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Abstract

Rabies is an ancient and neglected zoonotic disease caused by the rabies virus, a neurotropic

RNA virus that belongs to the Rhabdoviridae family, genus Lyssavirus. It remains an important

public health problem as there are cost and health concerns imposed by the current human post

exposure prophylaxis therapy. The use of monoclonal antibodies (mAbs) is therefore an attrac-

tive alternative. Rabies mostly affects people that reside in resource-limited areas where there

are occasional failures in the cold-chain. These environmental changes may upset the stability

of the mAbs. This study focused on mAbs 62-71-3 and E559; their structures, responses to

freeze/thaw (F/T) and exposure to reactive oxygen species were therefore studied with the aid

of a wide range of biophysical and in silico techniques in order to elucidate their stability and

identify aggregation prone regions. E559 was found to be less stable than 62-71-3. The comple-

mentarity determining regions (CDR) contributed the most to its instability, more specifically:

peptides 99EIWD102 and 92ATSPYT97 found in CDR3, Trp33 found in CDR1 and the oxidised

Met34. The constant region “158SWNSGALTGHTFPAVL175” was also flagged by the special

aggregation propensity (SAP) tool and F/T experiments to be highly prone to aggregation. The

E559 peptides “4LQESGSVL11 from the heavy chain and 4LTQSPSSL11 from the light chain,

were also highly affected by F/T. These residues may serve as good candidates for mutation, in

the aim to bring forward more stable therapeutic antibodies, thus paving a way to a more safe

and efficacious antibody-based cocktail treatment against rabies.

Introduction

Developing countries of Africa and Asia remain highly affected by rabies which is one of the

oldest recorded infections of mankind. Rabies is caused by a rod-shaped virus–the rabies
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virus–that belongs to the Rhabdovirus family [1,2]. Its ability to infect several mammalian car-

nivores and chiroptera species has protected it from total eradication [3]. Nowadays, human

infections are mainly due to a bite from a rabid dog [1]. Fatalities can be prevented by thor-

oughly cleaning the site of injury shortly after the presumed exposure to the virus [4]. This

should be promptly followed by post exposure prophylaxis (PEP). Modern PEP protocols

include passive antibody therapy (rabies immunoglobulin, RIG) for virus neutralization at the

wound site and are followed by active immunisation using the rabies vaccine. There are how-

ever various challenges with the current human PEP such as availability, affordability and

safety. This is mainly because RIG is prepared from pooled sera from hyper immunised

humans (HRIG) or horses (ERIG) [5]. These challenges have therefore motivated several

researchers to identify alternative treatments [6,7].

The high specificity and potency of therapeutic monoclonal antibodies (mAbs) and their

clinical and commercial successes have made them an attractive alternative to RIG [4,8]. In

previous work [9], we discussed the use of E559 and 62-71-3 in a cocktail as each mAb targets

a different site of the rabies virus glycoprotein and as such prevents viral escape [4,6]. These

mAbs were expressed in ΔxT/FT plants, a Nicotiana benthamiana mutant that supports pro-

duction of fructose-free glycans, and were reported to be more efficacious then RIG. Expres-

sion levels attained in the transient system were higher than transgenic approaches which

makes this system a suitable basis for an economically viable manufacturing process [9]. Effi-

cacy studies indicated 62-72-3 to be most efficacious, followed by E559 and HRIG [9]. This

also indicated that a cocktail of 62-71-3 and E559 could be a good replacement for the current

commercially available HRIG.

However, the use of these biological macro-molecules as therapeutic agents comes with its

own challenges, as they are highly susceptible to physical and mechanical degradation path-

ways. Aggregation has been identified as the most relevant physical degradation pathway as it

leads to a decrease in efficacy [10]. Moreover, administration of aggregated immunoglobulins

can be fatal or lead to side-effects such as renal failure and anaphylactic reactions [11]. Acceler-

ated thermal stability studies were also conducted in our previous study (9) by exposing the

mAbs to temperatures that range from 25˚C to 90˚C, to determine the extent of heat-induced

denaturation. Differences were observed from 50–55˚C indicating possible rearrangement in

secondary structural content in the case of E559. On the other hand, changes in β-sheet con-

tent, for 62-71-3, were only observed above 65˚C therefore indicating that E559 is less thermo-

stable than 62–71–3.

Oxidation is one of the most common chemical degradation pathways. It can also lead to a

decrease in efficacy if it occurs in the complementary determining regions (CDRs) of the

mAbs [12,13]. Moreover, it may also lead to aggregation by the creation of new sticky patches

on the protein surface or through production of charge heterogeneity that may reduce electro-

static repulsion between monomers which eventually leads to aggregation [14].

The skewed disease burden towards poor rural communities provides an additional chal-

lenge as these mAbs would have to be delivered to remote areas thus facing cold-chain chal-

lenges [10]. In this study, the E559 and 62-71-3 mAb structures were studied in combination

with their responses to freeze/thaw (F/T) and exposure to reactive oxygen species, to under-

stand the mechanisms behind their degradation and to suggest ways to improve their stability.

