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Background: Neuroblastoma (NB), the most common solid tumor in children, exhibits
vastly different genomic abnormalities and clinical behaviors. While significant progress has
been made on the research of relations between clinical manifestations and genetic
abnormalities, it remains a major challenge to predict the prognosis of patients to facilitate
personalized treatments.

Materials and Methods: Six data sets of gene expression and related clinical data were
downloaded from the Gene Expression Omnibus (GEO) database, ArrayExpress database,
and Therapeutically Applicable Research to Generate Effective Treatments (TARGET)
database. According to the presence or absence of MYCN amplification, patients were
divided into two groups. Differentially expressed genes (DEGs) were identified between the
two groups. Enrichment analyses of these DEGs were performed to dig further into the
molecular mechanism of NB. Stepwise Cox regression analyses were used to establish a
five-gene prognostic signature whose predictive performance was further evaluated by
external validation. Multivariate Cox regression analyses were used to explore independent
prognostic factors for NB. The relevance of immunity was evaluated by using algorithms,
and a nomogram was constructed.

Results: A five-gene signature comprising CPLX3, GDPD5, SPAG6, NXPH1, and AHI1
was established. The five-gene signature had good performance in predicting survival and
was demonstrated to be superior to International Neuroblastoma Staging System (INSS)
staging and the MYCN amplification status. Finally, a nomogram based on the five-gene
signature was established, and its clinical efficacy was demonstrated.

Conclusion: Collectively, our study developed a novel five-gene signature and
successfully built a prognostic nomogram that accurately predicted survival in NB. The
findings presented here could help to stratify patients into subgroups and determine the
optimal individualized therapy.
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INTRODUCTION

Neuroblastoma (NB) is the most common extracranial solid
tumor in children, with the highest incidence and mortality in
infancy, accounting for approximately 8–10% of pediatric
malignancies (Li et al., 2008; Marshall et al., 2014). It is a
highly heterogeneous disease characterized by diverse clinical
manifestations ranging from spontaneous regression to
progression with therapy resistance. Based on clinical and
molecular patterns, NB patients can be classified into low-
risk, intermediate-risk, and high-risk groups (Cohn et al.,
2009). Although the prognosis of NB has significantly
improved over the past decade with the development of
multiple treatment methods and the application of
immunotherapy targeting NB-specific antigens, such as GD2
(Casey and Cheung, 2020), less than 40% of high-risk NB
patients achieve long-term survival (Pinto et al., 2015). Given
the significantly divergent outcomes among these patients, an
effective prediction model is needed so that effective
management and therapy can be tailored to diverse
subgroups of NB patients.

There is increasing evidence that several genomic alterations,
such as gain of chromosome 17q, hemizygous deletions of 1p
and 11q, and MYCN gene amplification, are powerful
prognostic markers that are strongly associated with clinical
outcomes (Janoueix-Lerosey et al., 2009; Maris, 2010;
Schleiermacher et al., 2012). Among these factors,
MYCN amplification is one of the earliest biomarkers
discovered in NB and is still considered one of the most
reliable predictors of aggressive clinical behavior (Park et al.,
2013; Campbell et al., 2017). Augmented MYCN is detected in
20–30% of all NB cases, and the overall survival rate for this
group remains less than 50% (Huang and Weiss, 2013).
Although MYCN plays a pivotal role in NB development, its
application as a therapeutic target remains challenging.
Although much research has been done on targeting MYCN-
related factors, new target genes are still needed to effectively
treat this aggressive and heterogeneous disease (Puissant et al.,
2013; Gustafson et al., 2014; Huang et al., 2019). Due to the rapid
development of high-throughput sequencing, multigene
signatures have been shown in many studies to be more
effective at predicting prognosis than conventional
biomarkers. The genes discovered by bioinformatic
approaches can also provide insights into cancer progression
and identify pathway profiles involved in tumorigenesis.
Several NB prognostic models have been made based on
sequencing data (Vermeulen et al., 2009; De Preter et al.,
2010; He et al., 2020; Wang et al., 2020). A deeper dive into
public data sets may reveal other genes associated with
prognosis and new potential therapeutic targets.

Herein, we aimed to build a prognostic signature that could
predict the prognosis of NB patients more accurately than
traditional clinical factors. We systematically analyzed
multiple public NB data sets to identify differentially
expressed genes (DEGs) based on MYCN amplification.
Then, we successfully established a prognostic five-gene risk
prediction model that can accurately predict the outcome of NB.

Simultaneously, we performed preliminary validation of the
pivotal DEGs using clinical samples. A prognostic nomogram
was finally designed based on the gene signature and clinical
factors, and this nomogram will help physicians develop more
customized treatment plans for different subgroups of NB
patients.

MATERIALS AND METHODS

Data Set
NB gene expression data sets and related clinical information
were downloaded from the Gene Expression Omnibus (GEO)
under accession numbers GSE45547 (Kocak et al., n � 649),
GSE49710 (Zhang et al., n � 498), GSE73517 (Henrich et al., n �
105), and GSE120559 (Fischer et al., n � 208) and ArrayExpress
under accession number E-MTAB-8248(Christoph et al., n �
223). The four GEO data sets were used for DEG analysis. The
Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) NB gene expression data sets and
related clinical information were downloaded using
cBioPortalData in the R client. The TARGET data sets were
used for prognostic gene signature prediction. E-MTAB-8248
and GSE49710 with complete follow-up information were used
for prognostic signature validation.

Differentially Expressed Gene Analysis
Patients were stratified into MYCN amplification and MYCN
nonamplification groups according to the clinical information
provided in the data sets. In the case of a gene with multiple
probes matching it, its expression level was calculated by
taking the highest expression value. DEGs were explored
between two groups using the “limma” R package (Ritchie
et al., 2015). The DEG cutoff was set as |log2 (fold-change) | > 1
and adjusted p-value < 0.05. The volcano plots were
created using the R package Enhanced Volcano. The
DEGs identified from the four data sets from GEO were
further analyzed using the robust rank aggregation (RRA)
method-based R package “RobustRankAggreg” (Kolde et al.,
2012). p < 0.05 was considered statistically significant in
this study.

Enrichment of Differentially Expressed
Genes
DEG functional enrichment analysis, including Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis, was carried out using the “clusterProfiler” R package (Yu
et al., 2012).

Protein–Protein Interaction Network of the
Differentially Expressed Genes
To investigate the potential hub genes among the DEGs, we
constructed a protein–protein interaction (PPI) network of DEGs
using the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) online database (https://string-db.org,
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Version: 11.0) with an interaction score of 0.90 and Cytoscape
software (https://cytoscape.org, Version: 3.8.2) (Smoot et al.,
2011; Szklarczyk et al., 2019). The hub nodes were identified
by the maximal clique centrality (MCC) method in the
CytoHubba plugin. Densely connected clusters were identified
in the MCODE plugin.

Establishment of the Prognostic Gene
Signature
The TARGET-NBL mRNA expression data were used for
prognostic gene signature establishment. The DEGs identified
from the GEO data sets were used for least absolute shrinkage and
selection operator (LASSO)-penalized Cox regression analysis in
the “glmnet” package in R. Subsequently, multivariate Cox
regression analysis was used to further reduce the number of
DEGs for model construction. Finally, a prognostic signature of
NB was constructed. The risk score was calculated by multiplying
the mRNA expression level by the regression coefficient for each
gene. According to the median risk score, patients were divided
into low-risk and high-risk groups. The predictive performance of
the signature was evaluated according to Kaplan–Meier (KM)
analysis, the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve and Harrell’s concordance index
(C-index). The GSE49710 and E-MTAB-8248 data sets were
used for external data set validation.

Assessment of Tumor Immunity
The tumor microenvironment of each NB sample was evaluated
via the Estimation of STromal and Immune cells in MAlignant
Tumor tissues using the Expression data (ESTIMATE) algorithm.
ESTIMATE is a sophisticated algorithm that estimates the degree
of infiltration of tumor cells and determines the stromal score,
immune score, and estimate score (Yoshihara et al., 2013). The
degree of immune cell infiltration was estimated via Cell Type
Identification by Estimating Relative Subsets of RNA Transcripts
(CIBERSORT), which is a deconvolution algorithm for analyzing
the expression matrix of immune cell subtypes (Newman et al.,
2015).

