latest technologies, such as depth sensing. The sensor is equipped with
a 12-MP RGB video camera, providing a very high-resolution color image, with a high frame rate,
which can achieve 90 images/second. The sensor includes, as well, a 1-MP depth sensor with wide and
narrow field-of-view (FOV) options that help users optimize their applications. Three simultaneous
streams can be recorded using an RGB-D Kinect Azure sensor: color, depth, and infrared radiation.
The FLIR Lepton 3.5 produces infrared images with embedded temperature readings. Lepton is
a complete long-wave infrared (LWIR) camera module conceived to interface easily into native
mobile-device interfaces and other electronic devices. Our group is currently working on providing
advanced computer vision algorithms allowing real time processing of the recorded data. The healthcare
workers will be able to have quantified measures of the respiration and body temperature remotely in
the system’s control room, and thus they avoid direct contact with the potential infected patient.

5. Conclusions

In this review, we summarized the non-contact-based systems aiming at quantifying the respiration.
Non-contact systems have been of increasing interest to researchers and clinicians during the last ten
years. A variety of methods have been proposed to provide a practical support or alternative to contact
systems, which are not possible to use in all environments and situations, including those associated
with a lack of cooperation, such as in newborns, children, elderly people, and acute care patients.

Non-contact technologies include radar detection, cross-sectional sensing, ultrasonic technology,
radiography, fluoroscopy imaging, RGB conventional imaging, thermal imaging, and depth sensing,
which involves the structured light, time-of-flight, and active stereoscopic vision technologies.
Non-contact sensors are aimed at reducing assessment technical complexity, improving a system’s
portability, and increasing flexibility. In practice, therefore, the non-contact sensors have reduced the
number of expensive components, simplified respiration assessment, and opened the gates to use
such systems, not only in hospitals wards, but also in a variety of environments, such as at home,
in occupational therapy, and in recreational and sporting environments (e.g., gyms).

During the last five years, camera-based technologies took the greater portion of scientific works
aimed to quantify respiration using non-contact techniques. The emergence of low-cost commercial
depth cameras has offered next-generation solutions for many complex problems in several fields.
Based on the most recent needs in the medical field, our conclusive recommendations for future
directions for respiratory system design can be summarized in the following points:

5.1. Artificial Intelligence Application

This line of research consists of using the growing knowledge in artificial intelligence techniques
in the application of human respiration assessment. Artificial intelligence is intended to improve the
scope of the clinical decision-support tools and not to entirely execute tasks that have been traditionally
performed by physicians. The key benefits of artificial intelligence over human assessment are its
objectivity, scalability, longevity, and continuous improvement capabilities. Moreover, a machine is not
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susceptible to distractions, sleep deprivation, fatigue, information overload, and short-term memory
loss. Such attributes are anticipated to dramatically increase productivity, lower costs, and reduce
human subjectivity and error.

Machines are best at digesting massive amounts of data and picking out patterns or seeing things
that human brains cannot. Artificial intelligence is reinventing and reinvigorating the organization of
the healthcare field through using modern systems that can predict, comprehend, learn, and act.

In an era where both the computation speed and deep neural networks are expanding in
a tremendously fast pace, high dimensional unveiled patterns are expected to be leveraged in the
extraction of human respiration [242], detecting diseases [243,244], classify apnea events [245], and score
illness gravity [160,246]. This direction has recently started gaining attention by researchers [242–246].
However, this innovation continues to be challenged by inherent factors in the healthcare market,
making the road to full artificial intelligence integration difficult. Regulators are a key hurdle facing
artificial intelligence and machine learning integration, while regulators juggle the balancing act
between the advantages and disadvantages of the technology. Data privacy regulation will probably
be at the forefront of this battle, leading to a lack of availability of acquisition opportunities in the
medical field. Hence, there is not enough validation in many studies. More research databases are
needed to train machine learning models.

Another challenge is the lack of medical data documentation. Most medical information, even in
electronic health records, is not documented in consistent and discrete ways that can be easily extracted
by a computer.

5.2. Promoting More Imaging Technology for Data Acquisition

Cameras are revolutionizing the healthcare world, particularly when combined with artificial
intelligence algorithms. Measuring respiratory signals from the human body without mechanical contact
of the skin has been made possible today using advanced computer vision techniques. This topic has
grown rapidly in the last decade. Research approaches were moving towards investigation of many types
of imaging data such as color [10,113], depth [91,111,112], and infrared [107,108,114,115,159,247] images.
This trend resulted from the emergence of new affordable acquisition devices, such as, Kinect depth
sensor [32,46], Orbbec Astra mobile 3D cameras [48,240], RealSense technology [105], and FLIR thermic
cameras [48,239]. Such devices are unlocking the next level computer vision applications. In combination
with their high accuracy and sufficiently high spatiotemporal resolutions [240,248], 3D cameras have
greatly simplified the task of human breath detection, which have given rise to new possibilities for
respiratory parameters estimation [6,48,91,122,160].

