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Alteration in transforming growth factor-b signalling pathway is one of the main causes of pancreatic cancer. The human runt-related
transcription factor 3 gene (RUNX3) is an important component of this pathway. RUNX3 locus 1p36 is commonly deleted in a variety
of human cancers, including pancreatic cancer. Therefore, we examined genetic and epigenetic alterations of RUNX3 in human
pancreatic cancer. Thirty-two patients with pancreatic cancer were investigated in this study. We examined the methylation status of
RUNX3 promoter region, loss of heterozygosity (LOH) at 1p36, and conducted a mutation analysis. The results were compared with
clinicopathological data. Promoter hypermethylation was detected in 20 (62.5%) of 32 pancreatic cancer tissues, confirmed by
sequence of bisulphite-treated DNA. Loss of heterozygosity was detected in 11 (34.3%) of 32 pancreatic cancers. In comparison with
clinicopathological data, hypermethylation showed a relation with a worse prognosis (P¼ 0.0143). Hypermethylation and LOH
appear to be common mechanisms for inactivation of RUNX3 in pancreatic cancer. Therefore, RUNX3 may be an important tumour
suppressor gene related to pancreatic cancer.
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Despite its relatively low incidence of approximately 10 cases/
100 000 people, pancreatic cancer is still one of the leading causes
of cancer-related death in industrialised countries including Japan.
The prognosis remains poor, with an overall 5-year survival rate of
less than 5% (Jemal et al, 2007). The pathogenesis of pancreatic
ductal adenocarcinoma can be described as a step-by-step
accumulation of genetic changes, such as K-ras oncogene
mutations, p53, p16, and smad4 tumour suppressor gene
mutations (Kern et al, 2002), in addition to several epigenetic
alterations, which together result in self sufficiency of growth
signals, insensitivity to antigrowth signals, evasion of apoptosis,
angiogenesis, invasion, and metastasis (Ozawa et al, 2001).
Recently, several reports indicated that every silencing mechanism,
such as loss of heterozygosity (LOH) and mutations in a gene, or
hypermethylation in its promoter region occurred in a tumour
suppressor gene resulting in loss of its function in tumorigenesis
(Tokumaru et al, 2003).

Transforming growth factor-b (TGF-b) signalling is a well-
established tumour suppressor pathway in pancreatic carcinogen-
esis (Massagu et al, 2000). Smad4 is a key transcription factor in
the TGF-b1 signalling pathway, and is inactivated in about 50% of
pancreatic adenocarcinomas. The human runt-related transcrip-
tional factor 3 (RUNX3) gene also plays important roles in the
TGF-b signalling pathway. In this pathway, Smad2 and Smad3
activated by TGF-b interact with RUNX3, and induce transcrip-
tional activation of target genes in the nucleus (Ito and Miyazono,
2003; Miyazono et al, 2003).

RUNX3 induced apoptosis in epithelial cells, and the knockout
mice of this gene showed hyperplasia in gastric mucosa. In
addition, loss of function of RUNX3 caused by DNA hypermethy-
lation, LOH at gene locus, and mutation correlated with the
progression of primary gastric cancers (Li et al, 2002). RUNX3
might have the important role of TGF-b and Smad proteins in
carcinogenesis. Furthermore, RUNX3 is located on the distal
portion of the short arm of human chromosome 1 (1p36), which is
commonly deleted in a variety of human cancers, including
pancreatic cancer (Nowak et al, 2005; Loukopoulos et al, 2007).
Therefore, the genetic and epigenetic alterations in RUNX3 may
have an important role in pancreatic cancer.

The aim of our present study was to determine whether the
RUNX3 gene alteration might have a role in carcinogenesis in
pancreatic cancer. We examined LOH at this gene locus in 1p36
with microdissected DNA, the DNA-methylation status by
methylation-specific polymerase chain reaction (MSP) and
sequencing, and the mutation of RUNX3 by reverse transcrip-
tion-polymerase chain reaction (RT-PCR) single-strand conforma-
tion polymorphism (RT-PCR-SSCP) in 32 primary pancreatic
cancer tissues and corresponding noncancerous tissues. Then, we
correlated these results with the clinicopathological data.