Preparation of Tissue Samples
The study was permitted by the Ethics Committee of the Tianjin
Medical University Cancer Institute and Hospital (Approval No.
E20210027). Five MYCN-amplified NB samples and five MYCN-
nonamplified NB samples were harvested from NB patients at
Tianjin Medical University Cancer Institute and Hospital. All
patients were in International Neuroblastoma Staging System
(INSS) stage 3 and stage 4. The tissue samples were stored at
−80°C until use. All patients provided written informed consent.

Quantitative Real-Time PCR
Total RNA was extracted from NB tissues using the TRIzol
reagent (Ambion, United States). Complementary DNA
(cDNA) was synthesized using a quantitative real-time
polymerase chain reaction (RT-PCR) kit (Takara, Japan).
Quantitative RT-PCR was performed using an miScript PCR
system (QIAGEN) according to the manufacturer’s instructions.

The qRT-PCR data were assessed via the 2-ΔΔCt method with
β-actin as the control. The primer sequences are summarized in
Supplementary Table S1.

Independent Prognostic Parameters of
Neuroblastoma Identification
To identify independent prognostic factors in the TARGET data
set, univariate analyses were performed on the five-gene signature
as well as clinical and pathological parameters, including sex, age,
MYCN status, tumor histology, race, and tumor stage.
Statistically significant parameters were further included in
multivariate Cox regression analyses and nomogram
construction.

Nomogram Construction
A prognostic nomogram including all independent prognostic
factors was constructed to predict the overall survival of NB
patients in the TARGET cohort. The predictive performance of
the nomogram was evaluated according to KM analysis, the AUC
of the ROC curve, and the C-index.

Statistical Analysis
We performed all the statistical analyses with RStudio (1.1.463).
Mann–Whitney U-tests and Kruskal–Wallis tests were used to
compare two groups. Survival curves were plotted and compared

FIGURE 1 | Flowchart illustrating the research design.
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using the KM method and log-rank analysis. Survival data were
analyzed via univariate and multivariate Cox regression analysis.
A p value <0.05 was considered to indicate statistical significance.

RESULTS

Identification of Differentially Expressed
Genes
Our study was performed based on the flow chart illustrated in
Figure 1. Detailed information on the GEO, TARGET, and
ArrayExpress data sets in this project is shown in Supplementary
Table S2. The DEG criteria were set as |logFC|>1 and adj. p < 0.05 in
all data sets. Four sets of DEGs (GSE45547, GSE49710, GSE73517,
and GSE120559) comprising 765 (225 up/315 down), 3538 (284 up/
3254 down), 1100 (117 up/983 down), and 494 (184 up/310 down)
DEGs each were identified between the MYCN amplification and

nonamplification groups (Figure 2A and Supplementary Figure
S1A–D). Through the robust rank aggregation (RRA) method,
DEGs derived from four data sets were integrated and analyzed.
A total of 319 DEGs, including 51 upregulated and 268
downregulated genes, were identified (Supplementary Table S3).
Figure 2B depicts the top 20 genes that were identified as
upregulated and downregulated by using the RRA method. In
clustering analyses, a marked difference in DEG expression
appeared between the MYCN amplification and nonamplification
groups (Figure 2C and Supplementary Figure S2A–C).

Enrichment Analysis of Differentially
Expressed Genes
GO and KEGG analyses were performed to determine the potential
functions of DEGs with the clusterProfiler R package
(Supplementary Tables S4, S5). The DEGs were significantly

FIGURE 2 |DEGs between theMYCN amplification and nonamplification groups. (A) Venn diagram of the DEGs obtained from four GEO data sets. (B)Heatmap of
the top 20 upregulated and downregulated DEGs derived from the GEO data sets. Red represents upregulated DEGs, and blue represents downregulated DEGs. (C)
Heatmap of the 319 DEGs after integrated analysis in the GSE49710 data set.
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enriched in biological processes, such as glial cell differentiation, the
receptor recycling process, the catecholamine biosynthetic process,
sympathetic nervous system development, and central nervous
system neuron differentiation; cellular components, such as
neuronal cell bodies and dendrites; and molecular functions, such
as carbohydrate binding (Figure 3A). In the KEGG pathway
analysis, DEGs were shown to be involved in the amino acid
metabolism and cell adhesion (Figure 3B). To identify gene
interactions, a PPI network containing 168 nodes and 312
interactions was constructed. Figure 3C shows the top 10
candidate hub genes identified in this network. Module analysis
identified the top two highest-scoring clustering modules identified
by using module analysis (Supplementary Figures S3A, C).
According to functional enrichment analysis, module 1 had a
strong association with synapse formation and the differentiation
of glia (Supplementary Figure S3B). Module 2 showed a significant
correlation with the amino acid metabolism process and DNA
replication, indicating its involvement in the tumor-related
metabolism and DNA replication (Supplementary Figure S3D).
The above results of the PPI network indicated that the DEGs were
involved in the NB cell differentiation and metabolism.

Construction of a Five-Gene Prognostic
Signature
A total of 247 patients from the TARGET-NBL gene expression
data sets were included for subsequent survival analyses. The
detailed characteristics of the 247 patients are shown in
Supplementary Table S6. LASSO-penalized Cox regression
analysis identified 35 DEGs significantly correlated with
survival (lambda � 0.05, Supplementary Figure S4). After
optimization of 35 DEGs by the multivariate Cox regression
method, a prognostic signature consisting of five genes,
including CPLX3, GDPD5, SPAG6, NXPH1, and AHI1, was
constructed. The downregulated genes GDPD5, NXPH1, and
AHI1 were identified as tumor suppressors, while the
upregulated genes CPLX3 and SPAG6 were regarded as
oncogenes (Figure 4A). The following equation was used for
risk score calculations:

Risk score � [(0.5292 × expression value of CPLX3) +
[(−1.0179) × expression value of GDPD5] + [(0.5403) ×
expression value of SPAG6] + [(−0.3607) × expression value
of NXPH1] + [(−0.3993) × expression value of AHI1].

FIGURE 3 | Functional enrichment analysis of the DEGs. (A)GO analysis of the DEGs. (B) KEGG pathway enrichment analysis of the DEGs. (C) Top 10 hub genes
found by the CytoHubba plugin in Cytoscape software through the MCC method.
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FIGURE 4 | Construction of the predictive five-gene signature. (A) Prognostic effect of the five-gene signature derived from stepwise Cox regression survival
analysis for overall survival in the TARGET data set. **p < 0.01, ***p < 0.001. (B)KM curves for overall survival of the two risk groups derived from the five-gene signature in
the TARGET data set. The p-value was calculated by the log-rank test. (C-E) Distribution of the risk score (C), the associated survival data (D), and the five-gene mRNA
expression (E) in the TARGET data set. (F) ROC curves for 1-year, 3-year, and 5-year overall survival predictions for the five-gene signature. (G) KM survival curves
of the five-gene signature in the MYCN nonamplification group.
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The median value of the risk score was set as the cutoff value.
Patients from the TARGET-NBL data set were categorized into two
groups. The KM survival curve revealed significantly favorable
outcomes in the low-risk-score group (log-rank p < 0.0001,
Figure 4B). The high-risk group had poor prognosis (Figures
4C–E). Evaluation of the five-gene prediction model was carried

out using time-dependent ROC curves and the C-index. The AUCs
for the 1-, 3-, and 5-year survival were 0.696, 0.784, and 0.744,
respectively (Figure 4F), and the C-index of the gene signature was
0.697 (95% CI: 0.656–0.738). Patients without MYCN
amplification were further stratified into two groups based on
the median risk score, and the KM survival curves showed a

FIGURE 5 | External validation of the five-gene signature. (A) KM curves for overall survival of the two risk groups derived from the five-gene signature in the
E-MTAB-8248 data set. The p-value was calculated by the log-rank test. (B-D) Distribution of the risk score (B), the associated survival data (C), and the five-gene
mRNA expression (D) in the E-MTAB-8248 data set. (E) ROC curves for 1-year, 3-year, and 5-year overall survival predictions for the five-gene signature in the E-MTAB-
8248 data set.
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significant difference in prognosis between the high- and low-risk
groups (log-rank p < 0.0001, Figure 4G). In general, the five-gene
signature was highly accurate for predicting prognosis.