The goal of a complete and automated diagnosis of respiration can be achieved through this three
step-process: first, medical data are acquired using the emerging new cameras. Second, respiratory
parameters are extracted from data using image processing techniques. The final step is to endorse the
respiratory system capacity to provide an automatic diagnosis of the patient respiration using new
machine learning techniques of data analysis such as deep machine learning. However, these new
systems are greedy because they require huge sets of training imaging data. More imaging databases
are needed to train machine learning models. Future work should be done in this line of research
to leverage advancements in imaging data availability in serving the goal of respiratory studies and
provide a wider diagnosis of respiratory problems. We encourage creating more synthetic and real
patient imaging databases, which can be designed to train machine learning models on how to estimate
respiratory rates, volume, blood gases, or breathing disorders and abnormal thoracic movements.

The availability of databases with real patient data has been increasingly hampered by technical
barriers related to security and data privacy aspects. Even if some of these barriers were overcome,
it is very important to develop and document more synthetic databases. Simulated data are possible
and easy to acquire, and results based on them are important to report [46,160].
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We encourage to document synthetic databases and find a uniform path to collect medical data
in a standardized, quantifiable way that machines can immediately exploit. This lack of imaging
databases and their documentation can be addressed through stronger collaboration between engineers
and clinicians.

5.3. Multidisciplinary Approaches Promoting

Exploring potential capabilities of new technologies in the medical field continue to occupy a
growing role in the interventional care of patients with respiratory diseases. This can be mainly
achieved through the collaboration between researchers/engineers who design methods and devices,
and clinicians who use those devices. This collaboration abides crucial, combining medicine with
engineering to provide more effective options for front-line healthcare providers and help them in facing
challenges and modern threats to health and society with confidence. Working in multidisciplinary
teams will substantially reduce the gap between biomedical research and unmet clinical needs and
make promising advances and opportunities in the medical field.

Along with the demand for simpler clinical procedures facilitating the interaction with the patients,
the increased concern for sophisticated non-contact medical equipment will further boost demand for
biomedical engineers and collaboration between multidisciplinary teams. With growing interest in this
field, many systems and methods have been proposed the last few years through merging technological
and clinical backgrounds. Many engineers are working on the application of new algorithms and
methods to facilitate the diagnosis of illness and pathologies.

However, to be effective, there must be communication between team members through organizing
regular meetings, including trainings, the exchange of experience, and interchanging knowledge
and points of view for designing a specific medical device. Engineers will always need clinicians
to learn about of targeted clinical needs and clinicians need engineers to make optimal use of the
technology capability.

Nowadays, many multidisciplinary teams are working together to design new respiration
assessment systems, merging both engineering and clinical backgrounds. Encouraging the development
of such teams will help in solving the modern medical problems, and thus will improve the clinical
care field.
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Appendix A. Summary of Respiratory Elements

Appendix A.1. Respiratory Rate

Respiratory rate (RR), also called Breathing Rate is one of the principal signs used to assess the
vital function of the human organism [249]. Expressed and measured in terms of breaths per minute
(BPM), the respiratory rate provides an early indication about a patient’s health state and helps to
monitor the progression of illness. The normal range of respiratory rate depends on a subject’s age.
On average, RR is between 12 and 20 BPM in normal adults, 15 and 30 BPM in children, and can be
as high as 30 to 60 BPM in infants and neonates [250]. Extreme variations in RR, either low (called
bradypnea [251,252]) or high (called tachypnea [251,253]), may predict life-threatening events [76].
Even though RR is often used as indicator of various respiratory dysfunctions, it can also be used to
assess human stress and emotions [254,255].
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Appendix A.2. Respiratory Volumes

Measuring lung respiratory volumes is a part of a pulmonary function test (PFT) and is helpful
in-patient diagnosis, treatment, and monitoring. In hospital wards, the gold standard techniques are
based on spirometry and body plethysmography. A spirometer is a machine including a mouthpiece
hooked up to a small electronic device. In body plethysmography, the patient is asked to sit or to stand
inside an airtight box. These instruments require patient cooperation to estimate clinically relevant
lung volumes, forced expiratory, and inspiratory flows. The most common parameters considered in
spirometry and pulmonary function tests are listed in Table A1.