MATERIALS AND METHODS

Patients, sample collection, microdissection, and DNA
preparation

Thirty-two primary pancreatic cancer tissues and corresponding
noncancerous tissues were collected at Nagoya University Hospital
from pancreatic cancer patients during pancreatico-duodenectomy,
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distal pancreatectomy, or total pancreatectomy. All tissues were
diagnosed histologically as pancreatic cancer. Written informed
consent, as required by the institutional review board, was
obtained from all patients. Collected samples were stored
immediately in liquid nitrogen at �801C until analysis. Genomic
DNA was obtained from these samples by digestion with
proteinase K, followed by phenol/chloroform extraction.

Other parts of the specimens were formalin-fixed for 24 h and
processed for paraffin embedding. From each tissue block, a series
of four 5-mm thick sections were cut. The first section was H&E
stained for pathologic evaluation; identification of the tumour
epithelia. To avoid normal cell contamination, target epithelial cells
from the cancer areas were produced by laser capture microdissec-
tion using a Pixcell LCM system (Arcturus Engineering Inc.,
Mountain View, CA, USA). An average of 200 laser shots (30mm
shot size, 60 ms laser pulse duration, and power of 60 MW) were
used for each sample. Microdissected cells were then incubated
overnight at 371C in 50ml digestion buffer (10 mmol l�1 Tris-HCl
(pH 8.0), 1 mmol l�1 EDTA, 1% Tween 20, 1 mg ml�1 proteinase K)
and incubated at 951C for 10 min to inactivate the proteinase K.

Microsatellite analysis

DNAs from primary pancreatic cancer tissues and corresponding
noncancerous tissues were analysed for LOH study by amplification of
CA repeat sequences using PCR. DNAs of pancreatic cancer epithelia
were collected by the microdissection method mentioned above.

Two microsatellite markers, D1S234 and D1S247, were used.
D1S234 exists at only 900 Kb on the telomeric side from the
RUNX3 locus, and D1S247 is centromeric from the RUNX3 locus.
Polymerase chain reaction amplification was performed containing
[a32P]dCTP and 50 ng of genomic DNA. Polymerase chain reaction
products were analysed on a 6% polyacrylamide gel and processed
by autoradiography. Allelic loss was scored when the band
intensity of one allele was decreased significantly (more than
40% reduction) in tumour DNA as compared with that in the
normal DNA by using a BASS-2000 image analyzer (Fuji Photo
Film Co. Ltd, Tokyo, Japan).

Methylation-specific PCR

DNA from tumour and normal specimens was subjected to
bisulphite treatment. Briefly, 2 mg of DNA was denatured by NaOH
and modified by sodium bisulphite. DNA samples were then
purified using the Wizard purification resin (Promega Corp.,
Madison, WI, USA), treated again with NaOH, precipitated with
ethanol, and resuspended in water. The primer pairs for the
unmethylated detecting were in RUNX3 promoter region near exon
1: S (sense, 50-GTGGGTGGTTGTTGGGTTAGT-30) and AS (anti-
sense, 50-TCCTCAACCACCACTACCACA-30), which amplify a
138-base pair (bp) product, and those for the methylated detecting
were in the same region: S (sense, 50-CGTCGGGTTAGCGAGGTT
TC-30) and AS (antisense, 50-GCCGCTACCGCGAAAAACGA-30),
which amplify a 120-bp product. The PCR amplification consisted
of 35 cycles of 941C for 20 s, 601C for 20 s, and 721C for 15 s, after
the initial denaturation step (941C for 5 min). Each PCR product
was loaded directly onto 2% agarose gels, stained with ethidium
bromide, and visualised under UV illumination.

Sequence analysis

Genomic bisulphite-treated DNA of primary pancreatic cancer
tissues was sequenced. Polymerase chain reaction was performed
in methylated cases. The primer pairs for sequence were in RUNX3
promoter region near exon1: S (sense, 50-GTTTAGGTAGTAGG
GATAGTT-30) and AS (antisense, 50-CTATTCTCTCCCATCTTA
CC-30), which amplify a 388-bp product. The PCR amplification
consisted of 36 cycles of 941C for 30 s, 541C for 30 s, and 721C for

30 s, after the initial denaturation step (941C for 5 min).
Polymerase chain reaction products were purified directly using
the QIA quick Gel Extraction Kit (QIAGEN, Hilden, Germany).
Purified DNA fragments were subcloned into TA cloning vector
(Invitrogent, Carlsbad, CA, USA). Six cloning samples were
picked out from one methylated tumour tissue. Each cloning DNA
was mixed with 3 ml of specific primer (M13), 4 ml of Cycle
Sequence Mix (ABI PRISM Terminator v1.1 Cycle Sequencing Kit;
Applied Biosystems, Foster City, CA, USA). Samples were
subjected to the following cycling conditions: 951C for 30 s; 25
cycles of 951C for 15 s, 501C for 15 s, and 601C for 4 min followed
by purification by ethanol precipitation. Sequence analysis was
carried out using an Applied Biosystems ABI310, and sequence
electropherograms were generated by ABI Sequence Analysis 3.0.