Materials and methods

Chemicals

All chemicals were purchased from Sigma-Aldrich (St. Louis, USA) unless otherwise stated.
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In silico structural analysis

Homology modelling. The fragment crystallisable (Fc) regions of the chimeric E559 and

62-71-3 were identical and therefore modelled with the same template. Experimentally solved

structure templates for the heavy and light chains were identified with the aid of PSI-BLAST

[15] which uses a non-redundant database (at 95% redundancy) of structures in the PDB [16].

The variable light (VL) and variable heavy (VH) chain were searched independently in an in-

house germline database to identify templates from PDB with the highest degree of similarity

to the CDR regions. The templates used for E559 Fab were; HC template: PDB-entry 1RJL

[17]; LC template: PDB-entry 2VXU [18], for 62-71-3 FAB they were; HC template: PDB-

entry 1FDL [19]; LC template: PDB-entry 2A6I [20] and template: PDB-entry 1L6X [21] was

used for the Fc region.

Next, the sequences of the mAbs of interest were aligned with the candidate templates

using ALIGN123 which is available in Accelrys Discovery Studio version 4 [22]. Homology

models of the Fab and Fc regions of the mAbs were then built by using MODELER [23],

which is also available in Accelrys Discovery Studio version 4. The side-chains of all the resi-

dues were refined to optimise their conformation. The modelled fragments were joined using

the structure superimposing method of Accelrys Discovery Studio version 4 [22]. Finally, the

quality of the modelled structures was evaluated with both PROCHECK version 3.6.2 and

WHAT-CHECK [24,25].

Spatial aggregation propensity. Aggregation-prone regions were identified by using the

spatial aggregation propensity (SAP) as described by Chennamsetty [26]. SAP calculates the

hydrophobicity of the dynamically exposed residues found on the protein surface. This algo-

rithm is based on the equation below [26]:
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The equation was explained by Chennamsetty and colleagues [26] as: 1) the solvent accessi-

ble area (SAA) of the side chain was computed within radius (R = 10 Å) from a given atom. 2)

The SAA of a side chain of a fully exposed residue (e.g., for amino acid X) was obtained by cal-

culating the SAA of side chains of the middle residue in the fully extended conformation

within the tripeptide (e.g. Ala-X-Ala): and 3) the residue hydrophobicity was obtained from

the hydrophobicity scale of Black and Mould [27]. The scale was normalized such that glycine

has a hydrophobicity of zero; therefore, amino acids that were more hydrophobic than glycine,

were positive and those that were less hydrophobic than glycine were negative on the hydro-

phobicity scale. The spatial aggregation propensity (SAP) is calculated for spherical regions

centred on every atom in the antibody. This gives a unique SAP value for each atom. Then the

SAP for a residue is obtained by averaging the SAP of all its constituent atoms.

In vitro analysis

Expression of E559 and 62-71-3. The mAbs were expressed as described in our previous

study [9]. Briefly, tobacco plants (Nicotiana benthamiana: ΔXT/FT plant line) were used as

expression system. The chimeric LC and HC gene sequences were cloned into ICON Genetics

MagnICON vectors pICH26211 and pICH31160 with TMV and PVX viral backbones respec-

tively. Equal volumes of Agrobacterium tumefaciens strain ICF320 (ICON genetics, Germany)

cultures containing HC and LC vectors were mixed. The mixtures were diluted to a final
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OD600 of 0.4 for vacuum infiltration. Six weeks old Nicotiana benthamiana plants were sub-

merged in the mixed cultures and a vacuum (-800 mbar) was then applied for 3 min. The infil-

trated plants were grown at 25˚C under a 16 / 8-hour light / dark cycle and harvested after 6

days.

Protein extraction and purification. The recombinant mAbs were extracted by homoge-

nizing plants in PBS (15 mM KH2PO4, 80 mM Na2PO4H, pH 6.8, 27 mM KCl and 140 mM

NaCl) buffer, at a 1:1 ratio, using a blender. The extract was centrifuged (8000 x g) for two

cycles at 4˚C for 30 min. A 1 ml MabSelect SuRe column (GE Healthcare Life Sciences, Little

Chalfont, UK) was used to capture and purify the mAbs at a 1 ml/min flow rate. The column

was initially equilibrated with Tris-HCl pH 7.4 for three column volumes (CV). During purifi-

cation, immobilised protein A bound the Fc region of the antibodies with high affinity at neu-

tral pH (7.4). This was followed by washing of the column for five CVs with Tris-HCl pH 7.4.

The antibody was eluted from the column at pH 3.0 (100 mM acetic acid) for 10 CVs into col-

lection tubes that contained 1 M Tris-HCl pH 8. Chromatography was performed using an

Akta Avant 150 system (GE Healthcare Life Sciences, Little Chalfont, UK). After the purifica-

tion step, mAb E559 was buffer exchanged into 10 mM Na2HPO4 pH 6.8, 150 mM NaCl,

0.01% (w/v) Tween 80, while mAb 62-71-3 was buffer exchanged into 10 mM sodium citrate

pH 6.0, 150 mM NaCl 0.01% (w/v), Tween 80 [9]. The protein concentration was determined

by using the Bradford assay with bovine gamma globulin standards according to the manufac-

ture’s guidelines (Bio-Rad, California, USA).