Table A1. A summary of the common parameters considered in spirometry and PFT 1.

Physiological Parameter Description Acronym

Vital capacity VC
Tidal volume Vt

Forced vital capacity FVC
Functional Residual Capacity FRC

Forced expiratory volume at timed intervals of 0.5 s after full inspiration FEV
Forced expiratory volume of 1 s FEV1

Forced expiratory volume at timed intervals of 2 s FEV2
Forced expiratory volume at timed intervals of 3 s FEV3

Forced expiratory flow 25–75% FEF 25–75
Maximal voluntary ventilation or Maximum breathing capacity MVV

Expiratory reserve volume ERV
Inspiratory capacity IC

Inspiratory vital capacity IVC
Total lungs capacity TLC

1 Pulmonary Function Test.

Spirometry is the most reliable way to test patients’ lung function in chronic pulmonary disease
(COPD, cystic fibrosis, asthma . . . ). The airflow is measured through electronic and mechanical
concepts. The system uses electronic devices, namely a microprocessor for data processing and a
recorder for registering patient results and displaying them on a graph. Other derived parameters
may be calculated in certain situations, such as the Tiffeneau–Pinelli index (FEV1/FVC) in restrictive
diseases, defined as the ratio of the forced expiratory volume in 1 s (FEV1) to the full-forced vital
capacity (FVC).

Body Plethysmography, also known as body box, is well-established as a reference method in
clinical environments and is the preferred approach for calculating a variety of respiratory volumes such
as the forced vital capacity and total lungs capacity [256]. The whole-body plethysmograph consists of
a rigid, sealed, and restricted chamber, in which subjects may be asked to be in a sitting or standing
position while breathing through a pneumotachograph. Pressure transducers of different sensitivity
are fixed to estimate the pressure and volume across the pneumotachograph. This technique is only
available for stable patients and cannot be used in an intensive care environment or for young children.

Appendix A.3. Blood Gas Concentrations

Gas exchange assessment is most often done by measuring oxygen partial pressure (PO2) and carbon
dioxide partial pressure (PCO2) in the blood, either arterial, venous, or capillary blood. The level of
PCO2 gives an adequate indication of alveolar ventilation, decreasing in alveolar ventilation results in an
increase of PCO2. When measured in the arterial blood, a decrease in the PaO2 level is a good indicator of
severe acute respiratory disease. The blood pH, also measured in gas blood tests, is maintained within a
narrow range interval [7.35–7.45] in healthy patients. The bicarbonate level (HCO3-) in blood is a part of
the gas blood test, and, combined with the pH level, it guides the physician to perform his or her diagnosis.
Gas blood tests are invasive measures, but other non-invasive tests are available for monitoring, such as
transcutaneous oxygen saturation levels, end-tidal PCO2, transcutaneous PO2, and PCO2. Measurement
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of transcutaneous oxygen saturation is performed through pulse oximetry. End-tidal PCO2 is measured in
the expiratory air, and transcutaneous PO2 and PCO2 are measured using skin sensors and are commonly
used in neonatology. Efficient ventilation will result in optimal gas exchange, and so gas exchange
assessment will offer a useful clinical information to physicians.

Appendix A.4. Chest Wall Motion

Chest wall motion assessment is an essential clinical element in monitoring patients with
respiratory problems and is a main part of the estimation of the severity of a disease, as illustrated
by the number of clinical scores (m-Wood, Pediatric Respiratory Assessment Measure (PRAM), etc.)
that include this assessment [257–259]. However, it is currently only a clinical assessment (visual
inspection) and thus is subject to high subjectivity. Chest wall assessment includes not only thorax
and abdomen amplitude estimation, but also the relative movements of the ribcage compartments,
deformities quantification, and abnormal pattern identification, such as thoracoabdominal asynchrony
and other respiratory muscle retraction [1,233,235,260–265].

The chest wall assessment was investigated in many works, to detect the disease severity.
Respiratory failure (RF) is a major reason for intensive care unit (ICU) admission in children and
adults. RF is characterized by shortness of breath, poor oxygenation, and increased work of breathing
(WoB). The chest movement is most often a sign that the patient has a breathing disorder. Intercostal
retractions, for example, occur when the muscles between the ribs pull inward due to primary muscles
workload. This leads to the activation of the accessory muscles to meet ventilation demands. Necessity
of mechanical ventilation is currently decided by qualified clinicians, through visual inspection,
to prevent RF from progressing to respiratory arrest. However, human assessment is subjective and is
practically impossible to audit.