RT-PCR-SSCP

Polymerase chain reaction amplification using random-primed
cDNA of 32 primary pancreatic cancer tissues was performed
using oligonucleotide primers in the presence of [a32P]dCTP,
followed by electrophoretic separation on 6% nondenaturing
polyacrylamide gels both in the presence of 5% glycerol at room
temperature and in its absence at 41C. RUNX3 ORF (1248-bp) is
divided into four overlapped fragments and each fragment was
amplified. The primer pairs used for RUNX3 mutation were S1
(sense, 50-GCCGCTGTTATGCGTATTCC-30) and AS1 (antisense,
50-CTCAGCGGAGTAGTTCTCGT-30), amplifying a 370-bp frag-
ment; S2 (sense, 50-GTGACTGTGATGGCAGGCAA-30) and AS2
(antisense, 50-GTTCCGAGGTGCCTTGGATT-30), amplifying a
398-bp fragment; S3 (sense, 50-ACAAGCCACTTCAGCAGCCA-30)
and AS3 (antisense, 5-GAGAACTGGTAGGAGCCAGA-30), ampli-
fying a 368-bp fragment; S4 (sense, 50-CTACCACCTCTACTACGG
GA-30) and AS4 (antisense, 50-CCCATCACTGGTCTTGAAGG-30),
amplifying a 326-bp fragment. The PCR amplification consisted of
35 cycles of 941C for 30 s, 581C for 30 s, and 721C for 30 s, after the
initial denaturation step (941C for 5 min) in F1– R1 and in the
presence of 10% dimethylsulphoxide (F2–R2, F3–R3, F4–R4).

Statistical analysis

The correlation between the methylation status of RUNX3 mRNA
and clinicopathological data was analysed by Fisher’s exact test or
w2 test for independence. Overall survival rates were calculated
using the Kaplan– Meier method, and difference in survival curves
was analysed using the log-rank test. Independent prognostic
factors were identified by multivariate analysis using the Cox
proportional hazards regression model. Data are expressed as
mean±s.d. Statistical significance was considered as Po0.05.

RESULTS

Microsatellite analysis of RUNX3

We first examined DNA samples obtained by microdissection from
the 32 primary pancreatic cancer tissues and corresponding
noncancerous tissues for LOH using two microsatellite markers,
D1S234 and D1S247, which are close to the RUNX3 locus. D1S234
is telomeric and D1S247 is centromeric to the locus. Allelic
imbalance in one or two markers was observed in 11 (34.3%) of the
32 cases (Figure 1). We judged the 11 cases as having an LOH at
the locus. The results are summarised in Table 1. No cases
evidenced microsatellite instability in this study. Two cases proved
noninformative from using the two markers.

Hypermethylation of RUNX3 promoter region in
pancreatic cancer

To investigate whether the gene silencing was due to hypermethy-
lation of RUNX3, MSP was performed in the 32 primary pancreatic
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cancer tissues and corresponding noncancerous tissues. Promoter
hypermethylation was detected in 20 (62.5%) of the 32 primary
pancreatic cancer tissues and in only two of the corresponding
noncancerous tissues (Figure 1). To confirm the methylation of the
RUNX3 promoter region, genomic bisulphite-treated DNA of
primary pancreatic cancer tissues, which showed methylation by
MSP, were sequenced. Every case showed at least one methylated
CpG island of the sequenced fragments. A representative case is
shown in Figure 2.

Mutational analysis of RUNX3 in pancreatic cancer tissues

To investigate the mutation status of this gene, RT-PCR-SSCP
analysis was performed. We could not see any aberrant bands

(Figure 3). No mutations or polymorphisms were detected in the
32 pancreatic cancer tissues. As we used the bulk frozen samples,
normal cells such as fibrosis cells were contaminated in the tumour
tissues, making it difficult to identify aberrant bands.