Accelerated stability studies. Accelerated oxidation studies were performed by exposing

E559 and 62-71-3 mAbs to 0.5% hydrogen peroxide (H2O2) for 4, 20 and 48 hrs at room tem-

perature. After incubation, samples were reduced, alkylated, and digested with chymotrypsin

(1:10, enzyme to protein ratio), each time point experiment was conducted in duplicates.

In-solution digestion. To unfold the mAbs, a final concentration of 1% SDS (w/v) was

added to the mAb samples. Samples were then reduced with 10 mM DTT at 45˚C for 45 min

and alkylated in the dark with 30 mM iodoacetamide (IAA) for 30 min at room temperature.

Sample clean-up and on-bead digestion was performed using MagReSyn HILIC beads (a gift

ReSyn Biosciences, Pretoria, South Africa). All experiments were performed with a KingFisher

Duo (Thermo Scientific, Massachusetts, USA) magnetic particle processing robot. The auto-

mated HILIC-protein clean-up program was developed using BindIt Software 3.0 (Thermo

Scientific, Massachusetts, USA) and is available upon request (info@resyinbio.com) to run on

any KingFisher Duo system.

The KingFisher Duo system was configured for automated HILIC-protein clean-up and

on-bead trypsin digestion. In brief deep-well 96 plates were loaded in each carousel position

with each plate filled as follows: 1) 96 well tip heads (Thermo Scientific, Massachusetts, USA);

2) 10 μl, 20 mg/ml hyper porous magnetic HILIC micro spheres (MagReSyn HILIC) in 20%

ethanol and 180 μl Equilibration buffer (100 mM NH4Ac, 15% acetonitrile (ACN) pH 4.5); 3)

Equilibration Buffer (500 μl); 4) Protein extract mixed 1:1 with bind buffer (200 mM NH4Ac,

30% ACN pH 4.5), final volume of 100 μl; 5) 500 μl 95% ACN (wash 1); 6) 500 μl 95% ACN

(wash 2); 7) 200 μl 50 mM Ammonium Formate pH 8.2 and Promega sequencing grade Tryp-

sin for an enzyme: protein ratio of 1:10.

The Bindit program was then run with the magnetic pins transferring the magnetic HILIC

beads from position 2 to 8 and in the process binding proteins, washing off SDS and other con-

taminants and finally generating peptides ready for LC-MSMS analysis post the on-bead tryp-

sin digest.

Reverse phase liquid chromatography electrospray ionization time of flight mass spec-

trometry. Dried peptide samples were re-suspended in 2% (v/v) ACN / 0.2% (v/v) formic

acid (FA) and desalted on an Acclaim PepMap C18 trap (100 μm ID x 2 cm, 5 μm, 100 Å). The
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peptides were separated on an Acclaim PepMap C18 (300 μm ID x 150 mm, 3 μm, 120 Å)

reverse phase column connected via a 10-port switch valve of the Dionex Ultimate 3000

nanoRSLC system (Thermo Scientific, Massachusetts, USA). The peptides were eluted by an

ACN gradient (5–35% in 15 min at 8 μl/min) and samples were then electrostatically sprayed

in the ESI source and introduced into a 6600 Triple TOF (ABSciex, Massachusetts, USA) oper-

ated in Data Dependant Acquisition mode. Precursor MS scans were acquired from m/z 400–

1500 using an accumulation time of 250 ms followed by 80 MSMS scans, acquired from m/z
100–1800 at 25 ms each, for a total scan time of 2.3 sec. Multiply charge ions (2+ - 5+, 400–

1500 m/z) were automatically fragmented in Q2 collision cells using nitrogen as the collision

gas. Collision energies were chosen automatically as function of m/z and charge.

PEAKS Studio version 6 [28] was used to match experimental peptide mass data to the the-

oretical masses calculated from the amino acid sequences of the mAbs. The parent mass error

was set to 25 ppm while the fragment mass error was set to 0.05 Da. A maximum of 3 missed

cleavages were allowed for trypsin digestion while a maximum of 4 missed cleavages were set

for chymotrypsin. The peptide spectrum matches were reported at 0.1% false discovery rate

(FDR) with� 1 unique peptide per protein.

Label free MS1 quantification using Skyline was performed according to [29] and the man-

ufacture’s tutorial guidelines (http://proteome.gs.washington.edu/software/ skyline). Under

the Skyline peptide settings tab, chymotrypsin was selected as enzyme and a maximum of 4

missed cleavages were allowed. The time window for the measured retention time was set to 2

min. The minimum peptide length was set to 5 and the maximum length was set to 25 amino

acids. A spectral library with a cut-off score of 0.95, was created in the file menu by importing

peptide searches based on data dependent acquisition MS/MS data from PEAKS Studio ver-

sion 8 [28].