Validation of the Gene Signature
The E-MTAB-8248 and GSE49710 data sets, which contain overall
survival data, were utilized to validate the performance of the
prognostic model (Figure 5; Supplementary Figure S5).
Calculations of the risk score were made using the same equation
for all patients. Based on the median risk score, the patients were
divided into low- and high-risk groups. The high-risk group had
markedly worse outcomes than the low-risk group in both validation

cohorts (Figures 5A–D and Supplementary Figures S5A–D).
Further evaluation of the predictive accuracy was conducted using
time-dependent ROC curve analysis and the C-index. The five-gene
signature performed well in both short-term and long-term survival
prediction (Figure 5E and Supplementary Figure S5E).

Prognostic Value Comparison Between the
Five-Gene Signature, INSS Staging, and
MYCN Amplification Status
INSS stage and MYCN status are both commonly used
clinicopathologic factors for predicting NB prognosis. We next

FIGURE 6 |Model comparison between the five-gene signature, the INSS stage, and theMYCN status. (A) AUC of the five-gene signature, the INSS stage, and the
MYCN status. (B-D) ROC curves of the five-gene signature of the INSS stage model and MYCN status for 1-year (B), 3-year (C), and 5-year (D) overall survival
predictions. (E-G) DCA curves depicting the standardized net benefit of the five-gene signature for INSS stage and MYCN status at 1 year (E), 3 years (F), and
5 years (G).
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compared the predictive ability between the five-gene signature
and INSS staging as well as MYCN amplification status. The
AUCs for 1-, 3-, and 5-year overall survival predictions for the

risk scores were 0.696, 0.784, and 0.744, respectively. The AUCs
for 1-, 2-, and 3-year overall survival predictions for INSS staging
and MYCN status were 0.573, 0.609, and 0.630 and 0.608, 0.588,

FIGURE 7 | Association of the five-gene signature with clinicopathological parameters and tumor immune components. (A-F) Box plots of the distribution of the
five-gene risk score between different INSS stage groups (A), between the age ≥18 months and age <18 months groups (B), between the favorable and unfavorable
histology groups (C), between the MYCN-amplified and MYCN-nonamplified groups (D), between the hyperdiploid and diploid groups (E), and between different race
groups (F) in the TARGET data set. ***p < 0.001, ****p < 0.0001, n. s. not significant, two-sided unpaired Wilcoxon test. (G-I) Box plots of the distribution of the
stromal score (G), immune score (H), and estimate score (I) calculated by the ESTIMATE algorithm between the high-risk and low-risk groups. *p < 0.05, ***p < 0.001, n.
s. not significant, two-sided unpaired Wilcoxon test. (J) Box plots of the distribution of the cell proportions calculated by the CIBERSORT algorithm of immune cells
between the high-risk and low-risk groups. *p < 0.05, ***p < 0.001, n. s. not significant, two-sided unpaired Wilcoxon test.
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and 0.560, respectively (Figures 6A–D). Decision curve analyses
(DCAs) for 1-, 3-, and 5-year overall survival predictions showed
better efficiency for the five-gene signature than the INSS staging
and MYCN status. The areas under the decision curve of the five-
gene signature were 0.00975, 0.13147, and 0.17676 for 1-, 3-, and
5-year survival, respectively, while those of INSS staging and
MYCN status were 0.00880, 0.09328, and 0.15217 and 0.00086,
0.00595, and 0.00478, respectively (Figures 6E–G). Overall, the
five-gene signature was more effective in predicting the survival
of NB.

Correlations of Clinical Pathology and
Tumor Immune Cell Infiltration With the
Five-Gene Signature
Relationships between the five-gene signature risk score and the
clinical characteristics of NB patients, including INSS stage, age,
MYCN status, tumor histology, tumor ploidy, and race, were
analyzed in TARGET data sets. In terms of INSS stage, a higher
risk score was observed in patients in stage IV than in those in stage
I in the TARGET data set (Figure 7A). The five-gene risk score
increased from stage 1 to stage 4, except for stage 4S in GSE49710
and E-MTAB-8248 (Supplementary Figures S6A, D). Patients
aged ≥18 months or with unfavorable histology, MYCN
amplification, and diploid tumors had higher five-gene risk
scores (Figures 7B–E). The risk scores showed no difference
according to race (Figure 7F). Two extra data sets also validated
that theMYCN amplification group had higher five-gene risk scores
(Supplementary Figures S6B, S6E). Analysis of the GSE49710 data
set revealed that patients with higher five-gene risk scores tended to
experience disease progression (Supplementary Figure S6F).

The ESTIMATE algorithm was used to investigate the
correlation between the five-gene signature and immune cell
infiltration. The stromal score, immune score, and estimate
score were calculated for the TARGET data set. However, the
stromal score showed no difference between the high-risk and low-
risk groups. The immune score and estimate scores were
significantly higher in the low-risk group, indicating the
enrichment of infiltrating immune cells in the low-risk group
(p < 0.05; Figures 7G–I). Further analysis by the CIBERSORT
algorithm showed that the five-gene low-risk group had higher
levels of follicular helper T cell and activated NK cell infiltration
(Figure 7J). The E-MTAB-8248 and GSE49710 data sets also
validated the significant difference between the two groups in
immune score and estimate score (Supplementary Figures
S6F–J). However, the results of the CIBERSORT algorithm in
both validation sets were different from those of the training set,
where the levels of CD8+ T cells and M2-type macrophages were
found to be much higher in the low-risk group (Supplementary
Figure S7).

Validation of the Five Differentially
Expressed Genes Used for the Gene
Signature
The mRNA expression levels of the five pivotal genes were
measured in five MYCN-amplified NB tissues and five

MYCN-nonamplified tissues by qRT-PCR. This result was
consistent with the above DEG analysis between the MYCN
amplification and MYCN nonamplification groups in the four
data sets (Supplementary Table S3). As shown in
Supplementary Figure S8, compared with MYCN-
nonamplified tissues, the expression level of CPLX3 was
elevated in MYCN-amplified tissues. The other four genes
were found to be downregulated in the MYCN-amplified group.

Evaluation of Independent Prognostic
Factors in Neuroblastoma
A total of 220 patients from the TARGET data set with sufficient
clinical information were included in the analysis. Overall
survival-related independent prognostic factors were identified
through stepwise Cox regression analysis. The univariate analysis
showed that the five-gene risk score (p < 0.0001), tumor histology
(p < 0.0001), age (p � 0.00065), and MYCN status (p � 0.024)
were associated with the prognosis of NB (Supplementary Table
S7). The five-gene risk score and age were independently
associated with overall survival according to multivariate Cox
regression analysis (Supplementary Table S8).

Establishment and Validation of a
Nomogram
A prognostic nomogram was built for predicting overall survival
based on the stepwise Cox regression analysis results. Risk score,
age, tumor histology, and MYCN status were parameters
included in the nomogram (Figure 8A). The AUCs of the 1-,
3-, and 5-year overall survival predictions for the nomogram
model were 0.754, 0.815, and 0.795, respectively (Figures 8B–D).
The C-index of the risk score was 0.717 (95% CI: 0.674–0.760).
According to the scores of the nomogram model, the patients
were divided into three equal groups. There was good
discrimination between these groups in the KM plots (p <
0.0001) (Figure 8E). Calibration plots at 1, 3, and 5 years
showed that the nomogram correctly predicted the NB
patient’s overall survival (Figures 8F–H).

