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Abstract. A number of studies have revealed that there is an 
increasing incidence of early-onset colorectal cancer (CRC) 
in young adults (before the age of 50 years) and a progressive 
decline in CRC among older patients, after the age of 50 years 
(late-onset CRC). However, the etiology of early-onset CRC is 
not fully understood. The aim of the present study was to iden-
tify key genes associated with the development of early-onset 
CRC through weighted gene co-expression network analysis 
(WGCNA). The GSE39582 dataset was downloaded from the 
Gene Expression Omnibus database, and the data profiles of 
tissues from patients diagnosed before the age of 50 years 
were selected. The top 10,000 genes with the highest vari-
ability were used to construct the WGCNA. Hub genes 
were identified from the modules associated with clinical 
traits using gene significance >0.2 and module membership 
>0.8 as the cut‑off criteria. Gene Ontology and pathway 
analyses were subsequently performed on the hub genes and 
a protein-protein interaction network (PPI) was constructed. 
The diagnostic value of module hub genes with a degree score 
>5 in the PPI network was verified in samples from patients 

with CRC diagnosed before the age of 50 years obtained from 
The Cancer Genome Atlas. Eight co-expressed gene modules 
were identified in the WGCNA and two modules (blue and 
turquoise) were associated with the tumor-node-metastasis 
stage. A total of 140 module hub genes were identified and 
found to be enriched in ‘mitochondrial large ribosomal 
subunit’, ‘structural constituent of ribosome’, ‘poly (A) RNA 
binding’, ‘collagen binding’, ‘protein ubiquitination’ and ‘ribo-
some pathway’. Twenty-six module hub genes were found to 
have a degree score >5 in the PPI network, seven of which 
[secreted protein acidic and cysteine rich (SPARC), decorin 
(DCN), fibrillin 1 (FBN1), WW domain containing transcrip-
tion regulator 1 (WWTR1), transgelin (TAGLN), DEAD-box 
helicase 28 (DDX28) and cold shock domain containing 
C2  (CSDC2)], had good prognostic values for patients with 
early-onset CRC, but not late-onset CRC. Therefore, SPARC, 
DCN, FBN1, WWTR1, TAGLN, DDX28 and CSDC2 may 
contribute to the development of early-onset CRC and may 
serve as potential diagnostic biomarkers.

Introduction

Colorectal cancer (CRC) is the third most common cancer in 
males, and the second most common in females, with an inci-
dence of ~1.1 million new cases and 551,269 mortalities per 
year worldwide in 2018 (1,2). Although there has been signifi-
cant progress in cancer screening programs, the survival rate 
of patients with CRC remains unsatisfactory (3). In the past 20 
years, the 5-year survival rate of patients with early-stage CRC 
was 69%, while that of patients with advanced-stage disease 
was 12% (4). The high mortality of CRC is in part due to 
limitations in the currently available therapies, which are the 
result of a limited understanding of the molecular mechanisms 
underlying CRC (5). Several factors are associated with the 
development of CRC, including smoking, obesity and alcohol 
consumption (6). In addition, it is estimated that genetic factors 
account for ~30% of CRC cases (7). However, the precise 
molecular mechanism remains unclear. It has been reported 
that early- and late-onset CRC may evolve in distinct ways, and 
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there may be different molecular mechanisms according to the 
age at onset (8). Compared with late-onset CRC in patients 
who were diagnosed after the age of 50 years, early-onset 
CRC, before the age of 50 years, is more frequently associated 
with aggressive histology and distant metastasis (9). Although 
numerous efforts have been made to elucidate the genetic 
mechanism underlying CRC, the treatment of early-onset CRC 
remains challenging (10,11). Therefore, there is an urgent need 
to uncover the mechanisms of this disease.

High-throughput platforms have been widely used to search 
for genetic biomarkers for CRC. Microarrays have the capacity 
to analyze genes implicated in the development of CRC (12-14). 
Sun et al (15) used integrated bioinformatics analysis to iden-
tify seven genes that may serve as novel biomarkers for CRC. 
He et al (16) identified four long non‑coding RNAs associated 
with the progression of CRC by analyzing gene data cohorts 
and constructing a competing endogenous RNA network. 
Zhang et al (17) used a bioinformatics approach to demonstrate 
that the hypermethylation of CpG islands in transforming 
growth factor β induced was associated with poor disease-free 
survival rates in patients with CRC. Furthermore, Yu et al (18) 
constructed a weighted gene co-expression network analysis 
(WGCNA) and revealed that ribosomal proteins play a key 
role in the development of CRC. However, to the best of the 
authors' knowledge, no previous studies have uncovered the 
mechanism of early-onset CRC. 