Circular dichroism. Samples were analysed in their formulation buffers using a Chirascan

CD Spectrometer: Applied Photophysics, Leatherhead, UK. A 1 mm cuvette was used. Prior to

sample analysis, the buffer interference was tested [30]. All collected spectra were normalised

by calculating the mean residue ellipticity [θ] deg.cm2dmol-1residue-1[31].

Fluorescence spectroscopy. Fluorescence spectroscopy was carried out in a Shimadzu

RF-530K Spectrofluorophotometer (wavelength accuracy of +/- 1.5 nm). Emission spectra of

the samples were recorded in the range of 280–450 nm and the excitation and emission slit

widths were both set to 5 nm. The excitation wavelength was set to 280 nm for both tryptophan

and tyrosine. Tryptophan gives the highest quantum yield (emitted photons) and was therefore

selectively excited at a wavelength of 295 nm [32,33].

Hydrogen/deuterium exchange mass spectrometry. The effect of F/T was investigated

by pulse labelling samples for 15 s after F/T cycle 1, 3, 5 and 7 and before the samples were fro-

zen [28]. One cycle refers to a sample being frozen in liquid nitrogen for 5 min and subse-

quently thawed at room temperature for 5 min. This allowed for investigation of the temporal

sequence of events that lead to formation of unfolded states [34].

Peptide level H/DXMS was conducted using an Agilent HPLC (California, USA) connected

to a PALL Leap HDX robot (Leap Technologies, Florida, USA) that had a pepsin column

(Applied Biosystems, California, USA), Dionex (Thermo Scientific, Massachusetts, USA) pep-

tide trap (LC packing, ID: 1.0 mm, phase C18PM) and C18 (50 x 2.10 mm, Aeris Peptide

3.6 μm particle size) reverse phase column (Phenomenex, California, USA) installed inside the

temperature controlled column compartment which was set to 4˚C. Purified samples were pre-

pared under deuterated conditions by 8-fold dilution in D2O. The non-deuterated samples

were diluted by the same buffer but it contained H2O instead of D2O. Samples were quenched

at 0˚C and low pH quenching buffer (50 mM Na2HPO4, pH 2.5, 0.45 M glycine, 0.625 M tris

(2-carboxyethyl) phosphine (TCEP) and 4.2 M CH6ClN3). The reduced sample was then
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digested with acid stable immobilised pepsin. This was followed by trap desalting and rapid

liquid chromatography separation. The peptides were eluted by an ACN gradient (10–25% B,

for 10 min at 200 μl/min). Peptide maps (non-deuterated samples) were generated with MS1

and MS2 as per 2.3.5 and searched on PEAKS Studio version 6 [28]. Protein sequences were

imported into HD Examiner (Sierra analytics, California, USA) and analysed according to the

manufacture’s guidelines.

To monitor the significance of the changes observed due to F/T, a two-sample t-test was

performed using the Perseus software version 1.6.0.2 [35][36]. Duplicate runs were grouped

and cycle 0 was compared to F/T cycle 1, 3, 5 and 7. The FDR was set to 1% and the S0 value

was set at a default value of 0.1. The S0 value controlled the relative importance of the resulted

p-value and difference between means; adjusted p-value cut off was set to 0.05 (results below

this value were reported as significant) [35]. The results were shown in a form of a volcano

plot.

Results and discussion

Rabies mostly affects people that reside in remote, resource-limited areas where there are occa-

sional failures in the cold-chain. These environmental changes may upset the finely tuned bal-

ance of the non-covalent contacts that stabilise the native conformation of mAbs [34]. In silico
tools were initially used to identify aggregation prone regions. This was followed by in vitro
structural analysis of mAbs E559 and 62-71-3 and their response to F/T and exposure to reac-

tive oxygen species, by using several biophysical techniques, such as circular dichroism, fluo-

rescence spectroscopy and deuterium exchange mass spectrometry.

In silico analysis

Identification of aggregation prone regions. Stability of proteins has been shown to

depend on the packing of their hydrophobic and hydrophilic amino acids [26]. The E559 and

62-71-3 mAbs were therefore modelled (S1 Fig) to calculate the relative solvent accessibility

(RSA) of their amino acids and thus help predict regions that may influence their stability. The

Fc regions of the chimeric E559 and 62-71-3 were identical and therefore modelled with the

same template. Areas that contribute toward E559 relative instability were therefore hypothe-

sised to be in the Fab region.

Before proceeding with further analysis of the modelled structures, their quality had to be

evaluated. This was done with the aid of PROCHECK version 3.6.2 and WHAT-CHECK.

Ramachandran plot results were presented in table format (S1 Table). The E559 and 62-71-3

structures had a good quality with over 90% of the residues found in the most favoured

regions. The second part of the table shows the G-factors which provided a measure of how

unusual, or out-of-the-ordinary, different properties were. Values below -0.5 would be unusual

and values below -1.0 would be highly unusual. Values of the distribution of main-chain and

side-chain dihedral angels, geometry and bonds were all above -0.5, which further illustrates

that the E559 and 62-71-3 structures had good quality [24,37].