Appendix B. Overview on Non-Contact Technologies

Appendix B.1. Radar Sensors

Radar systems transmit and receive radio waves, whose frequencies depends on the application
requirement. In the electromagnetic spectrum, radio wavelengths are longer than infrared light.
Radar systems include both emitters and receivers. Emitters transmit the electromagnetic signal,
and the receivers decode the received signal. The phase shift θ is given by Equation (A1), which is
characterized by a wavelength λ and a traveled distance d. Equation (A2) illustrates the total received
signal, where a is the attenuation coefficient for each path and i is the path identifier.

θ = 2πλ/λ (A1)∑
aie− j2πdi/λ (A2)

Radar systems have frequencies from 300 GHz to as low as 3 kHz, with corresponding wavelengths
from 1 mm to 100 km. The choice of frequency used depends on the radar application requirements.
The minimum antenna size is proportional to wavelength and inversely proportional to frequency.
Remote radar-based sensors are mostly used to detect physiological motion by demodulating and
analyzing the signal reflected off the thoracoabdominal wall. Doppler-based radars were particularly
attracting many researchers last years due to their high precision. This category is based on the Doppler
effect to produce velocity data using a microwave signal off the thoracoabdominal wall and analyzing
how the former’s motion has altered the frequency of the returned signal.
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Appendix B.2. Cross-Sectional, Ultrasound, Radiography, and Fluoroscopy Imaging Sensors

Cross-sectional imaging is usually used to refer to Computerized tomography (CT), Magnetic
resonance imaging (MRI), Positron Emission Tomography (PET), Single-Photon Emission Computerized
Tomography (SPECT), and related imaging techniques that view the body in cross-section, i.e., as axial
(cross-sectional) slices.

Even though ultrasonography generates two-dimensional image “slices” of the body,
some clinicians trend to not classify it as a cross-sectional technique. The reason is that the angle of the
slices is often not perpendicular to the axis of the body. Ultrasound sensors use sound waves, which are
reflected, deflected, or absorbed in the human body. The ultrasound image is constructed using the
reflected sound waves. The ultrasound images have been a good alternative to cross-sectional imaging
techniques for tracking respiration and organs moving with respiration [144,266].

A few works have used 2D, 3D, and 4D ultrasound images, which are all based on sound
waves to create the image. The old ultrasound standard uses 2D imaging, which is a series of flat,
2D cross-section gray scale images of the scanned tissue. 3D ultrasound allows the scanning of tissue
cross sections at different angles to get a three-dimensional representation through data reconstructing
techniques. The 4D ultrasound uses time as the fourth dimension to add movement and offer a more
realistic representation.

Examples of imaging techniques that are not cross-sectional include plain radiography,
and fluoroscopy. The techniques rely on projection of an x-ray beam through an object to a receptor.
Planar nuclear medicine is also not cross-sectional, although the imaging radiation is emitted from the
object of interest, rather than passed through it.

Appendix B.3. RGB and Thermal Sensors

The RGB color model considers that any color can be made by combining (R), green (G) and blue
(B). RGB sensors refer to devices acquiring real world objects and projecting them on a two-dimensional
(2D) view plane (i.e., the sensory surface). One of the most famous models used by a variety of RGB
sensors is the Pinhole Camera model, which describes the mathematical relationship between the
coordinates of a point in 3D space and its projection onto the 2D image plane.

The RGB sensors usually record compressed RGB video based on computer vision methods.
An RGB video is a sequence of successive frames. Each RGB frame, also called intensity frame,
is composed of three images (matrices of pixels) in the red, green, and blue channels. The pixel,
abbreviated as “px”, is the unit of measurement used in digital images. Each pixel is encoded as a
number from 0 (black) to 255 (white) and the size of the image matrix varies with the resolution of the
camera used for acquiring data.

The advantage of using RGB sensors-based techniques is that they present lower cost,
fast acquisition, and higher resolution over time. Computer vision techniques have improved
significantly and are considerably reducing the noise in acquired digital images. Nevertheless,
2D images cannot fall outside the projection model, which means bringing some part of the real-world
objects into sharp focus at the expense of blurring other parts and obscuring some details.

Measures of thermal changes have been used to monitor respiration rate with infrared (IR)
video [59,65,187–193]. Cameras based on infrared thermography monitor dynamic thermal activity
emitted from specific areas of the body and have been applied to monitor human physiological signals.