In the present study, the GSE39582 dataset (11) was down-
loaded from the Gene Expression Omnibus (GEO) database and 
the gene expression data and clinical information of patients 
who were diagnosed with CRC before the age of 50 years were 
selected for further investigation. WGCNA was subsequently 
used to identify the most relevant modules in early-onset CRC. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses were performed on the hub genes 
and a protein-protein interaction (PPI) network was constructed. 
The diagnostic values of the hub genes that had a high degree 
score of protein-protein connection in the PPI network were 
analyzed. The genes identified in the present study may shed new 
light on the molecular mechanisms underlying the progression of 
early-onset CRC, and may serve as novel prognostic biomarkers.

Materials and methods

Data collection and preprocessing. The normalized gene 
expression dataset GSE39582 (19) and the corresponding 
clinical data were retrieved from the GEO database (www.
ncbi.nlm.nih.gov/geo) using a GPL570 platform (Affymetrix 
Human Genome U133 Plus 2.0 Array). The GSE39582 dataset 
contained the gene expression information of 566 CRC tissues 
and 19 adjacent non-tumorous colorectal mucosal samples 
from patients with CRC. In order to explore the key genes 
associated with the progression of early-onset CRC, 53 CRC 
samples from patients in the GSE39582 dataset who were 
diagnosed before the age of 50 years were selected and used as 
the discovery dataset. Therefore, the gene expression informa-
tion and clinical traits of the aforementioned 53 CRC samples 
were used in the present study. Ten clinical traits were studied 
in the present study, and included sex, age, tumor-node-metas-
tasis (TNM) stage, T stage, M stage, N stage, recurrence-free 
survival (RFS) event (time from surgery to the first recurrence 

that was capped at 5 years), RFS days, overall survival (OS) 
event (time from surgery to death) and OS days. Prior to 
WGCNA, the probes without known gene symbols were 
filtered, and the collapse Rows function (version 1.17.0) (20) 
was used to merge the retained probes and gene symbols in 
expression profiles in the dataset. In the present study, the 
sample quality of the discovery dataset was assessed by sample 
clustering, according to the inter-array correlation (IAC) (21); 
an IAC >0.2 in the sample clustering tree was considered 
as the criterion for screening outlier samples. Based on this 
criterion, no samples were eliminated from the present study.

Co‑expression module detection. The R package WGCNA 
(version 1.66) (22) was used to generate the gene co-expression 
network for the selected genes in the GSE39582 dataset. 
According to the variation of median absolute deviation (23), 
the expression profile of the top 10,000 genes and information 
about their clinical traits were used to construct the WGCNA. 
The threshold for identifying outlier samples was set as 0.2. All 
genes were then analyzed with each other using the Pearson's 
correlation test, and a matrix of similarity was constructed 
based on this analysis. A soft power of β=6 was selected based 
on the scale‑free topology criterion of >0.85 (22). The adja-
cency matrix of gene expression data from all patients with 
early-onset CRC was then clustered using topological overlap 
matrix analysis. Finally, the dynamic tree cut algorithm in the 
R package WGCNA (version 1.66) (22), was applied to the 
dendrogram for module identification with the mini‑size of 
module gene numbers set as 200. 

Identification of clinically significant modules. In the present 
study, the module eigengene (ME) was used to represent each 
module, and was determined by the first principal component 
obtained from the principal component analysis of the expres-
sion matrix of each gene. In addition, the Pearson's correlation 
between the ME of each module and clinical information was 
defined as module significance (MS). The gene modules with 
an ME >0.3 and an MS <0.05 were considered significant in 
relation to clinical traits. All genes in these significant modules 
were selected for further analysis.

Screening and functional annotation of module hub genes. 
Hub genes are usually considered to be important in the 
majority of biological processes in the gene module (24). In 
the present study, all genes in the significant modules were 
screened to identify the hub genes, based on a gene signifi-
cance (GS) >0.2 and module membership (MM) >0.8. The 
corresponding module hub gene information was subsequently 
uploaded onto the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID; david.abcc.ncifcrf.gov) 
(version 6.8) to perform GO (http://geneontology.org/) and 
KEGG (https://www.genome.jp/kegg/) analyses. P<0.05 was 
used as the screening threshold.

PPI network construction and key gene screening. The Search 
Tool for the Retrieval of Interacting Genes (STRING; version 
11.0; www.string-db.org) is a database that provides information 
for known and predicted PPIs (25). In the present study, STRING 
was used to analyze the PPIs among the module hub genes 
associated with tumor TNM stage in patients with early-onset 
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CRC. A confidence score >0.4 was chosen to construct the PPI 
network, which was subsequently visualized using Cytoscape 
software (version 3.7.0) (26). Genes with ≥5 degrees were 
considered to be the key genes in the PPI network (27).