The SAP tool was used to map aggregation prone regions (APRs) (Fig 1A and 1B). It was

selected on the bases that unlike other tools such as Zyggregator, Aggrescan PASTA and

SALSA, the 3D structure is used as an input file instead of the primary sequence. This allows

for surface exposed hydrophobic patches to be highlighted on the 3D structure that may act as

structural hotspots for aggregation. The SAP tool has also been validated by predicting and

reducing aggregation propensity of IgG1 mAbs (E559 and 62-71-3 are IgG1 mAbs), by mutat-

ing amino acids found in aggregation prone regions and demonstrated that it can be applied

to improve development of biotherapeutics [38].
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The Fab region of E559 had three APRs (Fig 1A) while that of 62-71-3 had four (Fig 1B).

However, the overall aggregation score of E559 (5.347) was higher than that of 62-71-3 (5.019),

Fig 1. Spatial aggregation propensity of the Fab region of E559 (A) and 62-71-3 (B) at R = 10 Å. The SAP values at R = 10 Å were

mapped on the Fab fragments. The red patches indicate sites that have a high propensity for aggregation while the blue patches are less

prone to aggregation. The APRs were ordered by their contribution to the overall aggregation score.

https://doi.org/10.1371/journal.pone.0209373.g001
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which possibly indicates that E559 was more prone to aggregation then 62-71-3. The E559

CDR regions contributed the most to the overall aggregation score. These regions were domi-

nated by hydrophobic residues like Tyr27, Phe32, Trp101, Ile28 and Ile33 which highly con-

tributed to the aggregation score compared to Tyr49, Tyr104 and Ile 101 found in the CDR

region of 62-71-3. This indicates that E559 is more at risk of losing its efficacy as these hydro-

phobic residues associate in attempts to escape solvent exposure. However, these predictions

were based on one snapshot of the mAb conformation, which may not be the true representa-

tion of their behaviour in solution. In vitro analysis of the mAbs was therefore performed to

confirm these findings.

In vitro analysis

Analysis of the mAbs at their primary and secondary structure level. The extracted and

purified mAbs were initially verified by approximating their molecular masses using SDS-PAGE

(S2 Fig) under reducing conditions that allowed for separation of the HC and LC. The HC

migrated to approximately 49 kDa while the LC migrated to approximately 25 kDa which are

the correct mass for a typical IgG1 molecule [11]. However, E559 had a double band on the LC

which was reported in our previous work to be due to glycosylation [9]. The sequences were

verified at their primary level by excising the protein bands as per the protocol described in

[39]. Proteins were digested over night at 37 C˚ using 5–50 μl, 10 ng/μl tryspin depending on

the gel piece size this was followed by LC-MS/MS analysis.

The native secondary structures were assessed by using Far-UV CD spectroscopy. The spec-

tra displayed a negative curve with the minimum at 217 nm, which indicated that the structures

were dominated by β-sheets (S3 Fig) [40,41]. This was indicative of a typical immunoglobulin

fold and also corresponded to the homology models that are dominated by β-sheets.

The tertiary structure of the mAbs. Fluorescence spectroscopy was used to compare the

tertiary structures of E559 and 62-71-3, by exciting both Trp and Tyr residues at 280 nm and

selectively exciting Trp at 295 nm [32,33]. The E559 mAb has a total of 58 Tyr and 24 Trp resi-

dues, while the 62-71-3 has 56 Tyr and 22 Trp residues distributed throughout its structure.

E559 showed a larger shift towards red for the maximum emission wavelength compared to

62-71-3. This shift was present at both excitation wavelengths (Fig 2). This indicated that E559

had more Trp/Tyr residues exposed to the solvent. The results suggested that the E559 was

more loosely packed compared to 62-71-3. This possibly makes E559 more susceptible to

aggregation as these hydrophobic residues could promote protein-protein interactions as they

try to reduce their contact with water molecules [42]. However, the distribution of Trp and

Tyr residues in both mAbs are evenly spread throughout their structure which makes it diffi-

cult to determine which region in E559 is responsible for the red shift. The behaviour of both

antibodies during F/T was therefore investigated using H/DXMS which allowed us to identify

specific regions that are highly prone to degradation.

Monitoring the effects of freezing and thawing using H/DXMS. The impact of F/T was

investigated by using SEC at Kentucky Bioprocessing (S4 Fig). The investigation was carried

out over 21 days for up to 3 F/T cycles. The 62-71-3 mAb remained highly stable with only 3%

loss in the full mAb population after the third F/T cycle. Aggregation of mAb E559 increased

with multiple F/T events, resulting in a loss of 12% of the full mAb population after the third

F/T cycle. To determine where these changes occurred, pulse labelling H/DXMS was used to

investigate structural perturbations of the mAbs due to F/T by providing an instantaneous mea-

sure of the folded/unfolded populations [43]. Cycle 0 represented a non-frozen sample. The

changes induced by F/T were determined by subtracting the deuterium percentage of the non-

frozen sample with the deuterium percentage after F/T cycle 1, 3, 5 and 7, run in duplicates.
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E559 was affected more by F/T then 62-71-3 as indicated by the significantly increased deute-

rium incorporation observed with consecutive F/T cycles as compared to 62-7-13 (Fig 3).