DISCUSSION

In the current study, we developed a novel multigene signature
that showed better predictive power than conventional
biomarkers. At present, there is still an urgent need for new
effective stratification systems and treatment targets for NB.
Although it has been well established that MYCN
amplification affects the prognosis of NB (Brodeur et al., 1984;
Seeger et al., 1985), it remains challenging to target this oncogene
in clinical treatment. The development of the sequencing
technology allows us to deeply explore the molecular
mechanism by which MYCN amplification affects prognosis at
the whole-genome level. Relevant NB data were obtained from
multiple data sets, and patients were grouped based on MYCN
status.We identified 319 DEGs, including 51 upregulated and 268
downregulated genes. GO and KEGG enrichment analyses of
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these DEGs were performed to further investigate the molecular
mechanism of NB. The DEGs were shown to be significantly
enriched in biological processes linked to the occurrence and
development of NB, such as glial cell differentiation, the
catecholamine biosynthetic process, and sympathetic nervous
system development. The disialoganglioside GD2, a unique
carbohydrate antigen, is one of the most attractive immune
surface targets for NB. GD2 is uniformly expressed by
NB cells, which makes GD2 an ideal therapeutic target for NB
(Suzuki and Cheung, 2015; Sait and Modak, 2017). According to
GO analysis, the DEGs in our study were significantly enriched in
molecular functions involved in carbohydrate binding. Among
these DEGs, there may be potential regulatory genes associated
with GD2 immunotherapy. KEGG pathway analysis showed that
the DEGs were mainly enriched in cancer-related pathways, such

as the amino acid metabolism and cell adhesion processes. Cancer
cells require an abundant supply of amino acids to sustain their
growth (Vettore et al., 2020), and an increased amino acid
metabolism has been observed in chemoresistant NB cell lines
(Gunda et al., 2020). The cancer metastatic cascade is dependent
on the loss of adhesion between cells, resulting in the dissociation
of the cell from the primary tumor (Martin and Jiang, 2009). The
subsequent PPI network results further confirmed that these
DEGs participated in the NB cell differentiation and metabolism.

We further screened 35 DEGs that significantly affected
survival. Afterward, a risk prediction model consisting of five
genes (GDPD5, NXPH1, AHI1, CPLX3, and SPAG6) was
established. The upregulated genes CPLX3 and SPAG6
appeared to be associated with poor survival, whereas the
downregulated genes GDPD5, NXPH1, and AHI1 were

FIGURE 8 | Construction and validation of the nomogrammodel. (A) Nomogram model for 1-year, 3-year, and 5-year overall survival probability predictions in the
TARGET data set. (B-D) Time-dependent ROC curves for survival predictions for the nomogram. (E) KM survival curves of the nomogram. Patients from the TARGET
data set were classified into three groups based on the tertile point calculated by the nomogrammodel. (F-H)Calibration plot for internal validation of the nomogram. The
Y-axis represents the actual overall survival, while the X-axis represents the predicted overall survival.
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identified as tumor suppressors. The outcome was significantly
different between NB patients with high and low risk scores.
Additionally, the correlation between NB clinical features and the
five-gene signature was investigated. Many known risk factors for
NB that affect prognosis were shown to be related to a high risk
score. Furthermore, the risk score for patients in each INSS stage
increased from stage 1 to stage 4, except for stage 4S, which often
has a favorable outcome (Kawano et al., 2021). Collectively, these
findings suggest that patients with high risk scores exhibit more
aggressive features than those with low risk scores. Subsequent
external validation further confirmed that the five-gene signature
could accurately predict survival in NB patients. To assess its
clinical efficacy, we compared the gene signature with INSS
staging and MYCN status, which are commonly used in
predicting outcome in the clinic. The AUC and DCA curves
also confirmed that the five-gene signature had a better prognosis
prediction than the INSS stage and MYCN status, both in the
short term and in the long term. In the MYCN nonamplification
group, the gene model was still able to provide a good indication
of the prognosis, which may aid physicians in evaluating
prognosis and optimizing treatment options for this cohort of
patients.

Due to the complex biological and clinical characteristics of
NB, conventional staging systems may be difficult to utilize for
calculating tumor risk in an accurate manner. To determine the
treatment plan and predict the overall survival rate, doctors and
researchers need a comprehensive prognostic evaluation system.
Nomograms are being increasingly assessed in medical studies
and are often used in the prediction of prognosis (Balachandran
et al., 2015; Semenkovich et al., 2021). We integrated our five-
gene model and other well-known clinicopathological parameters
to create a nomogram. The prognosis for the children diagnosed
with NB before 18 months is generally better than those
diagnosed later (Vo et al., 2014). In the nomogram, age
remained a crucial factor and ranked second after the five-
gene model. Patients were divided into low-, medium-, and
high-risk groups based on their total nomogram scores. The
KM curves showed that the nomogram had excellent
discriminative ability. According to the calibration curves, the
predictions made by the nomogram were consistent with the
observed data. The nomogram offers a visualized scoring system
to facilitate medical decision making, which gives high-risk
patients a chance to obtain more accurate treatments. Using it,
physicians could predict the overall survival for each patient and
make an individualized treatment plan. Patients in the high-risk
group should be given special attention and more intensive
treatment, while excessive treatment could be avoided for
patients in the low–medium-risk groups.

Immunotherapy is currently a key hotspot in the field of
cancer research. However, due to the difference in
immunogenicity from adult tumors, targeted drugs, including
immune checkpoint inhibitors, have limited applications in
pediatric tumors (Wienke et al., 2021). In recent years,
although new targeted therapies such as anti-GD2 therapy
have exhibited great promise in treating NB, the limited
efficacy and considerable toxicity make it still urgent to
expand therapeutic targets and identify groups with potential

benefits for NB immunotherapy (Sait and Modak, 2017; Park and
Cheung, 2020). In our study, tumor immunological
characteristics were assessed by the ESTIMATE algorithm.
Higher immune scores and ESTIMATE scores were observed
in patients with low risk scores. In light of the difference in overall
survival between these two groups, more immune components in
the tumor microenvironment may contribute to the better
outcome of low-risk patients. In addition, the results
calculated by the CIBERSORT algorithm indicated a
significantly higher presence of T follicular helper cells (TFh)
and activated NK cells in low-risk patients, both of which have
been demonstrated to have protective roles in cancer. TFh plays
an important role in humoral immunity (Eivazi et al., 2016). A
previous study in NB showed that γδ TFh cells might facilitate the
maturation of B cells and the production of antibodies (Mou et al.,
2017). In studies of colorectal and breast cancer, infiltrating TFh
cells have also been found to be positively correlated with
prognosis (Bindea et al., 2013; Gu-Trantien et al., 2013).
Similarly, a reduced degree of NK cell infiltration in tumor
tissues has been found to be associated with a worse outcome
in some patient cohorts (Albertsson et al., 2003; Mandal et al.,
2016). NK cells play a central role in cancer immunotherapy
(Shimasaki et al., 2020). As mentioned above, the application of
anti-GD2 immunotherapy in recent years has significantly
improved the survival of high-risk NB patients. NK cell-
mediated antibody-dependent cellular cytotoxicity (ADCC) is
a potent mechanism of anti-GD2 immunotherapy for NB. Anti-
GD2 monoclonal antibodies coadministered with NK cell
infusion have achieved promising results in several clinical
trials. These studies demonstrated that NK cell infusion
enhances ADCC directed by the antibody (Federico et al.,
2017; Modak et al., 2018). Dinutuximab-mediated autologous
killing of NB cells could be enhanced by plasmacytoid dendritic
cell-induced NK cell activation (Belounis et al., 2020). Recent
findings have shown that exosomes derived from human NK cells
contain tumor suppressor miRNAs that are cytotoxic to NB cells
and inhibit tumor cell immune escape, suggesting that NK cell-
derived exosomes could be used as a complement to NK cell-
based immunotherapy (Neviani et al., 2019). Except for these two
types of cells, no differences were found between the two groups
for other important immune cells in the training set, such as
tumor-associated macrophages and CD8+ T cells. Interestingly,
we obtained different results in the other two validation sets,
suggesting that the different data sets selected might have been
confounding. Unlike adult cancers, most pediatric solid tumors
are considered immunologically cold, characterized by low tumor
mutation burden, limited T-cell infiltration, and a lack of
responsiveness to immune checkpoint inhibitors (Grobner
et al., 2018; Wienke et al., 2021). In light of these differences
between childhood tumors and adult tumors, a better
understanding of NB immunobiology is needed, which will
improve future immunotherapy in NB.