Validation of key genes in The Cancer Genome Atlas (TCGA) 
samples. The prognostic value of the key genes identified 
from the analysis of the PPI network was tested in the publi-
cally available TCGA-COAD (colon adenocarcinoma) dataset 
(https://portal.gdc.cancer.gov/). The TCGA-COAD dataset 
contains 480 patients with CRC, after screening out patients 
without information of diagnostic age, 419 patients were 
included as the validation dataset, which contained 53 patients 
with early-onset CRC and 366 patients with late-onset CRC. The 
associations between the key genes and the prognosis of patients 
with early-onset CRC were evaluated using Kaplan-Meier 
survival analysis in Prism (version 6.01; GraphPad Software, 
Inc.). All the patients were divided into high-expression and 
moderate-low expression groups according to the quartile 
method. Kaplan-Meier curves were constructed to determine the 
OS time and the log-rank test was used to compare the survival 
distribution. In addition, to further verify whether the key genes 
were uniquely associated with early-but not late-onset CRC, 
survival analysis validation of the key genes was performed 
using TCGA late‑onset CRC samples. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Construction of the co‑expression network and identification 
of key modules. Following the exclusion of late‑onset patients, 

53 early-onset CRC samples and the corresponding clinical 
information were used for WGCNA (Fig. 1) using a soft 
power of β=6 as the soft threshold (Fig. 2). A total of seven 
co-expressed modules were obtained, and genes, which were 
not assigned to a specific module were distributed in the grey 
module (Fig. 3). The seven co‑expressed modules were used 
for further analysis. 

Identification of significant modules and module hub genes. 
In the WGCNA, the association between modules and clinical 
data was investigated using Pearson's correlation analysis, and 
four modules were found to be significantly associated with 
clinical traits. The red module was significantly associated with 
age (R=0.38; P=0.005) and RFS delay time (R=‑0.32; P=0.02), 
while the brown module was significantly associated with 
RFS delay time (R=‑0.31; P=0.02) and OS delay time (R=‑0.3; 
P=0.03). The turquoise module was significantly associated 
with TNM stage (R=-0.42; P=0.002), OS event (R=-0.31; 
P=0.009) and OS delay time (R=0.31; P=0.02) and the blue 
module was significantly associated with TNM stage (R=0.31; 
P=0.02) and RFS event (R=0.35; P=0.01). Considering that 
TNM stage plays an important role in evaluating the biological 
behavior and prognosis of CRC (28), the modules associated 
with TNM stage were considered to be the most important 
modules in the present study. The modules associated with 
TNM stage were the blue (R=0.43; P<0.001) and turquoise 
(R=0.56; P<0.001) modules. The blue and turquoise modules 
contained 1,874 and 3,331 genes, respectively. All genes in the 
blue and turquoise modules were screened based on a GS>0.2 
and an MM>0.8 (Fig. 4). Finally, 95 blue and 45 turquoise hub 
genes were screened for further functional analysis.

Figure 1. Sample clustering tree and clinical trait heat map of tumor samples. The cut height was set as 0.2 and there was no deviated sample. The ten traits 
studied in the present study included sex, age, TNM, TNM‑T, TNM‑N and TNM‑M stage, RFS survival event, RFS delay time, OS event and OS delay time. 
In the heatmap of clinical traits, red color represents male and white color represents female in sex; the red color depth of age, RFS delay time and OS delay 
time is proportional to time; the red color depth of TNM and TNM-T stage are divided into 4 scales according to stage 1-4; the red color depth of TNM-N 
stage is divided into 3 scales according to stage 0-2; the red color depth of TNM-M stage is divided into 2 scales according to stage 0-1; the red color depth of 
RFS event and OS event are divided into 2 scales according to whether the event occurs or not. TNM, tumor‑node‑metastasis; RFS, recurrence‑free survival; 
OS, overall survival. 
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GO function and KEGG pathway annotation of module hub 
genes. In order to better understand the biological function of 
the hub genes in the two modules, the 140 hub genes were 
uploaded onto the DAVID database for GO functional anno-
tation and KEGG pathway analysis. The genes were mainly 
enriched in four GO terms: ‘mitochondrial large ribosomal 
subunit’, ‘structural constituent of ribosome’, ‘poly(A) RNA 
binding’ and ‘collagen binding and protein ubiquitination’. The 
KEGG pathway enrichment analysis revealed that the module 
hub genes were significantly involved in pathways associated 
with ribosomes.

PPI network construction and module analysis. The PPI 
network was composed of 85 nodes and 152 edges and was 
exported from the STRING database and visualized using 
Cytoscape software (Fig. 5). A total of 26 genes with ≥5 
degrees were identified in the PPI network and were selected 
for further validation using TCGA samples.