Appendix B.4. Depth Sensors, SL, ToF, and ASV Technologies

An RGB-D (Red, Green, Blue, Depth) sensor, also simply called depth sensor, includes three
embedded sensors: an RGB color camera (for color images acquiring), an infrared radiation-emitting
laser and an infrared sensing camera (for infrared and depth images sensing). With the introduction
of low-cost PrimeSense consumer sensors in 2010, good quality color and depth data can be easily
acquired simultaneously using a single sensor, at high frame rates and affordable cost. Traditional
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depth images were essentially based on passive stereo vision (PSV) techniques, which requires at
least two calibrated RGB cameras. Calibration of the internal and external parameters of stereo vision
cameras is a classical research problem in the computer vision sphere and is still too complex and
lengthy. Using RGB-D sensors, it is made possible to acquire depth data with lower time and costs.

Depth sensors rely on different technologies, such as structured light (SL), time of flight (ToF),
active stereo vision (ASV).

Structured-light techniques use a light source with diverse projection patterns to calculate
variations in the observed surface. The depth map is provided by analyzing the deformation of the
pattern acquired by the sensor (against the projected one, which is known). SL sensors operates well in
capturing depth data at high frame rates up to a range of 1–3 m indoors.

Time-of-Flight techniques calculate, first, the total time-of-flight required for a single laser pulse
to travel from the sensor to the surface and then to come back to the sensor after being reflected by the
surface. The distance between the sensor and the surface is then deducted from this time difference
using Equation (A3):

d =
∆ϕ
4π f

× c, (A3)

where d is the distance to be measured (pixel depth), ∆ϕ is the phase shift between the emitted light and
the reflected light, c is the speed of light (3 × 108 m/s) and f is the modulation frequency. The accuracy
of ToF sensors is better than SL sensors in outdoor environments.

Active Stereo Vision sensors is combining both stereo vision and structured-light techniques.
By embedding an active light source emitting a known pattern, ASV systems offer an alternative
approach to the use of two cameras. Thus, the stereo matching problem is simplified and directly solved.

Microsoft Kinect v1, one of the first consumer depth sensors, was based on PrimeSense SL
technology. Initially introduced for gaming, The Kinect v1 became a very popular sensor for computer
vision. By providing dense 3D information at high frame rates (30 Frames/second), Kinect v1was
used for a variety of fields and applications such as tracking and recognition [267–270]. By 2015,
Microsoft announced its second generation of the Kinect family with the introduction of the Xbox
One game console: the Kinect v2. Using the Time-Of-Flight (ToF) technology, the Kinect v2 sensor
presented improved performances compared to its SL version, especially in outdoor environments.
Kinect v2 was used for a variety of applications such as mobile robot navigation [198], human motion
recognition [271], and suicide attempts preventing [272].

In turn, Intel manufactured its own family of RGB-D cameras using the SL and the ASV technologies.
The Intel F200 and SR300 (2015) are based on SL technology, while the R200 (2015), D415 and D435
(2018) are based on active stereo vision (ASV), which utilizes a near infrared (NIR) texture emitter
paired with two NIR sensors.

Besides, a variety of improved consumer depth sensors have been released by several companies
over the last years. In Figure A1, examples of affordable consumer RGB-D are given, such as the last
Microsoft Kinect Azure (2020), Asus Xtion Pro Live (2011), VicoVR (2017), the Intel RealSense D435
(2018), and the Orbbec Astra Pro (2015).

The main drawback is that of commercial depth sensors work with a borderline level of acceptance
of depth resolution. From year-to-year, this level is being improved with the advent of new technologies.
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86. Yiǧitler, H.; Kaltiokallio, O.J.; Hostettler, R.; Abrar, A.S.; Jantti, R.; Patwari, N.; Särkkä, S. RSS models for
respiration rate monitoring. IEEE Trans. Mob. Comput. 2019, 19, 680–696. [CrossRef]

87. Wang, L.; Lin, Y.; Wang, J. A RR interval based automated apnea detection approach using residual network.
Comput. Methods Programs Biomed. 2019, 176, 93–104. [CrossRef] [PubMed]

88. Shakhih, M.F.M.; Wahab, A.A.; Salim, M.I.M. Assessment of inspiration and expiration time using infrared
thermal imaging modality. Infrared Phys. Technol. 2019, 99, 129–139. [CrossRef]

89. Ciattaglia, G.; Senigagliesi, L.; De Santis, A.; Ricciuti, M. Contactless measurement of physiological
parameters. In Proceedings of the 2019 IEEE 9th International Conference on Consumer Electronics
(ICCE-Berlin), Berlin, Germany, 8–11 September 2019; pp. 22–26.

90. Kamp, M.R.; Thio, B.J.; de Jongh, F.H.C.; Driessen, J.M.M. Monitoring of the Respiratory Rate Recovery Time
in Children with Asthma. Am. J. Respir. Crit. Care Med. 2020, 201, A7179.