To monitor the significance of the changes observed in Fig 3, Runs were grouped and cycle

0 was compared to F/T cycle 1, 3, 5 and 7. The FDR was set to 1% and the S0 value was set at a

default value of 0.1, to evaluate the relative importance of the t-test p-value and the differences

between the means within the groups [35]. The results were shown in the form of a volcano

plot (Figs 4 and 5). The solid line showed the significance cut-offs based on 1% FDR and 0.1 S0

values [35]. Red circles indicated peptides that were significantly different from cycle 0 while

blue circles indicated peptides that did not change significantly between F/T cycles.

When evaluating the pattern of significantly changing peptides for 62-71-3 HC (Fig 4A)

and LC (Fig 5A), we noted that the largest difference occurred after cycle 1. Most of the pep-

tides were found on the positive side of the difference curve which meant that those peptides

had a lower percentage of deuterium uptake, which indicated protection from deuterium

incorporation. There were also peptides that had a higher percentage deuterium uptake after

Fig 2. Intrinsic fluorescence emission spectra of native E559 and 62-71-3 excited at 280 nm. Graph A shows the

fluorescence emission spectra of E559 (excited at 280 nm: dotted grey line; excited at 295 nm: dotted red line) and 62-

71-3 (excited at 280 nm: black solid line; excited at 295 nm: solid red line). The spectra are averages of three

accumulations. Graph B illustrates the shift in wavelength between both mAbs. The maximum emission wavelength

(280 nm: black bar and 295 nm: grey bar) for 62-71-3 and E559.

https://doi.org/10.1371/journal.pone.0209373.g002
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F/T cycle 1 which were observed on the negative side. From cycle 3 most of the peptides

seemed to go back to their original state, which indicates possible reversible aggregation/oligo-

merization with a few peptides affected by the F/T.

E559 showed an increased percentage deuterium uptake after cycle 3 which indicated that

the mAb started to unfold. This makes the residues more exposed to the surrounding aqueous

environment which may eventually induce aggregation as hydrophobic residues try to escape

solvent exposure [28]. The peptides that were affected by F/T had amino acids that were pre-

dicted by the SAP tool to be prone to aggregation.

H/DXMS and in silico data correlation. Fig 6 integrates data from SAP prediction (Fig 1)

and F/T H/DXMS experiments (Figs 4 and 5). Peptide “98REIWDGGF105” (residues in bold

were identified in aggregation prone regions in Fig 1) which is found in the CDR region (E559

HC) was the most affected by F/T. It was followed by peptide “158SWNSGALTGHTFPAVL175”

which is located in the constant region of the E559 Fab domain. These results from H/DXMS also

correlated with the SAP score (Fig 1A). For the LC of E559, the peptide that contributed the most

to the SAP score in site 3 (104EIKRTVAAPSVF115) was also significantly affected by F/T.

Peptides “181YSLSSVVTVPSSSLGTQT198”, “115TVSSASTKGPSVFPIAPSS127” and

“33WMQWARQRRPGQA44” were not ideal peptides to be used for comparison as the residues

that were detected by SAP to contribute to the aggregation score (marked red) were at the

N-terminus where the exchange rate is rapid [44]. There were no other peptides that had these

residues positioned away from the N-terminus.

Contradictory to what was computationally predicted for 62-71-3 (Fig 1B), the peptides

with the highest percentage deuterium exchange were those found in the CDR regions which

was expected since CDRs are typically highly solvent exposed. However, this difference was

much lower for 62-71-3 compared to that of E559. This indicated that 62-71-3 had a slower

unfolding rate and was therefore more stable than E559.

Fig 3. Difference in deuterium incorporation for peptides from E559 and 62-71-3 after F/T cycles 1, 3, 5 and 7. Structural perturbation due to freezing and thawing

was monitored by subtracting the percent deuterium exchanged after 15 s on a non-frozen sample (C0) by the percent exchanged after F/T cycle 1, 3, 5 or 7.

https://doi.org/10.1371/journal.pone.0209373.g003

The study of degradation mechanisms of anti-rabies monoclonal antibodies E559 and 62-71-3

PLOS ONE | https://doi.org/10.1371/journal.pone.0209373 December 20, 2018 10 / 20

https://doi.org/10.1371/journal.pone.0209373.g003
https://doi.org/10.1371/journal.pone.0209373


Fig 4. Volcano plots illustrating the effect of freeze-thawing on 62-71-3 (A) and E559 (B) HC peptides. The black solid line

delineates peptides that show a significant shift in deuterium incorporation (red dots) versus those that were not affected by F/T

(blue dots). Samples were analysed in duplicates. C0 represents non-frozen sample, C1, C3, C5 represent F/T cycle 1, 3, 5 or 7. The

circles with a negative (-) difference indicate increased deuterium incorporation compared to the non-frozen sample. The circles

with a positive (+) difference indicate decreased deuterium incorporation compared to the non-frozen sample. The FDR was set to

1%, S0 value was set to 0.1 and adjusted p-value cut off was 0.05.