Validation survival analysis of key genes in TCGA samples. 
All 26 key genes [acetyl-CoA acetyltransferase 2, baculo-
viral IAP repeat containing 5, cyclin F, chromatin licensing 
and DNA replication factor 1, collagen type VI α 2 chain, 
cold shock domain containing C2 (CSDC2), decorin (DCN), 
DEAD‑box helicase 28 (DDX28), EGF containing fibulin 
extracellular matrix protein 2, fibrilin 1 (FBN1), insulin like 
growth factor binding protein 7, IMP U3 small nucleolar 
ribonucleoprotein 4, minichromosome maintenance complex 
component 5, mitochondrial ribosomal protein L2, mitochon-
drial ribosomal protein L11, mitochondrial ribosomal protein 
L17, mitochondrial ribosomal protein S12, matrix remodeling 
associated 8, MYB binding protein 1a, origin recognition 
complex subunit 1, RNA polymerase II subunit E, proteasome 
26S subunit-ATPase 3, secreted protein acidic and cysteine 
rich (SPARC), transgelin (TAGLN), WD repeat domain 1, WW 
domain containing transcription regulator 1 (WWTR1)] identi-
fied from the PPI network were analyzed using TCGA‑COAD 

Figure 2. Analysis of network topology for different soft‑thresholding powers. (A) Scale independence and (B) mean connectivity of various soft‑thresholding 
values (β). (C) Histogram of connectivity distribution when β=6. (D) Scale-free topology when β=6. 
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dataset. All patients in TCGA-COAD dataset who were diag-
nosed before the age of 50 (n=53) were selected for survival 
analysis. Patients were divided into high-expression (n=14) 

and moderate-low expression (n=39) groups according to the 
quartile method. Kaplan-Meier curves were constructed to 
determine the OS time. The results revealed that seven genes, 

Figure 4. Identification of significant modules associated with clinical traits and screening module hub genes. (A) Correlation of module eigengenes with 
all traits. Each unit contains the corresponding correlation coefficient and P‑value. The table is color‑coded by correlation according to the color legend. 
(B) Distribution of TNM stage‑related genes in all modules. Modules and enrichment significance are presented on the x‑ and y‑axis, respectively. Scatterplots 
of GS for metastasis vs. MM in the (C) turquoise and (D) blue modules. The corresponding correlation coefficient and P‑value are listed above the scatterplot. 
The horizontal red lines indicate GS=0.2 and the vertical red lines indicate MM=0.8. TNM, tumor‑node‑metastasis; GS, gene significance; MM, module 
membership.

Figure 3. Clustering dendrograms of all genes, with dissimilarity based on topological overlap, together with assigned module colors. The dynamic tree 
cut algorithm was applied to the dendrogram for module identification. Different colors represent different gene modules and there are seven co‑expressed 
modules in the weighted gene co-expression network analysis network, including red, brown, green, turquoise, black, blue and yellow. 
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including SPARC, DCN, FBN1, WWTR1, TAGLN, DDX28 
and CSDC2, remained statistically significant prognostic 
factors for patients with early‑onset CRC (P<0.05; Fig. 6). On 
the other hand, the expression level of these seven key genes 
was not significantly associated with OS time in patients with 
late‑onset CRC (P>0.05; Fig. 7). 

Discussion

In contrast to the decreasing incidence of late-onset CRC, 
the incidence and mortality of early-onset CRCs has been 
increasing (29). According to the latest data, patients with 
early-onset CRC account for 2-8% of all CRC cases (30,31). 
Various studies have shown that polygenic changes play a key 
role in the development of early-onset CRC (10,32). However, 
there is a limited understanding of the latent molecular mecha-
nism in the development and progression of CRC.

Gene expression data of patients with early-onset CRC 
extracted from the GEO dataset GSE39582 were investigated 
in the present study. WGCNA revealed that the functions of 
the genes associated with TNM stage in early-onset CRC were 

enriched in ‘mitochondrial large ribosomal subunit’, ‘struc-
tural constituent of ribosome’ and ‘poly (A) RNA binding’. PPI 
network analysis and TCGA-COAD dataset revealed that there 
were seven genes with an important role in the progression of 
early‑onset CRC, including SPARC, DCN, FBN1, WWTR1, 
TAGLN, DDX28 and CSDC2.

SPARC, a multifunctional calcium-binding glycoprotein, 
belongs to a group of matricellular proteins (33,34). Previous 
studies have shown that SPARC is usually secreted into the 
extracellular matrix and plays a key role in cellular processes, 
including proliferation, migration, adhesion and differentia-
tion (33,34). SPARC is highly expressed in oral squamous cell 
carcinoma and has the potential to promote oral squamous cell 
carcinoma cell proliferation and metastasis (35). Furthermore, 
the high expression level of SPARC indicated a poor outcome 
in patients with esophageal squamous cell carcinoma (36). 
Additionally, the expression level of SPARC is associated with 
lymph node metastasis in pancreatic cancer (37). However, a 
study by Chew et al (38) concluded that high SPARC expre-
sion is associated with improved disease outcome in stage 
II CRC and may be a prognostic indicator of cancer‑specific 

Figure 5. Protein‑protein interaction network analysis of module hub genes in the turquoise and blue modules.
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Figure 6. Survival analysis of protein‑protein interaction hub gene expression levels in patients with early‑onset colorectal cancer from The Cancer Genome 
Atlas Colon Adenocarcinoma dataset. CSDC2, cold shock domain containing C2; DCN, decorin; DDX28, DEAD‑box helicase 28; FBN1, fibrillin 1; SPARC, 
secreted protein acidic and cysteine rich; TAGLN, transgelin; WWTR1, WW domain containing transcription regulator 1. 