91. Rehouma, H.; Noumeir, R.; Bouachir, W.; Jouvet, P.; Essouri, S. 3D imaging system for respiratory monitoring
in pediatric intensive care environment. Comput. Med. Imaging Graph. 2018, 70, 17–28. [CrossRef] [PubMed]

92. Ostadabbas, S.; Sebkhi, N.; Zhang, M.; Rahim, S.; Anderson, L.J.; Lee, F.E.-H.; Ghovanloo, M.
A Vision-Based Respiration Monitoring System for Passive Airway Resistance Estimation. IEEE Trans.
Biomed. Eng. 2016, 63, 1904–1913. [CrossRef] [PubMed]

93. Procházka, A.; Schätz, M.; Vyšata, O.; Vališ, M. Microsoft Kinect Visual and Depth Sensors for Breathing and
Heart Rate Analysis. Sensors 2016, 16, 996. [CrossRef]

94. Nosrati, M.; Shahsavari, S.; Lee, S.; Wang, H.; Tavassolian, N. A concurrent dual-beam phased-array Doppler
radar using MIMO beamforming techniques for short-range vital-signs monitoring. IEEE Trans. Antennas Propag.
2019, 67, 2390–2404. [CrossRef]

95. Kim, H.; Jeong, J. Non-Contact Measurement of Human Respiration and Heartbeat Using W-band Doppler
Radar Sensor. Sensors 2020, 20, 5209. [CrossRef]

http://dx.doi.org/10.1049/htl.2014.0063
http://www.ncbi.nlm.nih.gov/pubmed/26609383
http://dx.doi.org/10.1111/head.12649
https://arc-w.nihr.ac.uk/research-and-implementation/covid-19-response/accuracy-of-self-monitoring-heart-rate-respiratory-rate-and-oxygen-saturation-in-patients-with-symptoms-suggestive-of-covid-infection/
https://arc-w.nihr.ac.uk/research-and-implementation/covid-19-response/accuracy-of-self-monitoring-heart-rate-respiratory-rate-and-oxygen-saturation-in-patients-with-symptoms-suggestive-of-covid-infection/
https://arc-w.nihr.ac.uk/research-and-implementation/covid-19-response/accuracy-of-self-monitoring-heart-rate-respiratory-rate-and-oxygen-saturation-in-patients-with-symptoms-suggestive-of-covid-infection/
http://dx.doi.org/10.12968/bjon.2020.29.1.12
http://dx.doi.org/10.3390/app10020607
http://dx.doi.org/10.1088/1361-6579/ab299e
http://dx.doi.org/10.1109/TMC.2019.2897682
http://dx.doi.org/10.1016/j.cmpb.2019.05.002
http://www.ncbi.nlm.nih.gov/pubmed/31200916
http://dx.doi.org/10.1016/j.infrared.2019.04.012
http://dx.doi.org/10.1016/j.compmedimag.2018.09.006
http://www.ncbi.nlm.nih.gov/pubmed/30273831
http://dx.doi.org/10.1109/TBME.2015.2505732
http://www.ncbi.nlm.nih.gov/pubmed/26660514
http://dx.doi.org/10.3390/s16070996
http://dx.doi.org/10.1109/TAP.2019.2893337
http://dx.doi.org/10.3390/s20185209


Sensors 2020, 20, 7252 47 of 55

96. Yaakov, L. Jane’s Defence News, Jane’s Information Group; IHS Inc.: London, UK, 2020.
97. Islam, S.M.M.; Yavari, E.; Rahman, A.; Lubecke, V.M.; Boric-Lubecke, O. Multiple Subject Respiratory Pattern

Recognition and Estimation of Direction of Arrival using Phase-Comparison Monopulse Radar. In Proceedings
of the 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, FL, USA, 20–23 January 2019; pp. 1–4.

98. Ripoll, E.M.; Hernández, J.L.; Gómez, N.A.; Sanahuja, J.S.S.; Ibáñez, N.R.; Veleff, S.; Blanco, J.G.; i Pérez, E.S.
Cameras to combat falling asleep at the wheel Featured. Rev. Biomec. 2016, 63, 5–15.