https://doi.org/10.1371/journal.pone.0209373.g004

The study of degradation mechanisms of anti-rabies monoclonal antibodies E559 and 62-71-3

PLOS ONE | https://doi.org/10.1371/journal.pone.0209373 December 20, 2018 11 / 20

https://doi.org/10.1371/journal.pone.0209373.g004
https://doi.org/10.1371/journal.pone.0209373


Fig 5. Volcano plots illustrating the effect of freeze-thawing on 62-71-3 (A) and E559 (B) LC peptides. The black solid line delineates

peptides that show a significant shift in deuterium incorporation (red dots) versus those that were not affected by F/T (blue dots). Samples

were analysed in duplicates. C0 represents non-frozen sample, C1, C3, C5 represent F/T cycle 1, 3, 5 or 7. The circles with a negative (-)

difference indicate increased deuterium incorporation compared to the non-frozen sample. The circles with a positive (+) difference

indicate decreased deuterium incorporation compared to the non-frozen sample. The FDR was set to 1%, S0 value was set to 0.1 and

adjusted p-value cut off was 0.05.

https://doi.org/10.1371/journal.pone.0209373.g005
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There were also other peptides besides those identified by SAP that were significantly per-

turbed by F/T in all the cycles (Fig 7). Peptide “52FSLDSGVPKRFSGSRSGS70” and

“92ATSPYTFGGGTKL104” from E559 had residues (red) that were found in CDR regions.

The CDR regions of E559 were more affected by F/T, thus making E559 more prone to loss of

efficacy then 62-71-3.

The deuterium incorporation difference of peptides that were significantly affected by

freezing and thawing after cycle 7 were mapped on the three dimensional structures of the

mAbs (Fig 8). The E559 and 62-71-3 mAbs are chimeric with identical constant regions. How-

ever, the E559 had more peptides in the constant region that were unfolded by F/T. This

Fig 6. Differences in deuterium incorporation for E559 (A) and 62-71-3 (B) and their contribution to the SAP aggregation score.

Deuterium incorporation in cycle 0 was deducted from cycle 1, 3, 5 and 7. The contribution of each peptide to the SAP aggregation score was

calculated, red circles indicate high contribution, yellow is medium contribution and green is low contribution.

https://doi.org/10.1371/journal.pone.0209373.g006
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indicates to the amino acid sequence of the variable region as the fundamental reason why

E559 was more prone to aggregation. These differences resulted in subtle structural differences

that made E559 more flexible and more prone to degradation. E559 had four peptides (three

in the variable region: 98REIWDGGF105, “4LQESGSVL11, 4LTQSPSSL11 and one in the con-

stant region 158SWNSGALTGHTFPAVL175) that were most impacted by F/T. Except for pep-

tide “98REIWDGGF105” found in the CDR region, the other peptides may serve as good

candidates for mutation to enhance the stability of E559.

Oxidation. When it comes to biopharmaceuticals, oxidation is one of the most problem-

atic chemical degradation pathways. Oxidative changes to the protein may increase the suscep-

tibility of the protein by the creation of sticky patches on the surface that encourage formation

of unwanted covalent bonds [10]. Forced degradation studies were therefore conducted in

duplicates to identify residues that were most susceptible to this modification. Reverse phase

LC-MS/MS was used to identify and quantify affected peptides. MS1 peak areas were used as a

measure of peptide abundance. As a control, a sample that was freshly thawed and digested

but not exposed to H2O2 was used. This control sample was analysed to identify possible modi-

fications introduced during sample processing.

Skyline software was used to quantify the peptides by measuring their XIC peak areas. Oxi-

dised and non-oxidised peptides were compared within each sample run. The ratios were cal-

culated by dividing oxidised XIC peak areas with their non-oxidised versions. The standard

Fig 7. Differences of deuterium incorporation for E559 (A) and 62-71-3 (B). Deuterium incorporation in cycle 0 was deducted from

cycle 1 (orange), 3 (grey), 5 (yellow) and 7 (blue).

https://doi.org/10.1371/journal.pone.0209373.g007
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deviations between the duplicate runs were shown in a form of error bars in Fig 9. Data was fil-

tered based on the quality of the spectra, retention time and the isotope dot product (idotp)

value. The control samples had low to undetectable oxidised peptides (S1–S4 Files). The oppo-

site was observed for the samples that were exposed to H2O2 where there was a low abundance

of unmodified peptides. The idotp value provided a correlation between the expected and

observed precursor isotope distribution and the optimal idotp value is 1. Low values were an

indication of unreliable isotope patterns, selection of the wrong peak or the signal that was

below the detection limit [29].

Met residues were mostly affected by oxidative stress for both mAbs (Fig 9). For 62-71-3,

Met82 located in the HC and Met4 located in the LC were highly oxidised. Oxidation of the

E559 Met34 was significantly higher than the 62-71-3 Met82 and Met4. Met34 also formed

part of the “33WMQWARQRRPGQA44” peptide that was affected by F/T by becoming more

Fig 8. Peptides that were significantly affected by F/T after cycle 7 mapped on models of mAbs E559 (A and B) and 62-71-3 (C and D).