Figure 7. Survival analysis of early‑onset CRC‑related hub gene expression levels in patients with late‑onset CRC from The Cancer Genome Atlas Colon 
Adenocarcinoma dataset. CRC, colorectal cancer; CSDC2, cold shock domain containing C2; DCN, decorin; DDX28, DEAD‑box helicase 28; FBN1, 
fibrillin 1; SPARC, secreted protein acidic and cysteine rich; TAGLN, transgelin; WWTR1, WW domain containing transcription regulator 1.
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survival. DCN belongs to the small leucine-rich proteoglycans 
family (39,40). Accumulating evidence has shown that the 
DCN expression is dysregulated in several types of cancer, 
including pancreatic and breast cancer (39,40). The expression 
of DCN is decreased in renal cell carcinoma, and the ectopic 
expression of DCN can decrease cell proliferation and metas-
tasis in renal cell carcinoma (41). Overexpression of DCN also 
has the capacity to decrease CRC cell proliferation and migra-
tion by increasing the expression of cyclin dependent kinase 
inhibitor 1A and E-cadherin (42). However, the present study 
revealed that DCN was associated with TNM stage, and a high 
expression of DCN predicted poor prognosis in patients with 
early-onset CRC. Therefore, further experimental studies are 
required to investigate the role of DCN in early-onset CRC.

FBN1 encodes fibrillin, which is the primary component 
of microfibrils in the extracellular matrix (43). A previous 
study reported that downregulated FBN1 expression plays a 
key role in the development of germ cell tumors (44). FBN1 
is also a target gene of microRNA (miR)-133b and promotes 
gastric cancer cell proliferation and invasion (45). Moreover, 
hypermethylated FBN1 was detected in patients with CRC but 
not in healthy controls, which suggested that hypermethylated 
FBN1 is a sensitive biomarker for CRC (46). WWTR1 is a 
transcriptional coactivator with the capacity to combine with 
various transcription factors and promote their effect (47). 
WWTR1 is highly expressed in renal cancer and is associated 
with TNM stage (48). Furthermore, the nuclear localization 
of WWTR1 is correlated with worse clinical outcomes in 
lung squamous cell carcinomas compared to adjacent normal 
lung tissues (49). Furthermore, another study suggested that 
WWTR1 expression may serve as a prognostic indicator and 
therapeutic target in CRC (50). TAGLN is an actin stress fiber 
binding protein that stabilizes the cytoskeleton through actin 
binding and plays a key role in cancer cell migration, invasion 
and proliferation (51). A previous study demonstrated that the 
expression level of TAGLN was decreased in bladder cancer 
compared to normal bladder mucosae tissues (52). Exogenous 
TAGLN decreases the migration and proliferation of CRC 
cells in vitro (53). However, in the present study, patients 
with early-onset CRC with high TAGLN expression were 
found to have a lower OS time compared with patients with 
moderate-low expression. Therefore, TAGLN may be an onco-
gene in early-onset CRC. DDX28, a conserved mitochondrial 
matrix protein, is essential for mitochondrial oxidative phos-
phorylation (54). A previous study revealed that high DDX28 
expression was associated with high risk of CRC (55). CSDC2 
is an mRNA-binding protein and a target gene of miR-373 (56). 
CSDC2 plays a key role in decidua development (57). However, 
its role in cancer development remains unknown. 

In conclusion, the present study used WGCNA and other 
analysis methods, including GO, KEGG, PPI network and 
survival analysis, to identify seven genes (SPARC, DCN, 
FBN1, WWTR1, TAGLN, DDX28 and CSDC2) associated 
with the development and prognosis of early-onset CRC. 
These genes may serve as novel biomarkers for the diagnosis 
of early-onset CRC.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The datasets generated and analyzed during the present 
study are available in the GEO database (http://www.ncbi.
nlm.nih.gov/geo/) and TCGA database (https://portal.gdc.
cancer.gov/).

Authors' contributions

XM, ZS and HQ conceived and designed the study. XM, BY 
and ZZ collected the data and wrote the manuscript. BY and SL 
performed the data analysis. HQ contributed to the language 
editing. All authors read and approved the final version of the 
manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

 1. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S and 
Tabernero J: Consensus molecular subtypes and the evolution 
of precision medicine in colorectal cancer. Nat Rev Cancer 17: 
79-92, 2017.

 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and 
Jemal A: Global cancer statistics 2018: GLOBOCAN estimates 
of incidence and mortality worldwide for 36 cancers in 185 coun-
tries. CA Cancer J Clin 68: 394-424, 2018.