Among the five hub genes, AHI1, NXPH1, and CPLX3 have
not been reported in any previous studies on NB. The oncogenic
role of AHI1 has been identified in human leukemia and Sezary
syndrome (Ringrose et al., 2006; Chen et al., 2013). Mutations in
the AHI1 gene could lead to Joubert syndrome, which is a rare
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genetic disorder characterized by the underdevelopment of
cerebellar vermis (Alvarez Retuerto et al., 2008). Moreover, it
is also involved in autism (Alvarez Retuerto et al., 2008) and was
considered to be a susceptibility gene for schizophrenia (Torri
et al., 2010). It seems that AHI1, which has been associated with
these brain developmental disorders, has a crucial role in brain
growth during early life. As a specific neuronal cell surface
protein, NXPH1 is essential for trans-synaptic activation
(Missler et al., 2003). By using a genome-wide methylation
screen, Faryna et al. found that the methylation level of
NXPH1 in normal tissues was significantly higher than that in
breast cancer samples, indicating it as a potential useful
biomarker for tumor diagnosis (Faryna et al., 2012). In a study
of intraductal papillary mucinous neoplasms (IPMNs), NXPH1
was more likely to be methylated in low-grade dysplasia than in
high-grade dysplasia (Hong et al., 2012). NXPH1 was
incorporated in a 10-gene signature that predicted biochemical
recurrence for prostate cancer, and its expression level was
upregulated in patients with a Gleason score ≥7 (Wu et al.,
2020). In contrast, there was a negative correlation between
lymph node metastasis and NXPH1 in pancreatic cancer (Jin
and Tsai, 2016). GDPD5 is located on chromosome 11q13, and
the presence of an 11q deletion is usually associated with an
advanced stage and worse outcome in NB (Jiang et al., 2011). It
belongs to the glycerophosphodiester phosphodiesterase family,
which is critical for the metabolism of glycerol. In our study, we
discovered that overexpression of GDPD5 is associated with
better survival, which is in accordance with the result of a
previous report in which high GDPD5 expression was found
to be strongly correlated with a favorable outcome in
neuroblastoma, while low GDPD5 expression was associated
with a poor outcome. In addition, the study further revealed
that GDPD5 induced the differentiation and inhibited the
motility of NB cells via multiple mechanisms (Matas-Rico
et al., 2016). GDPD5 was found to be overexpressed in
colorectal cancer (CRC) and to promote metastasis and
chemoresistance. Additionally, silencing GDPD5 in 5-Fu-
resistant CRC cells decreased epithelial-to-mesenchymal
transition (EMT) and cell invasion, both of which are essential
for CRC metastasis (Feng et al., 2018). Cao et al. silenced GDPD5
in breast cancer cell lines and found a significant decrease in
tumor cell viability, migration, and invasion (Cao et al., 2016).
SPAG6 is identified as a cancer-testis antigen that regulates
multiple functions in various cell types (Zheng et al., 2019). A
variety of human cancers have been shown to be associated with
SPAG6. A study on the differential analysis of genome-wide
methylation of NB cell lines reported that SPAG6 was a possible
target of the CpG island methylator phenotype (CIMP), and
CIMP was demonstrated to be negatively related to the survival of
NB patients (Abe et al., 2005; Abe et al., 2008). However, the role
of SPAG6 in NB progression requires further study. CPLX3 is
specifically localized to retinal ribbon synapses. It is a key
regulator of transmitter release at retinal ribbon synapses
(McMahon et al., 1995; Mortensen et al., 2016). At present,
there is no research on CPLX3 and its role in tumors. Our
results suggest that it may promote the development of NB
and affect prognosis. Therefore, the specific role of CPLX3 in

NB needs to be further studied. Our research has discovered five
genes closely related to MYCN. Some of them have been
identified to be involved in development of NB, and some
have been studied in other malignant tumors. Next, we will
further investigate the relationship between these five pivotal
genes and MYCN as well as their roles in the development of NB.

However, there were several imitations to our study. First,
since the TARGET-NBL gene expression data set used as the
training set mainly contained NB cases in stage 1 and stage 4, we
did not include INSS staging in the nomogram. This may limit the
predictive power of the nomogram. Second, the bioinformatic
analysis of this study was based on public data sets, and the tissues
used for verification were retrospectively collected. Thus, an
inherent bias in case selection may have influenced the findings.

CONCLUSION

Overall, we developed a novel five-gene signature and successfully
built a prognostic nomogram that accurately predicts the survival
of NB patients. It will simplify the stratification of NB patients and
provide some guidance for individualized treatment. The five hub
genes obtained in this study were based on integrated analyses of
multiple data sets, which provides a very high level of reliability.
Prior to this study, three of the identified prognostic genes had not
been associated with NB. The mechanisms of these genes and their
roles in targeted therapy for NB remain to be investigated.

DATA AVAILABILITY STATEMENT

The data sets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Ethics Committee of the Tianjin Medical
University Cancer Institute and Hospital. Written informed
consent to participate in this study was provided by the
participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

YX and XT performed data analysis and original draft writing; XL
performed the study concept and design, and QZ reviewed the data
andmanuscript; All authors read and approved the finalmanuscript.

FUNDING

This study was supported by the National Key R&D Program of
China (2018YFC1313000 and 2018YFC1313001), the National

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 76966113

Xia et al. Prognostic Gene Signature of Neuroblastoma

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Nature Science Foundation of China (No. 81903055) and the
Tianjin Medical University Cancer Institute & Hospital
innovation research fund (B1905).

ACKNOWLEDGMENTS

We would like to acknowledge Prof. Matthias Fischer and
Christoph Bartenhagen from the University of Cologne for
kindly providing the overall survival information of the

GSE49710 data set and the GEO, TARGET, and
ArrayExpress network for providing the gene
expression data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at
https://www.frontiersin.org/articles/10.3389/fmolb.2021.769661/
full#supplementary-material

REFERENCES

Abe, M., Ohira, M., Kaneda, A., Yagi, Y., Yamamoto, S., Kitano, Y., et al. (2005).
CpG Island Methylator Phenotype Is a strong Determinant of Poor Prognosis
in Neuroblastomas. Cancer Res. 65 (3), 828–834. doi:65/3/828[pii]

Abe, M., Watanabe, N., McDonell, N., Takato, T., Ohira, M., Nakagawara, A., et al.
(2008). Identification of Genes Targeted by CpG Island Methylator Phenotype
in Neuroblastomas, and Their Possible Integrative Involvement in Poor
Prognosis. Oncology 74 (1-2), 50–60. doi:10.1159/000139124

Albertsson, P. A., Basse, P. H., Hokland, M., Goldfarb, R. H., Nagelkerke, J. F.,
Nannmark, U., et al. (2003). NK Cells and the Tumour Microenvironment:
Implications for NK-Cell Function and Anti-tumour Activity. Trends Immunol.
24 (11), 603–609. doi:10.1016/j.it.2003.09.007

Alvarez Retuerto, A. I., Cantor, R. M., Gleeson, J. G., Ustaszewska, A., Schackwitz,
W. S., Pennacchio, L. A., et al. (2008). Association of Common Variants in the
Joubert Syndrome Gene (AHI1) with Autism. Hum. Mol. Genet. 17 (24),
3887–3896. doi:10.1093/hmg/ddn291

Balachandran, V. P., Gonen, M., Smith, J. J., and DeMatteo, R. P. (2015).
Nomograms in Oncology: More Than Meets the Eye. Lancet Oncol. 16 (4),
e173–e180. doi:10.1016/S1470-2045(14)71116-7

Belounis, A., Ayoub, M., Cordeiro, P., Lemieux, W., Teira, P., Haddad, E., et al.
(2020). Patients’ NK Cell Stimulation with Activated Plasmacytoid Dendritic
Cells Increases Dinutuximab-Induced Neuroblastoma Killing. Cancer
Immunol. Immunother. 69 (9), 1767–1779. doi:10.1007/s00262-020-02581-0

Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A. C.,
et al. (2013). Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal
the Immune Landscape in Human Cancer. Immunity 39 (4), 782–795.
doi:10.1016/j.immuni.2013.10.003

Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E., and Bishop, J. M. (1984).
Amplification of N- Myc in Untreated Human Neuroblastomas Correlates with
Advanced Disease Stage. Science 224 (4653), 1121–1124. doi:10.1126/
science.6719137