Statistical analysis of clinicopathological data and our
findings

Subsequently, we analysed the correlation between the clinico-
pathological data and results of our findings. Table 2 shows the
correlation between the clinicopathological data and methylation
status. Interestingly, RUNX3 hypermethylation was significantly
correlated with a worse prognosis (P¼ 0.0143) (Figure 4). No other
correlation with any clinicopathological parameter was found.

To evaluate the value of RUNX3 methylation as an independent
prognostic determinant, multivariate analysis was performed
with prognostic factors that had been found to be significant by
univariate analyses. The analysis identified lymph node metastasis,
invasion of retroperitoneal tissue, and hypermethylation of RUNX3
gene as the variables for independently predicting overall survival
(Table 3).

DISCUSSION

Transforming growth factor-b plays a key role in regulating the
growth and differentiation of many cell types. In TGF-b1-null

MSP

LOH

DIS234

DIS247

N T

NI

Case 10 Case 21 Case 2Case 12

N T N T N T

UM M UM M UM M UM M UM M UM M UM M UM M

N T

N T T TN N

Figure 1 Representative results of LOH and MSP in cases 10, 12, 21,
and 2. In the analysis of LOH at RUNX3 locus, cases 10, 12, and 21 showed
allelic imbalance at D1S234 as well as at D1S247 (arrowheads). Case 2
showed allelic imbalance at D1S234 (arrowhead), but the D1S247 was not
informative (NI). Promoter hypermethylation was observed in the DNA
extracted from tumour tissue (T). In noncancerous samples (N), a
methylation band was not seen in any lane. All four cases showed both
LOH and promoter hypermethylation. These results indicated that biallelic
inactivation (LOH at 1p36þ methylation) caused the inactivation of
RUNX3 in pancreatic cancer. LOH, loss of heterozygosity; MSP¼methyla-
tion-specific PCR; RUNX3¼ human runt-related transcription factor 3
gene.

–135–153

GT CGGGCGT CGT T TT TT GTGT

GGTTT CGTAGT GGGTGGGT T T
–187 –169

–202

Case 10

–82

Figure 2 Sequence analysis of bisulphite-treated DNA from tumour sample of case 10 in RUNX3 promoter region. Methylation status of the 19 CpG
islands between �82 and �202 from the transcription-initiation site of RUNX3 exon 1 is shown. The fragment was PCR amplified and subcloned into TA
cloning vector. Closed circle indicates methylated CpG island, open circle indicates unmethylated CpG island. Each group of six clones showed a different
methylation status. Arrows below the sequence indicate CpG islands. The Cs indicate methylated CpG islands. The Ts were converted from C by bisulphite
treatment, indicating unmethylated CpG islands. RUNX3¼ human runt-related transcription factor 3 gene.

10 11 12 13 14 15 16 17 18 19

Figure 3 RT-PCR-SSCP analysis of RUNX3 in pancreatic cancer tissues.
Representative results (cases 10–19) of RT-PCR-SSCP analysis using
F2–R2 primer set. There were no aberrant bands in all cases. RT-PCR-
SSCP¼RT-PCR single-strand conformation polymorphism; RUNX3¼
human runt-related transcription factor 3 gene.
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animals, proliferation of the gastric epithelium is stimulated and
hyperplasia occurs (Crawford et al, 1998). TGF-b is known to be a
potent inhibitor of pancreatic acinar and duct cell proliferation
in vitro (Bisgaard and Thorgeirsson, 1991; Logsdon et al, 1992).

RUNX3 is a runt domain transcription factor involved in this
signalling pathway. RUNX3 protein binds with the Smad2 and
Smad3 proteins. Recently, it has been reported that RUNX3 was
one of the tumour suppressor genes in gastric cancer and testicular
yolk sac tumour. Runx3-null mice reportedly develop hyperplasia
of the gastric mucosa through activation of cellular proliferation
and suppression of apoptosis in epithelial cells (Li et al, 2002).
Interestingly, 1p36, where RUNX3 exists, is a region commonly
deleted in a wide variety of human carcinomas, including
pancreatic cancer. To date, there are many reports regarding the
TGF-b signalling pathway in pancreatic cancer (e.g. TGF-b
receptor II, Smad2 and Smad4), but only a few deal with this
gene’s alterations in pancreatic cancer (Li et al, 2004; Wada et al,
2004). Moreover, there are no reports regarding primary
pancreatic cancer. Our study further supports a role for RUNX3
in pancreatic cancer.