 3. Torre LA, Siegel RL, Ward EM and Jemal A: Global cancer 
incidence and mortality rates and trends-an update. Cancer 
Epidemiol Biomarkers Prev 25: 16‑27, 2016.

 4. Veenstra CM and Krauss JC: Emerging systemic therapies for 
colorectal cancer. Clin Colon Rectal Surg 31: 179-191, 2018.

 5. Gonzalez N, Prieto I, Del Puerto-Nevado L, Portal-Nuñez S, 
Ardura JA, Corton M, Fernández‑Fernández B, Aguilera O, 
Gomez-Guerrero C, Mas S, et al: 2017 update on the relation-
ship between diabetes and colorectal cancer: Epidemiology, 
potential molecular mechanisms and therapeutic implications. 
Oncotarget 8: 18456-18485, 2017.

 6. Jayasekara H, English DR, Haydon A, Hodge AM, Lynch BM, 
Rosty C, Williamson EJ, Clendenning M, Southey MC, 
Jenkins MA, et al: Associations of alcohol intake, smoking, 
physical activity and obesity with survival following colorectal 
cancer diagnosis by stage, anatomic site and tumor molecular 
subtype. Int J Cancer 142: 238-250, 2018.

 7. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, 
Koskenvuo M, Pukkala E, Skytthe A and Hemminki K: 
Environmental and heritable factors in the causation of 
cancer-analyses of cohorts of twins from Sweden, Denmark, and 
Finland. N Engl J Med 343: 78‑85, 2000.

 8. Ballester V, Rashtak S and Boardman L: Clinical and 
molecular features of young-onset colorectal cancer. World J 
Gastroenterol 22: 1736-1744, 2016.

 9. Yeo H, Betel D, Abelson JS, Zheng XE, Yantiss R and Shah MA: 
Early-onset colorectal cancer is distinct from traditional 
colorectal cancer. Clin Colorectal Cancer 16: 293-299.e6, 2017.



ONCOLOGY LETTERS  19:  177-186,  2020 185

10. Cavestro GM, Mannucci A, Zuppardo RA, Di Leo M, Stoffel E 
and Tonon G: Early onset sporadic colorectal cancer: Worrisome 
trends and oncogenic features. Dig Liver Dis 50: 521-532, 2018.

11. Burnett‑Hartman AN, Powers JD, Chubak J, Corley DA, Ghai NR, 
McMullen CK, Pawloski PA, Sterrett AT and Feigelson HS: 
Treatment patterns and survival differ between early-onset and 
late-onset colorectal cancer patients: The patient outcomes to 
advance learning network. Cancer Causes Control 30: 747-755, 2019.

12. Williams SP, Barthorpe AS, Lightfoot H, Garnett MJ and 
McDermott U: High-throughput RNAi screen for essential genes 
and drug synergistic combinations in colorectal cancer. Sci 
Data 4: 170139, 2017.

13. Gao M, Zhong A, Patel N, Alur C and Vyas D: High throughput 
RNA sequencing utility for diagnosis and prognosis in colon 
diseases. World J Gastroenterol 23: 2819-2825, 2017.

14. Xiong W, Ai YQ, Li YF, Ye Q, Chen ZT, Qin JY, Liu QY, Wang H, 
Ju YH, Li WH and Li YF: Microarray analysis of circular RNA 
expression profile associated with 5‑fluorouracil‑based chemo-
radiation resistance in colorectal cancer cells. Biomed Res 
Int 2017: 8421614, 2017.

15. Sun G, Li Y, Peng Y, Lu D, Zhang F, Cui X, Zhang Q and Li Z: 
Identification of differentially expressed genes and biological 
characteristics of colorectal cancer by integrated bioinformatics 
analysis. J Cell Physiol, 2019 (Epub ahead of print).

16. He M, Lin Y and Xu Y: Identification of prognostic biomarkers 
in colorectal cancer using a long non-coding RNA-mediated 
competitive endogenous RNA network. Oncol Lett 17: 
2687-2694, 2019.

17. Zhang H, Dong S and Feng J: Epigenetic profiling and mRNA 
expression reveal candidate genes as biomarkers for colorectal 
cancer. J Cell Biochem 120: 10767‑10776, 2019.

18. Yu C, Hong H, Zhang S, Zong Y, Ma J, Lu A, Sun J and Zheng M: 
Identification of key genes and pathways involved in microsatellite 
instability in colorectal cancer. Mol Med Rep 19: 2065-2076, 2019.

19. Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, 
Etienne-Grimaldi MC, Schiappa R, Guenot D, Ayadi M, et al: 
Gene expression classification of colon cancer into molecular 
subtypes: Characterization, validation, and prognostic value. 
PLoS Med 10: e1001453, 2013.

20. Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, 
Salomon DR and Horvath S: Strategies for aggregating 
gene expression data: The collapseRows R function. BMC 
Bioinformatics 12: 322, 2011.