Campbell, K., Gastier-Foster, J. M., Mann, M., Naranjo, A. H., Van Ryn, C.,
Bagatell, R., et al. (2017). Association ofMYCNcopy Number with Clinical
Features, Tumor Biology, and Outcomes in Neuroblastoma: A Report from the
Children’s Oncology Group. Cancer 123 (21), 4224–4235. doi:10.1002/
cncr.30873

Cao, M. D., Cheng, M., Rizwan, A., Jiang, L., Krishnamachary, B., Bhujwalla, Z. M.,
et al. (2016). Targeting Choline Phospholipid Metabolism: GDPD5 and
GDPD6 Silencing Decrease Breast Cancer Cell Proliferation, Migration, and
Invasion. NMR Biomed. 29 (8), 1098–1107. doi:10.1002/nbm.3573

Casey, D. L., and Cheung, N.-K. V. (2020). Immunotherapy of Pediatric Solid
Tumors: Treatments at a Crossroads, with an Emphasis on Antibodies. Cancer
Immunol. Res. 8 (2), 161–166. doi:10.1158/2326-6066.CIR-19-0692

Chen, M., Gallipoli, P., DeGeer, D., Sloma, I., Forrest, D. L., Chan, M., et al. (2013).
Targeting Primitive Chronic Myeloid Leukemia Cells by Effective Inhibition of
a New AHI-1-BCR-ABL-JAK2 Complex. J. Natl. Cancer Inst. 105 (6), 405–423.
doi:10.1093/jnci/djt006

Cohn, S. L., Pearson, A. D. J., London, W. B., Monclair, T., Ambros, P. F., Brodeur,
G. M., et al. (2009). The International Neuroblastoma Risk Group (INRG)
Classification System: an INRG Task Force Report. Jco 27 (2), 289–297.
doi:10.1200/JCO.2008.16.6785

De Preter, K., Vermeulen, J., Brors, B., Delattre, O., Eggert, A., Fischer, M., et al.
(2010). Accurate Outcome Prediction in Neuroblastoma across Independent
Data Sets Using a Multigene Signature. Clin. Cancer Res. 16 (5), 1532–1541.
doi:10.1158/1078-0432.CCR-09-2607

Eivazi, S., Bagheri, S., Hashemzadeh, M. S., Ghalavand, M., Qamsari, E. S.,
Dorostkar, R., et al. (2016). Development of T Follicular Helper Cells and
Their Role in Disease and Immune System. Biomed. Pharmacother. 84,
1668–1678. doi:10.1016/j.biopha.2016.10.083

Faryna, M., Konermann, C., Aulmann, S., Bermejo, J. L., Brugger, M., Diederichs,
S., et al. (2012). Genome-wide Methylation Screen in Low-grade Breast
Cancer Identifies Novel Epigenetically Altered Genes as Potential
Biomarkers for Tumor Diagnosis. FASEB j. 26 (12), 4937–4950.
doi:10.1096/fj.12-209502

Federico, S. M., McCarville, M. B., Shulkin, B. L., Sondel, P. M., Hank, J. A., Hutson,
P., et al. (2017). A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody
(hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with
Recurrent/Refractory Neuroblastoma. Clin. Cancer Res. 23 (21), 6441–6449.
doi:10.1158/1078-0432.CCR-17-0379

Feng, C., Zhang, L., Sun, Y., Li, X., Zhan, L., Lou, Y., et al. (2018). GDPD5, a Target
of miR-195-5p, Is Associated with Metastasis and Chemoresistance in
Colorectal Cancer. Biomed. Pharmacother. 101, 945–952. doi:10.1016/
j.biopha.2018.03.028

Gröbner, S. N., Worst, B. C., Weischenfeldt, J., Buchhalter, I., Kleinheinz, K.,
Rudneva, V. A., et al. (2018). The Landscape of Genomic Alterations across
Childhood Cancers. Nature 555 (7696), 321–327. doi:10.1038/nature25480

Gu-Trantien, C., Loi, S., Garaud, S., Equeter, C., Libin, M., de Wind, A., et al.
(2013). CD4+ Follicular Helper T Cell Infiltration Predicts Breast Cancer
Survival. J. Clin. Invest. 123 (7), 2873–2892. doi:10.1172/JCI67428

Gunda, V., Pathania, A. S., Chava, S., Prathipati, P., Chaturvedi, N. K., Coulter, D.
W., et al. (2020). Amino Acids Regulate Cisplatin Insensitivity in
Neuroblastoma. Cancers 12 (9), 2576. doi:10.3390/cancers12092576

Gustafson, W. C., Meyerowitz, J. G., Nekritz, E. A., Chen, J., Benes, C., Charron, E.,
et al. (2014). Drugging MYCN through an Allosteric Transition in Aurora
Kinase A. Cancer Cell 26 (3), 414–427. doi:10.1016/j.ccr.2014.07.015

He, X., Qin, C., Zhao, Y., Zou, L., Zhao, H., and Cheng, C. (2020). Gene Signatures
Associated with Genomic Aberrations Predict Prognosis in Neuroblastoma.
Cancer Commun. 40 (2-3), 105–118. doi:10.1002/cac2.12016

Hong, S.-M., Omura, N., Vincent, A., Li, A., Knight, S., Yu, J., et al. (2012).
Genome-wide CpG Island Profiling of Intraductal Papillary Mucinous
Neoplasms of the Pancreas. Clin. Cancer Res. 18 (3), 700–712. doi:10.1158/
1078-0432.CCR-11-1718

Huang, C.-T., Hsieh, C.-H., Lee, W.-C., Liu, Y.-L., Yang, T.-S., Hsu, W.-M., et al.
(2019). Therapeutic Targeting of Non-oncogene Dependencies in High-Risk
Neuroblastoma. Clin. Cancer Res. 25 (13), 4063–4078. doi:10.1158/1078-
0432.CCR-18-4117

Huang, M., and Weiss, W. A. (2013). Neuroblastoma and MYCN. Cold Spring
Harbor Perspect. Med. 3 (10), a014415. doi:10.1101/cshperspect.a014415

Janoueix-Lerosey, I., Schleiermacher, G., Michels, E., Mosseri, V., Ribeiro, A.,
Lequin, D., et al. (2009). Overall Genomic Pattern Is a Predictor of Outcome in
Neuroblastoma. Jco 27 (7), 1026–1033. doi:10.1200/JCO.2008.16.0630

Jiang, M., Stanke, J., and Lahti, J. M. (2011). The Connections between Neural Crest
Development and Neuroblastoma. Curr. Top. Dev. Biol. 94, 77–127.
doi:10.1016/B978-0-12-380916-2.00004-8

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 76966114

Xia et al. Prognostic Gene Signature of Neuroblastoma

https://www.frontiersin.org/articles/10.3389/fmolb.2021.769661/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2021.769661/full#supplementary-material
https://doi.org/10.1159/000139124
https://doi.org/10.1016/j.it.2003.09.007
https://doi.org/10.1093/hmg/ddn291
https://doi.org/10.1016/S1470-2045(14)71116-7
https://doi.org/10.1007/s00262-020-02581-0
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1126/science.6719137
https://doi.org/10.1126/science.6719137
https://doi.org/10.1002/cncr.30873
https://doi.org/10.1002/cncr.30873
https://doi.org/10.1002/nbm.3573
https://doi.org/10.1158/2326-6066.CIR-19-0692
https://doi.org/10.1093/jnci/djt006
https://doi.org/10.1200/JCO.2008.16.6785
https://doi.org/10.1158/1078-0432.CCR-09-2607
https://doi.org/10.1016/j.biopha.2016.10.083
https://doi.org/10.1096/fj.12-209502
https://doi.org/10.1158/1078-0432.CCR-17-0379
https://doi.org/10.1016/j.biopha.2018.03.028
https://doi.org/10.1016/j.biopha.2018.03.028
https://doi.org/10.1038/nature25480
https://doi.org/10.1172/JCI67428
https://doi.org/10.3390/cancers12092576
https://doi.org/10.1016/j.ccr.2014.07.015
https://doi.org/10.1002/cac2.12016
https://doi.org/10.1158/1078-0432.CCR-11-1718
https://doi.org/10.1158/1078-0432.CCR-11-1718
https://doi.org/10.1158/1078-0432.CCR-18-4117
https://doi.org/10.1158/1078-0432.CCR-18-4117
https://doi.org/10.1101/cshperspect.a014415
https://doi.org/10.1200/JCO.2008.16.0630
https://doi.org/10.1016/B978-0-12-380916-2.00004-8
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Jin, J.-S., and Tsai, W. C. (2016). The Detection of Tumor Location and Lymph
Node Metastasis by Aberrant NXPH1 and NXPH2 Expressions in Pancreatic
Ductal Adenocarcinomas. Chin. J. Physiol. 59 (6), 348–354. doi:10.4077/
CJP.2016.BAF430