The difference in deuterium incorporation between the non-frozen cycle and F/T cycle 7 peptides were mapped on the mAb structures.

Different colours represent the difference in deuterium incorporation, green indicates lowest deuterium percentage (<20%) and dark red

represents the highest deuterium percentage (>80%). E559 peptides (98REIWDGGF105, “4LQESGSVL11, 4LTQSPSSL11 and
158SWNSGALTGHTFPAVL175) that were impacted the most by F/T were mapped on the structure.

https://doi.org/10.1371/journal.pone.0209373.g008
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exposed to the solvent with the increase in F/T cycles. It is also next to Trp33 which was pre-

dicted by SAP (Fig 1) to be prone to aggregation. Its flexibility and increased exposure to the

surrounding aqueous environment may promote aggregation [10].

Conclusion

The E559 mAb was observed to be less stable than mAb 62-71-3. The CDR regions of E559 are

mostly responsible for its instability, more specifically residues 99EIWD102 found in HC CDR3

and 92ATSPYT97 found on LC CDR3. The aggregation prone Trp101 from CDR3 was in spa-

tial proximity to Trp33 which formed part of peptides that became more exposed to the solvent

with an increase in F/T cycles. These residues were therefore suspected to eventually contrib-

ute to unwanted protein-protein interactions via hydrophobic or aromatic interactions. How-

ever, mutation of these residues is not recommended as they are found in the CDR region and

may play a critical role in binding mAbs to their antigen. The mutation of the E559 Val174

from peptide “158SWNSGALTGHTFPAVL175” is recommended for future work as it is found

in the peptide that was most affected by F/T and it had a high aggregation score. Even though

according to the SAP data the E559 peptides “4LQESGSVL11 and 4LTQSPSSL11 did not

have residues that were prone to aggregation, these peptides were highly affected by F/T. These

residues may serve as good candidates for mutation, in the aim to bring forward more stable

therapeutic antibodies. Furthermore, Met34 was identified to be highly prone to oxidation; it

was also part of a peptide that was significantly affected by F/T, thus increasing susceptibility

Fig 9. Oxidation levels of 62-71-3 and E559 peptides. The peak areas of oxidised peptides were divided by the peak areas of the un-modified version of the peptide, for

duplicate samples incubated for 4, 20 and 48 hrs in 0.5% H2O2. The control or point 0 was a freshly thawed and digested sample and was included to identify modifications

that were introduced during sample preparation.

https://doi.org/10.1371/journal.pone.0209373.g009
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of E559 to aggregation. Addition of antioxidants in the E559 processing solution may help pro-

tect it from oxidation [10].

Supporting information

S1 Fig. Computationally modelled Fab regions of E559 (A) and 62-71-3 (B) mAb and the Fc

region (C). One unit of the E559 (A) and 62-71-3 (B) FAB region and Fc dimer region (C) for

both antibodies was modelled. The β-sheets were coloured in yellow, helices were coloured red

and the coils are in green. The schematic mAb illustrates how the individual regions assemble.

(TIF)

S2 Fig. SDS-PAGE showing mAbs after protein A purification. PageRuler Prestained Pro-

tein ladder that indicated molecular masses in kDa, was loaded in lane 1. The mAbs E559 and

the 62-71-3 were loaded in lane 2 and 3, respectively.

(TIF)

S3 Fig. Far-UV CD spectra of E559 and 62-71-3 mAbs. Far-UV CD spectra of E559 (grey

dotted line) and 62-71-3 (black solid line) at a concentration of 2 μM. E559 had a total of 1324

residues while 62-71-3 had 1328 residues. Readings were taken in a 1 mm cuvette at 20˚C.

(TIF)

S4 Fig. Effect of freeze-thawing on the stability profile of E559 and 62-71-3. The full (blue)

molecular mass for E559 is 145.5 kDa and 145.4 kDa for 62-71-3. LMM (red) indicate sizes

lower than the full mAb while HMM (green) indicates sizes higher than the full mAb. LMM

(low molecular mass), HMM (high molecular mass).

(TIF)

S5 Fig. Averages of the deuterium percentages and standard deviation for E559 and 62-71-

3. Evaluation of the standard deviation between the deuterium up take for the E559 (A) plus

62-71-3 (B) peptides that were plotted in Fig 6 and E559 (C) plus 62-71-3 (D) peptides that

were plotted in Fig 7, for Cycle 0,1,3,5 and 7.

(TIF)

S1 Table. Ramachandran results for E559 and 62-71-3 mAb Fab and Fc regions. Rama-

chandran plot statistics and G-factor parameters

(TIF)

S1 File. Supplimentary information. 62-71-3 peptide list, oxidation time points and total

area.

(CSV)

S2 File. Supplimentary information. E559 peptide list, oxidation time points and total area.

(CSV)

S3 File. Supplimentary information_62-71-3. 62-71-3 oxidation spectral biospec library.

(BLIB)

S4 File. Supplimentary information_E559. E559 oxidation spectral biospec library.

(BLIB)
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