21. Giorgi FM, Bolger AM, Lohse M and Usadel B: Algorithm‑driven 
artifacts in median polish summarization of microarray data. 
BMC Bioinformatics 11: 553, 2010.

22. Langfelder P and Horvath S: WGCNA: An R package for weighted 
correlation network analysis. BMC Bioinformatics 9: 559, 2008.

23. Chung N, Zhang XD, Kreamer A, Locco L, Kuan PF, Bartz S, 
Linsley PS, Ferrer M and Strulovici B: Median absolute devia-
tion to improve hit selection for genome-scale RNAi screens. 
J Biomol Screen 13: 149‑158, 2008.

24. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, 
Laurance MF, Zhao W, Qi S, Chen Z, et al: Analysis of oncogenic 
signaling networks in glioblastoma identifies ASPM as a molec-
ular target. Proc Natl Acad Sci USA 103: 17402-17407, 2006.

25. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, 
Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: 
STRING v10: Protein-protein interaction networks, integrated 
over the tree of life. Nucleic Acids Res 43: D447-D452, 2015.

26. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, 
Amin N, Schwikowski B and Ideker T: Cytoscape: A software 
environment for integrated models of biomolecular interaction 
networks. Genome Res 13: 2498-2504, 2003.

27. Liu C, Chen N, Huang K, Jiang M, Liang H, Sun Z, Tian J 
and Wang D: Identifying hub genes and potential mechanisms 
associated with senescence in human annulus cells by gene 
expression profiling and bioinformatics analysis. Mol Med 
Rep 17: 3465-3472, 2018.

28. Kawakami H, Zaanan A and Sinicrope FA: Microsatellite insta-
bility testing and its role in the management of colorectal cancer. 
Curr Treat Options Oncol 16: 30, 2015.

29. Connell LC, Mota JM, Braghiroli MI and Hoff PM: The rising 
incidence of younger patients with colorectal cancer: Questions 
about screening, biology, and treatment. Curr Treat Options 
Oncol 18: 23, 2017.

30. Ferlay J, Steliarova‑Foucher E, Lortet‑Tieulent J, Rosso S, 
Coebergh JW, Comber H, Forman D and Bray F: Cancer 
incidence and mortality patterns in Europe: Estimates for 40 
countries in 2012. Eur J Cancer 49: 1374-1403, 2013.

31. Siegel RL, Jemal A and Ward EM: Increase in incidence of 
colorectal cancer among young men and women in the United 
States. Cancer Epidemiol Biomarkers Prev 18: 1695‑1698, 2009.

32. Stigliano V, Sanchez-Mete L, Martayan A and Anti M: 
Early-onset colorectal cancer: A sporadic or inherited disease? 
World J Gastroenterol 20: 12420-12430, 2014.

33. Vaz J, Ansari D, Sasor A and Andersson R: SPARC: A poten-
tial prognostic and therapeutic target in pancreatic cancer. 
Pancreas 44: 1024-1035, 2015.

34. Feng J and Tang L: SPARC in tumor pathophysiology and as a 
potential therapeutic target. Curr Pharm Des 20: 6182-6190, 2014.

35. Jing Y, Jin Y, Wang Y, Chen S, Zhang X, Song Y, Wang Z, Pu Y, 
Ni Y and Hu Q: SPARC promotes the proliferation and metastasis 
of oral squamous cell carcinoma by PI3K/AKT/PDGFB/PDGFRβ 
axis, 2019 (Epub ahead of print).

36. Chen Y, Zhang Y, Tan Y and Liu Z: Clinical significance of 
SPARC in esophageal squamous cell carcinoma. Biochem 
Biophys Res Commun 492: 184‑191, 2017.

37. Yu XZ, Guo ZY, Di Y, Yang F, Ouyang Q, Fu DL and Jin C: The 
relationship between SPARC expression in primary tumor and 
metastatic lymph node of resected pancreatic cancer patients and 
patients' survival. Hepatobiliary Pancreat Dis Int 16: 104-109, 2017.

38. Chew A, Salama P, Robbshaw A, Klopcic B, Zeps N, Platell C 
and Lawrance IC: SPARC, FOXP3, CD8 and CD45 correlation 
with disease recurrence and long-term disease-free survival in 
colorectal cancer. PLoS One 6: e22047, 2011.

39. Neill T, Schaefer L and Iozzo RV: Decorin as a multivalent thera-
peutic agent against cancer. Adv Drug Deliv Rev 97: 174-185, 2016.

40. Zhang W, Ge Y, Cheng Q, Zhang Q, Fang L and Zheng J: Decorin 
is a pivotal effector in the extracellular matrix and tumour micro-
environment. Oncotarget 9: 5480-5491, 2018.