99. Chen, Q.; Liu, Y.; Tan, B.; Woodbridge, K.; Chetty, K. Respiration and Activity Detection Based on Passive
Radio Sensing in Home Environments. IEEE Access 2020, 8, 12426–12437. [CrossRef]

100. Reyes, B.A.; Reljin, N.; Kong, Y.; Nam, Y.; Chon, K.H. Tidal Volume and Instantaneous
Respiration Rate Estimation using a Volumetric Surrogate Signal Acquired via a Smartphone Camera.
IEEE J. Biomed. Health Inform. 2016, 21, 764–777. [CrossRef] [PubMed]

101. Sirevaag, E.J.; Casaccia, S.; Richter, E.A.; O’Sullivan, J.A.; Scalise, L.; Rohrbaugh, J.W. Cardiorespiratory
interactions: Noncontact assessment using laser Doppler vibrometry. Psychophysiology 2016, 53, 847–867.
[CrossRef] [PubMed]

102. Chatterjee, A.; Prathosh, A.P.; Praveena, P.; Upadhya, V. Real-Time Visual Respiration Rate Estimation with
Dynamic Scene Adaptation. In Proceedings of the 2016 IEEE 16th International Conference on Bioinformatics
and Bioengineering (BIBE), Taichung, Taiwan, 31 Octobor–2 November 2016; pp. 154–160. [CrossRef]

103. Aoki, H.; Nakamura, H. Non-Contact Respiration Measurement during Exercise Tolerance Test by Using
Kinect Sensor. Sports 2018, 6, 23. [CrossRef] [PubMed]

104. Nosrati, M.; Shahsavari, S.; Tavassolian, N. Multi-target vital-signs monitoring using a dual-beam hybrid
Doppler radar. In Proceedings of the 2018 IEEE International Microwave Biomedical Conference (IMBioC),
Philadelphia, PA, USA, 14–15 June 2018; pp. 58–60.

105. Sun, C.; Li, W.; Chen, C.; Wang, Z.; Chen, W. An Unobtrusive and Non-Contact Method for Respiratory
Measurement With Respiratory Region Detecting Algorithm Based on Depth Images. IEEE Access 2018,
7, 8300–8315. [CrossRef]

106. Guede-Fernández, F.; Fernández-Chimeno, M.; Ramos-Castro, J.; García-González, M.A. Driver drowsiness
detection based on respiratory signal analysis. IEEE Access 2019, 7, 81826–81838. [CrossRef]

107. Elphick, H.E.; Alkali, A.H.; Kingshott, R.K.; Burke, D.; Saatchi, R. Exploratory study to evaluate respiratory
rate using a thermal imaging camera. Respiration 2019, 97, 205–212. [CrossRef]

108. Kwasniewska, A.; Szankin, M.; Ruminski, J.; Kaczmarek, M. Evaluating Accuracy of Respiratory
Rate Estimation from Super Resolved Thermal Imagery. In Proceedings of the 2019 41st Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany,
23–27 July 2019; pp. 2744–2747.

109. Yang, C.; Bruce, B.; Liu, X.; Gholami, B.; Tavassolian, N. A Hybrid Radar-Camera Respiratory
Monitoring System Based on an Impulse-Radio Ultrawideband Radar. In Proceedings of the 2020
42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
Montreal, QC, Canada, 20–24 July 2020; pp. 2646–2649.

110. Nazir, S.; Pateau, V.; Bert, J.; Clement, J.F.; Fayad, H.; l’Her, E.; Visvikis, D. Surface imaging for real-time
patient respiratory function assessment in intensive care. Med. Phys. 2020. [CrossRef]

111. Schätz, M.; Procházka, A.; Kuchyvnka, J.; Vyšata, O. Sleep Apnea Detection with Polysomnography and
Depth Sensors. Sensors 2020, 20, 1360.

112. Shan, Y.; Li, S.; Chen, T. Respiratory signal and human stress: Non-contact detection of stress with a low-cost
depth sensing camera. Int. J. Mach. Learn. Cybern. 2020, 11, 1825–1837. [CrossRef]

113. Nishidate, I.; Minakawa, M.; McDuff, D.; Wares, M.D.A.; Nakano, K.; Haneishi, H.; Aizu, Y.; Niizeki, K. Simple
and affordable imaging of multiple physiological parameters with RGB camera-based diffuse reflectance
spectroscopy. Biomed. Opt. Express 2020, 11, 1073–1091. [CrossRef]

114. Jagadev, P.; Giri, L.I. Non-contact monitoring of human respiration using infrared thermography and machine
learning. Infrared Phys. Technol. 2020, 104, 103117. [CrossRef]

115. Jagadev, P.; Giri, L.I. Human respiration monitoring using infrared thermography and artificial intelligence.
Biomed. Phys. Eng. Express 2020, 6, 35007. [CrossRef]

116. Yu, M.-C.; Liou, J.-L.; Kuo, S.-W.; Lee, M.-S.; Hung, Y.-P. Noncontact respiratory measurement of volume
change using depth camera. In Proceedings of the 2012 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012.