Kawano, A., Hazard, F. K., Chiu, B., Naranjo, A., LaBarre, B., London, W. B., et al.
(2021). Stage 4S Neuroblastoma. Am. J. Surg. Pathol. 45 (8), 1075–1081.
doi:10.1097/PAS.0000000000001647

Kolde, R., Laur, S., Adler, P., and Vilo, J. (2012). Robust Rank Aggregation for Gene
List Integration and Meta-Analysis. Bioinformatics 28 (4), 573–580.
doi:10.1093/bioinformatics/btr709

Li, J., Thompson, T. D., Miller, J. W., Pollack, L. A., and Stewart, S. L. (2008).
Cancer Incidence Among Children and Adolescents in the United States, 2001-
2003. Pediatrics 121 (6), e1470–e1477. doi:10.1542/peds.2007-2964

Mandal, R., Şenbabaoğlu, Y., Desrichard, A., Havel, J. J., Dalin, M. G., Riaz, N., et al.
(2016). The Head and Neck Cancer Immune Landscape and its
Immunotherapeutic Implications. JCI Insight 1 (17), e89829. doi:10.1172/
jci.insight.89829

Maris, J. M. (2010). Recent Advances in Neuroblastoma. N. Engl. J. Med. 362 (23),
2202–2211. doi:10.1056/NEJMra0804577

Marshall, G. M., Carter, D. R., Cheung, B. B., Liu, T., Mateos, M. K., Meyerowitz,
J. G., et al. (2014). The Prenatal Origins of Cancer. Nat. Rev. Cancer 14 (4),
277–289. doi:10.1038/nrc3679

Martin, T. A., and Jiang, W. G. (2009). Loss of Tight junction Barrier Function and
its Role in Cancer Metastasis. Biochim. Biophys. Acta (Bba) - Biomembranes
1788 (4), 872–891. doi:10.1016/j.bbamem.2008.11.005

Matas-Rico, E., van Veen, M., Leyton-Puig, D., van den Berg, J., Koster, J.,
Kedziora, K. M., et al. (2016). Glycerophosphodiesterase GDE2 Promotes
Neuroblastoma Differentiation through Glypican Release and Is a Marker of
Clinical Outcome. Cancer Cell 30 (4), 548–562. doi:10.1016/
j.ccell.2016.08.016

McMahon, H. T., Missler, M., Li, C., and Südhof, T. C. (1995). Complexins:
Cytosolic Proteins that Regulate SNAP Receptor Function. Cell 83 (1), 111–119.
doi:10.1016/0092-8674(95)90239-2

Missler, M., Zhang, W., Rohlmann, A., Kattenstroth, G., Hammer, R. E.,
Gottmann, K., et al. (2003). α-Neurexins Couple Ca2+ Channels to Synaptic
Vesicle Exocytosis. Nature 423 (6943), 939–948. doi:10.1038/nature01755

Modak, S., Le Luduec, J.-B., Cheung, I. Y., Goldman, D. A., Ostrovnaya, I.,
Doubrovina, E., et al. (2018). Adoptive Immunotherapy with Haploidentical
Natural Killer Cells and Anti-GD2 Monoclonal Antibody m3F8 for Resistant
Neuroblastoma: Results of a Phase I Study. Oncoimmunology 7 (8), e1461305.
doi:10.1080/2162402X.2018.1461305

Mortensen, L. S., Park, S. J. H., Ke, J.-b., Cooper, B. H., Zhang, L., Imig, C., et al.
(2016). Complexin 3 Increases the Fidelity of Signaling in a Retinal Circuit by
Regulating Exocytosis at Ribbon Synapses. Cel Rep. 15 (10), 2239–2250.
doi:10.1016/j.celrep.2016.05.012

Mou, W., Han, W., Ma, X., Wang, X., Qin, H., Zhao, W., et al. (2017). γδTFH Cells
Promote B Cell Maturation and Antibody Production in Neuroblastoma. BMC
Immunol. 18 (1), 36. doi:10.1186/s12865-017-0216-x

Neviani, P., Wise, P. M., Murtadha, M., Liu, C. W., Wu, C.-H., Jong, A. Y., et al.
(2019). Natural Killer-Derived Exosomal miR-186 Inhibits Neuroblastoma
Growth and Immune Escape Mechanisms. Cancer Res. 79 (6), 1151–1164.
doi:10.1158/0008-5472.CAN-18-0779

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust Enumeration of Cell Subsets from Tissue Expression Profiles.
Nat. Methods 12 (5), 453–457. doi:10.1038/nmeth.3337

Park, J. A., and Cheung, N.-K. V. (2020). Targets and Antibody Formats for
Immunotherapy of Neuroblastoma. Jco 38 (16), 1836–1848. doi:10.1200/
JCO.19.01410

Park, J. R., Bagatell, R., London,W. B., Maris, J. M., Cohn, S. L., Mattay, K. M., et al.
(2013). Children’s Oncology Group’s 2013 Blueprint for Research:
Neuroblastoma. Pediatr. Blood Cancer 60 (6), 985–993. doi:10.1002/pbc.24433

Pinto, N. R., Applebaum, M. A., Volchenboum, S. L., Matthay, K. K., London, W.
B., Ambros, P. F., et al. (2015). Advances in Risk Classification and Treatment
Strategies for Neuroblastoma. Jco 33 (27), 3008–3017. doi:10.1200/
JCO.2014.59.4648

Puissant, A., Frumm, S. M., Alexe, G., Bassil, C. F., Qi, J., Chanthery, Y. H., et al.
(2013). Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition.
Cancer Discov. 3 (3), 308–323. doi:10.1158/2159-8290.CD-12-0418

Ringrose, A., Zhou, Y., Pang, E., Zhou, L., Lin, A. E.-J., Sheng, G., et al. (2006).
Evidence for an Oncogenic Role of AHI-1 in Sezary Syndrome, a Leukemic
Variant of Human Cutaneous T-Cell Lymphomas. Leukemia 20 (9),
1593–1601. doi:10.1038/sj.leu.2404321

Ritchie, M. E., Phipson, B.,Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015). Limma
powers Differential Expression Analyses for RNA-Sequencing and Microarray
Studies. Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Sait, S., and Modak, S. (2017). Anti-GD2 Immunotherapy for Neuroblastoma.
Expert Rev. Anticancer Ther. 17 (10), 889–904. doi:10.1080/
14737140.2017.1364995

Schleiermacher, G., Mosseri, V., London, W. B., Maris, J. M., Brodeur, G. M.,
Attiyeh, E., et al. (2012). Segmental Chromosomal Alterations Have Prognostic
Impact in Neuroblastoma: a Report from the INRG Project. Br. J. Cancer 107
(8), 1418–1422. doi:10.1038/bjc.2012.375

Seeger, R. C., Brodeur, G. M., Sather, H., Dalton, A., Siegel, S. E., Wong, K. Y., et al.
(1985). Association of Multiple Copies of the N-mycOncogene with Rapid
Progression of Neuroblastomas. N. Engl. J. Med. 313 (18), 1111–1116.
doi:10.1056/NEJM198510313131802

Semenkovich, T. R., Yan, Y., Subramanian, M., Meyers, B. F., Kozower, B. D., Nava,
R., et al. (2021). A Clinical Nomogram for Predicting Node-Positive Disease in
Esophageal Cancer. Ann. Surg. 273 (6), e214–e221. doi:10.1097/
SLA.0000000000003450

Shimasaki, N., Jain, A., and Campana, D. (2020). NK Cells for Cancer
Immunotherapy. Nat. Rev. Drug Discov. 19 (3), 200–218. doi:10.1038/
s41573-019-0052-1

Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., and Ideker, T. (2011).
Cytoscape 2.8: New Features for Data Integration and Network
Visualization. Bioinformatics 27 (3), 431–432. doi:10.1093/bioinformatics/
btq675

Suzuki, M., and Cheung, N.-K. V. (2015). Disialoganglioside GD2 as a Therapeutic
Target for Human Diseases. Expert Opin. Ther. Targets 19 (3), 349–362.
doi:10.1517/14728222.2014.986459

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J.,
et al. (2019). STRING V11: Protein-Protein Association Networks with
Increased Coverage, Supporting Functional Discovery in Genome-wide
Experimental Datasets. Nucleic Acids Res. 47 (D1), D607–D613.
doi:10.1093/nar/gky1131

Torri, F., Akelai, A., Lupoli, S., Sironi, M., Amann-Zalcenstein, D., Fumagalli, M.,
et al. (2010). FineMapping ofAHI1as a Schizophrenia Susceptibility Gene: from
Association to Evolutionary Evidence. FASEB j. 24 (8), 3066–3082. doi:10.1096/
fj.09-152611

Vermeulen, J., De Preter, K., Naranjo, A., Vercruysse, L., Van Roy, N.,
Hellemans, J., et al. (2009). Predicting Outcomes for Children with
Neuroblastoma Using a Multigene-Expression Signature: a Retrospective
SIOPEN/COG/GPOH Study. Lancet Oncol. 10 (7), 663–671. doi:10.1016/
S1470-2045(09)70154-8

Vettore, L., Westbrook, R. L., and Tennant, D. A. (2020). New Aspects of Amino
AcidMetabolism in Cancer. Br. J. Cancer 122 (2), 150–156. doi:10.1038/s41416-
019-0620-5

Vo, K. T., Matthay, K. K., Neuhaus, J., London, W. B., Hero, B., Ambros, P. F.,
et al. (2014). Clinical, Biologic, and Prognostic Differences on the Basis of
Primary Tumor Site in Neuroblastoma: a Report from the International
Neuroblastoma Risk Group Project. Jco 32 (28), 3169–3176. doi:10.1200/
JCO.2014.56.1621

Wang, Z., Cheng, H., Xu, H., Yu, X., and Sui, D. (2020). A Five-Gene
Signature Derived from m6A Regulators to Improve Prognosis
Prediction of Neuroblastoma. Cbm 28 (3), 275–284. doi:10.3233/CBM-
191196

Wienke, J., Dierselhuis, M. P., Tytgat, G. A. M., Künkele, A., Nierkens, S., and
Molenaar, J. J. (2021). The Immune Landscape of Neuroblastoma: Challenges
and Opportunities for Novel Therapeutic Strategies in Pediatric Oncology. Eur.
J. Cancer 144, 123–150. doi:10.1016/j.ejca.2020.11.014

Wu, X., Lv, D., Lei, M., Cai, C., Zhao, Z., Eftekhar, M., et al. (2020). A 10-Gene
Signature as a Predictor of Biochemical Recurrence After Radical
Prostatectomy in Patients With Prostate Cancer and a Gleason Score ≥7.
Oncol. Lett. 20 (3), 2906–2918. doi:10.3892/ol.2020.11830

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring Tumour Purity and Stromal and Immune

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 76966115

Xia et al. Prognostic Gene Signature of Neuroblastoma

https://doi.org/10.4077/CJP.2016.BAF430
https://doi.org/10.4077/CJP.2016.BAF430
https://doi.org/10.1097/PAS.0000000000001647
https://doi.org/10.1093/bioinformatics/btr709
https://doi.org/10.1542/peds.2007-2964
https://doi.org/10.1172/jci.insight.89829
https://doi.org/10.1172/jci.insight.89829
https://doi.org/10.1056/NEJMra0804577
https://doi.org/10.1038/nrc3679
https://doi.org/10.1016/j.bbamem.2008.11.005
https://doi.org/10.1016/j.ccell.2016.08.016
https://doi.org/10.1016/j.ccell.2016.08.016
https://doi.org/10.1016/0092-8674(95)90239-2
https://doi.org/10.1038/nature01755
https://doi.org/10.1080/2162402X.2018.1461305
https://doi.org/10.1016/j.celrep.2016.05.012
https://doi.org/10.1186/s12865-017-0216-x
https://doi.org/10.1158/0008-5472.CAN-18-0779
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1200/JCO.19.01410
https://doi.org/10.1200/JCO.19.01410
https://doi.org/10.1002/pbc.24433
https://doi.org/10.1200/JCO.2014.59.4648
https://doi.org/10.1200/JCO.2014.59.4648
https://doi.org/10.1158/2159-8290.CD-12-0418
https://doi.org/10.1038/sj.leu.2404321
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1080/14737140.2017.1364995
https://doi.org/10.1080/14737140.2017.1364995
https://doi.org/10.1038/bjc.2012.375
https://doi.org/10.1056/NEJM198510313131802
https://doi.org/10.1097/SLA.0000000000003450
https://doi.org/10.1097/SLA.0000000000003450
https://doi.org/10.1038/s41573-019-0052-1
https://doi.org/10.1038/s41573-019-0052-1
https://doi.org/10.1093/bioinformatics/btq675
https://doi.org/10.1093/bioinformatics/btq675
https://doi.org/10.1517/14728222.2014.986459
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1096/fj.09-152611
https://doi.org/10.1096/fj.09-152611
https://doi.org/10.1016/S1470-2045(09)70154-8
https://doi.org/10.1016/S1470-2045(09)70154-8
https://doi.org/10.1038/s41416-019-0620-5
https://doi.org/10.1038/s41416-019-0620-5
https://doi.org/10.1200/JCO.2014.56.1621
https://doi.org/10.1200/JCO.2014.56.1621
https://doi.org/10.3233/CBM-191196
https://doi.org/10.3233/CBM-191196
https://doi.org/10.1016/j.ejca.2020.11.014
https://doi.org/10.3892/ol.2020.11830
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Cell Admixture from Expression Data. Nat. Commun. 4, 2612. doi:10.1038/
ncomms3612

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package
for Comparing Biological Themes Among Gene Clusters. OMICS: A J. Integr.
Biol. 16 (5), 284–287. doi:10.1089/omi.2011.0118

Zheng, D.-F., Wang, Q., Wang, J.-P., Bao, Z.-Q., Wu, S.-W., Ma, L., et al. (2019).
The Emerging Role of Sperm-Associated Antigen 6 Gene in the Microtubule
Function of Cells and Cancer.Mol. Ther. - Oncolytics 15, 101–107. doi:10.1016/
j.omto.2019.08.011

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article or claim that may be made by its manufacturer is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Xia, Li, Tian and Zhao. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 76966116

Xia et al. Prognostic Gene Signature of Neuroblastoma

https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1016/j.omto.2019.08.011
https://doi.org/10.1016/j.omto.2019.08.011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Identification of a Five-Gene Signature Derived From MYCN Amplification and Establishment of a Nomogram for Predicting the  ...
	Introduction
	Materials and Methods
	Data Set
	Differentially Expressed Gene Analysis
	Enrichment of Differentially Expressed Genes
	Protein–Protein Interaction Network of the Differentially Expressed Genes
	Establishment of the Prognostic Gene Signature
	Assessment of Tumor Immunity
	Preparation of Tissue Samples
	Quantitative Real-Time PCR
	Independent Prognostic Parameters of Neuroblastoma Identification
	Nomogram Construction
	Statistical Analysis

	Results
	Identification of Differentially Expressed Genes
	Enrichment Analysis of Differentially Expressed Genes
	Construction of a Five-Gene Prognostic Signature
	Validation of the Gene Signature
	Prognostic Value Comparison Between the Five-Gene Signature, INSS Staging, and MYCN Amplification Status
	Correlations of Clinical Pathology and Tumor Immune Cell Infiltration With the Five-Gene Signature
	Validation of the Five Differentially Expressed Genes Used for the Gene Signature
	Evaluation of Independent Prognostic Factors in Neuroblastoma
	Establishment and Validation of a Nomogram

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