41. Ho TH, Serie DJ, Parasramka M, Cheville JC, Bot BM, Tan W, 
Wang L, Joseph RW, Hilton T, Leibovich BC, et al: Differential 
gene expression profiling of matched primary renal cell carci-
noma and metastases reveals upregulation of extracellular matrix 
genes. Ann Oncol 28: 604-610, 2017.

42. Bi X, Pohl NM, Qian Z, Yang GR, Gou Y, Guzman G, 
Kajdacsy‑Balla A, Iozzo RV and Yang W: Decorin‑mediated 
inhibition of colorectal cancer growth and migration is associ-
ated with E-cadherin in vitro and in mice. Carcinogenesis 33: 
326-330, 2012.

43. Milewicz DM, Guo DC, Tran‑Fadulu V, Lafont AL, Papke CL, 
Inamoto S, Kwartler CS and Pannu H: Genetic basis of thoracic aortic 
aneurysms and dissections: Focus on smooth muscle cell contractile 
dysfunction. Annu Rev Genomics Hum Genet 9: 283-302, 2008.

44. Cierna Z, Mego M, Jurisica I, Machalekova K, Chovanec M, 
Miskovska V, Svetlovska D, Kalavska K, Rejlekova K, 
Kajo K, et al: Fibrillin‑1 (FBN‑1) a new marker of germ cell 
neoplasia in situ. BMC Cancer 16: 597, 2016.

45. Yang D, Zhao D and Chen X: MiR-133b inhibits proliferation 
and invasion of gastric cancer cells by up‑regulating FBN1 
expression. Cancer Biomark 19: 425‑436, 2017.

46. Guo Q, Song Y, Zhang H, Wu X, Xia P and Dang C: Detection 
of hypermethylated fibrillin‑1 in the stool samples of colorectal 
cancer patients. Med Oncol 30: 695, 2013.

47. Wei J, Wang L, Zhu J, Sun A, Yu G, Chen M, Huang P, Liu H, 
Shao G, Yang W and Lin Q: The Hippo signaling effector 
WWTR1 is a metastatic biomarker of gastric cardia adenocarci-
noma. Cancer Cell Int 19: 74, 2019.

48. Ruan H, Bao L, Song Z, Wang K, Cao Q, Tong J, Cheng G, Xu T, 
Chen X, Liu D, et al: High expression of TAZ serves as a novel 
prognostic biomarker and drives cancer progression in renal 
cancer. Exp Cell Res 376: 181-191, 2019.

49. Wang Y, Han Y, Guo Z, Yang Y and Ren T: Nuclear TAZ activity 
distinctly associates with subtypes of non-small cell lung cancer. 
Biochem Biophys Res Commun 509: 828‑832, 2019.

50. Yuen HF, McCrudden CM, Huang YH, Tham JM, Zhang X, 
Zeng Q, Zhang SD and Hong W: TAZ expression as a prognostic 
indicator in colorectal cancer. PLoS One 8: e54211, 2013.

51. Dos Santos Hidalgo G, Meola J, Rosa E Silva JC, Paro de Paz CC 
and Ferriani RA: TAGLN expression is deregulated in endo-
metriosis and may be involved in cell invasion, migration, and 
differentiation. Fertil Steril 96: 700‑703, 2011.

52. Liu Y, Wu X, Wang G, Hu S, Zhang Y and Zhao S: CALD1, 
CNN1, and TAGLN identified as potential prognostic molecular 
markers of bladder cancer by bioinformatics analysis. Medicine 
(Baltimore) 98: e13847, 2019.

53. Li Q, Shi R, Wang Y and Niu X: TAGLN suppresses prolifera-
tion and invasion, and induces apoptosis of colorectal carcinoma 
cells. Tumor Biol 34: 505‑513, 2013.



MO et al:  WGCNA TO IDENTIFY KEY CARCINOGENESIS GENES IN EARLY‑ONSET CRC186

54. Tu YT and Barrientos A: The Human mitochondrial DEAD‑box 
protein DDX28 resides in RNA granules and functions in mitori-
bosome assembly. Cell Rep 10: 854-864, 2015.

55. Loo LW, Cheng I, Tiirikainen M, Lum-Jones A, Seifried A, 
Dunklee LM, Church JM, Gryfe R, Weisenberger DJ, 
Haile RW, et al: cis-Expression QTL analysis of established 
colorectal cancer risk variants in colon tumors and adjacent 
normal tissue. PLoS One 7: e30477, 2012.

56. Place RF, Li LC, Pookot D, Noonan EJ and Dahiya R: 
MicroRNA-373 induces expression of genes with complementary 
promoter sequences. Proc Natl Acad Sci USA 105: 1608-1613, 
2008.

57. Vallejo G, Mestre-Citrinovitz AC, Winterhager E and 
Saragueta PE: CSDC2, a cold shock domain RNA-binding 
protein in decidualization. J Cell Physiol 234: 740-748, 2018.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International (CC BY-NC-ND 4.0) License.