http://dx.doi.org/10.1109/ACCESS.2020.2966126
http://dx.doi.org/10.1109/JBHI.2016.2532876
http://www.ncbi.nlm.nih.gov/pubmed/26915142
http://dx.doi.org/10.1111/psyp.12638
http://www.ncbi.nlm.nih.gov/pubmed/26970208
http://dx.doi.org/10.1109/BIBE.2016.31
http://dx.doi.org/10.3390/sports6010023
http://www.ncbi.nlm.nih.gov/pubmed/29910327
http://dx.doi.org/10.1109/ACCESS.2018.2890082
http://dx.doi.org/10.1109/ACCESS.2019.2924481
http://dx.doi.org/10.1159/000490546
http://dx.doi.org/10.1002/mp.14557
http://dx.doi.org/10.1007/s13042-020-01074-x
http://dx.doi.org/10.1364/BOE.382270
http://dx.doi.org/10.1016/j.infrared.2019.103117
http://dx.doi.org/10.1088/2057-1976/ab7a54


Sensors 2020, 20, 7252 48 of 55

117. Bernal, E.A.; Mestha, L.K.; Shilla, E. Non contact monitoring of respiratory function via depth sensing.
In Proceedings of the 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI),
Valencia, Spain, 1–4 June 2014; pp. 101–104.

118. Ostadabbas, S.; Bulach, C.; Ku, D.N.; Anderson, L.J.; Ghovanloo, M. A passive quantitative measurement of
airway resistance using depth data. In Proceedings of the 2014 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014.

119. De Boer, W.; Lasenby, J.; Cameron, J.; Wareham, R.; Ahmad, S.; Roach, C.; Hills, W.; Iles, R. SLP: A Zero-Contact
Non-Invasive Method for Pulmonary Function Testing. In Proceedings of the British Machine Vision
Conference (BMVC 2010), Aberystwyth, Wales, UK, 30 August–2 September 2010; pp. 1–12.

120. De Melo Barcelar, J.; Aliverti, A.; de Barros Melo, T.L.L.; Dornelas, C.S.; Lima, C.S.F.R.; Reinaux, C.M.A.;
de Andrade, A.D. Chest wall regional volumes in obese women. Respir. Physiol. Neurobiol. 2013, 189, 167–173.
[CrossRef] [PubMed]

121. Blocker, S.J.; Holbrook, M.D.; Mowery, Y.M.; Sullivan, D.C.; Badea, C.T. The impact of respiratory gating on
improving volume measurement of murine lung tumors in micro-CT imaging. PLoS ONE 2020, 15, e0225019.
[CrossRef] [PubMed]

122. Sharp, C.; Soleimani, V.; Hannuna, S.; Camplani, M.; Damen, D.; Viner, J.; Mirmehdi, M.; Dodd, J.W. Toward
Respiratory Assessment Using Depth Measurements from a Time-of-Flight Sensor. Front. Physiol. 2017, 8, 65.
[CrossRef]

123. Reinaux, C.M.A.; Aliverti, A.; da Silva, L.G.M.; da Silva, R.J.; Gonçalves, J.N.; Noronha, J.B.; Filho, J.E.C.;
de Andrade, A.D.; de Amorim Britto, M.C. Tidal volume measurements in infants: Opto-electronic
plethysmography versus pneumotachograph. Pediatr. Pulmonol. 2016, 51, 850–857. [CrossRef] [PubMed]

124. Transue, S.; Nguyen, P.; Vu, T.; Choi, M.-H. Real-Time Tidal Volume Estimation Using Iso-surface
Reconstruction. In Proceedings of the 2016 IEEE First International Conference on Connected Health:
Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016.

125. Guazzi, A.R.; Villarroel, M.; Jorge, J.; Daly, J.; Frise, M.C.; Robbins, P.A.; Tarassenko, L. Non-contact
measurement of oxygen saturation with an RGB camera. Biomed. Opt. Express 2015, 6, 3320–3338. [CrossRef]
[PubMed]

126. Ghazal, S.; Sauthier, M.; Brossier, D.; Bouachir, W.; Jouvet, P.A.; Noumeir, R. Using machine learning models
to predict oxygen saturation following ventilator support adjustment in critically ill children: A single center
pilot study. PLoS ONE 2019, 14, e0198921. [CrossRef] [PubMed]

127. Mendonça, F.; Mostafa, S.S.; Morgado-Dias, F.; Ravelo-Garcia, A.G. An Oximetry Based Wireless Device for
Sleep Apnea Detection. Sensors 2020, 20, 888.
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