The 1p36 region is believed to harbour tumour suppressor
genes, because previous studies identified frequent allelic imbal-
ance at 1p36 in various types of human cancers (Schwab et al,
1996). RIZ1 and p73 genes are located on 1p36, and LOH was
detected at each gene locus in pancreatic cancer (Sakurada et al,
2001; Sphyris et al, 2004). It is thought that these are one of the
tumour suppressor genes in pancreatic cancer, and we think that
RUNX3 may also be a candidate.

Previously, Wada et al (2004) reported that nine of 12 pancreatic
cancer cell lines exhibited no expression of RUNX3 by both

Table 1 Clinicopathological features and results of RUNX3 alterations in pancreatic cancer tissues

Hypermethylation LOHa

Case Gender Location Stageb Pathology N T D1S234 D1S247

1 M Ph III Tub. poor — — K K
2 F Ph IVa Tub. mod — — J NI
3 M Ph IVb Tub. mod — M K K
4 F Ph III Tub. mod — — K NI
5 F Phb III Anap. duc — — NI K
6 F Ph IVa Tub. well M M K K
7 M Ph III Tub — M NI K
8 F Ph IVb Tub — M K K
9 M Ph IVb Tub. mod — M J K

10 F Ph IVa Tub. mod — M J J
11 M Ph IVb Tub. mod M M J NI
12 M Pb III Tub. poor — M J O
13 F Ph IVa Tub. mod — — K K
14 M Ph IVa Tub. mod — M NI K
15 M Ph IVb Tub. mod — — NI K
16 M Ph IVb Tub. poor — M K K
17 M Ph IVb Tub. mod — — K J
18 M Ph IVb Tub. mod — M J NI
19 M Ph IVb Undifferentiated — M K J
20 F Ph IVb Tub. mod — — K K
21 F Phbt IVb Tub. mod — M K J
22 M Ph III Acinar cell ca. — M J J
23 F Ph IVb Tub — — K K
24 F Phb IVa Tub. mod — — NI NI
25 F Ph IVa Tub. poor — M NI K
26 M Pb IVa Tub. well — M NI NI
27 F Ph III Tub. mod — M K NI
28 M Ph IVa Tub. mod — M K NI
29 M Ph III Tub. mod — — K NI
30 M Ph IVa Tub. well — — K NI
31 M Pb IVa Tub. poor — M NI K
32 F Ph IVa Tub. mod — M J J

2/32 (6.3%) 20/32 (62.5%) 8/32 (25%) 7/32 (21.9%)
LOH*: 11/32 (34.3%)

aAnap. duc¼ anaplastic ductal adenocarcinoma; F¼ female; LOH¼ loss of heterozygosity; M¼male; M¼methylated; mod¼moderately differentiated adenocarcinoma;
N¼ normal tissue; NI¼ not informative; Pb¼ pancreatic body; Pt¼ pancreatic tail; poor¼ poorly differentiated adenocarcinoma; Ph¼ pancreatic head; T¼ tumour tissue;
tub¼ tubular adenocarcinoma; well¼well-differentiated adenocarcinoma; ; —, unmethylated; open circle¼ LOH detected; closed circle¼ retention of heterozygosity;
LOH*¼ cases in which LOH was detected in at least one locus. bThe stage classification was performed according to the Pancreatic Cancer Study Group of Japan.
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Days
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1

P =0.0143

Methylation (–)

Methylation (+)

Figure 4 Survival stratified by methylation status in primary pancreatic
cancer. RUNX3 hypermethylation was significantly correlated with a worse
prognosis (P¼ 0.0143). RUNX3¼ human runt-related transcription factor
3 gene.
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northern blot analysis and RT-PCR. All of the nine cell lines
showed methylation of the promoter CpG island of the gene.
Moreover, hemizygous deletion of RUNX3, as detected by
fluorescence in situ hybridisation, was found in most of the cell
lines that lacked RUNX3 expression. Our results using primary
pancreatic cancer tissue were compatible with their findings.

Li et al (2004) reported that RUNX3 expression was low-to-
absent in normal pancreatic tissues, but increased in a third of
cancer tissues by RT-PCR and immunohistochemistry. RUNX3
expression was present only in islets of the normal pancreas. They

Table 2 Clinicopathological features and results of RUNX3 hypermethylation in pancreatic cancer tissues

Hypermethylation

Variable No. of cases + � Pa

Age
o60 10 5 5 0.325
X60 22 15 7

Gender
M 18 13 5 0.198
F 14 7 7

Tumour size
TS1 5 2 3 40.9999
XTS2 27 18 9

S
� 18 11 7 0.854
+ 14 9 5

RP
� 10 6 4 0.844
+ 22 14 8

CH
� 13 9 4 0.515
+ 19 11 8

DU
� 21 13 8 0.923
+ 11 7 4

PV
� 12 8 4 0.706
+ 20 12 8

A
� 27 16 11 0.379
+ 5 4 1

PL
� 27 16 11 0.379
+ 5 4 1

DPM
� 26 15 11 0.242
+ 6 5 1

N
0 14 8 6 0.581
1 18 12 6

Differentiation
Mod 21 12 9 0.241
Poor 6 5 1

aAnalysed by Fisher’s exact test or w2 test for independence. bTumour size according to the Classification of Pancreatic Carcinoma; A¼ arterial invasion; CH¼ choledocal
invasion; DPM¼ dissected peripancreatic tissue margin; DU¼ duodenal invasion; F¼ female; PL¼ peripancreatic nerve plexus invasion; M¼male; mod¼moderately
differentiated adenocarcinoma; N¼ lymph node metastasis; poor¼ poorly differentiated adenocarcinoma; pTNM¼ pathological TNM; PV¼ portal vein invasion;
RP¼ retroperitoneal invasion; S¼ serosal invasion. cClassified according to the classification of The General Rules for the Clinical and Pathological Study of Primary Pancreatic
Cancer. April 2002, Pancreatic Cancer Study Group of Japan.

Table 3 Multivariate analysis of patients with pancreatic cancer

Variable Odds ratio 95% CI P

Tumour size (X2.0 cm) 1.995 0.639–6.226 0.2342
Lymph node metastasis 2.388 1.026–5.561 0.0435*
Invasion of retroperitoneal tissue (d.p.m.) 5.486 1.409–21.358 0.0141*
Invasion of plexus nerve (Pl) 1.759 0.591–5.239 0.3103
Hypermethylation 3.157 1.226–8.130 0.0172*

*Statistical significance. CI¼ confidence interval.
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also found that all metastases of pancreatic cancer tissues were
devoid of or displayed only very faint RUNX3 expression by
immunostaining.

Some groups have advocated islet cells as the cells of origin of
pancreatic ductal adenocarcinoma (Pour et al, 2003). This would
mean that the islet cells in pancreatic tissue are the tissue-specific
stem cells in which cancer cells begin from the alteration in the
oncogenes or tumour suppressor genes. RUNX3 is expressed in the
tissue-specific stem cells, and only in islet cells in normal tissue.
When cancer tissue has grown from the tissue-specific stem cells,
the cancer cells express the RUNX3 protein. Some cancer tissues
do not express RUNX3. In those cancer cells, RUNX3 gene is
methylated. In cases with metastatic lesions, more aggressive
tumour cells from the original lesion exist, such as RUNX3-
methylated cells. Hence, the metastatic pancreatic cancer cells do
not express RUNX3 gene.

Thus, it may be hypothesised that there is indeed loss of RUNX3
expression by promoter hypermethylation or LOH in some

primary tumours compared with normal islets, and almost a
complete loss in metastatic tumours. Our finding that the survival
in methylated cases in RUNX3 gene was significantly worse than
that in unmethylated patients is compatible with this hypothesis,
although pointing to a tumour suppressor role for RUNX3 in
pancreatic cancer.

Nine of 11 LOH detected cases had hypermethylation of the
RUNX3 promoter region. These findings imply that silencing of
RUNX3 occurred biallelically. Complete silencing of this gene leads
to the progression of cancer, and then relates to the worse
prognosis.

In conclusion, we have clearly demonstrated for the first time
that RUNX3 is frequently methylated in primary pancreatic cancer
tissues, frequent hemizygous deletion occurs at its locus in 1p36,
and RUNX3-inactivated cases showed worse survival. We propose
that inactivation of RUNX3 plays an important role in alteration of
the TGF-b signalling pathway and in the tumorigenesis of
pancreatic cancer.
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