Original Article

Korean J Transplant 2022;36:173-179 https://doi.org/10.4285/kjt.22.0018

pISSN 2671-8790 eISSN 2671-8804

First and second kidney transplantations from living donors offer comparable outcomes for patients

Namkee Oh^{1,}*, Min Jung Kim^{2,}*, Kyo Won Lee¹, Hyun Cho³, Sook Young Woo³, Jinsoo Rhu¹, Seunghwan Lee⁴, Jong Man Kim¹, Gyu-Seong Choi¹, Jae Berm Park¹, Jae-Won Joh¹

¹Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea ²Department of Surgery, Seoul Medical Center, Seoul, Korea

³Department of Statistics and Data Center, Samsung Medical Center, Seoul, Korea

⁴Department of Surgery, Kyung Hee University Hospital at Gangdong, Seoul, Korea

Background: Increasingly many patients are being relisted for repeat kidney transplantation due to longer survival times after transplantation. This study compared the outcomes of second living donor kidney transplantations (LDKTs) with those of first LDKTs.

Methods: Data were collected retrospectively for 1,429 LDKTs performed from 1995 to 2020 at Samsung Medical Center. The demographics of recipients and donors, immunologic factors, and outcomes of second LDKTs were compared to those of first LDKTs. **Results:** Among 1,429 cases of LDKT, 1,355 were first LDKT cases and 74 were second LDKT cases. Basic demographic data were comparable for the two groups of patients. The 5- and 10-year graft survival rates were 94% and 84% for first LDKTs and 96% and 86% for second LDKTs, respectively, with neither difference statistically significant (P=0.399). The 5- and 10-year patient survival rates were 98% and 94% for the first and 96% and 93% for the second LDKTs, respectively; neither difference was statistically significant (P=0.766). Multivariate analysis confirmed that a history of previous transplantation was not a statistically significant risk factor for graft loss (hazard ratio [HR], 0.83; P=0.677) or patient death (HR, 1.68; P=0.396).

Conclusions: These results indicate that repeat kidney transplantation from living donors is a reasonable choice for patients who have experienced graft loss.

Keywords: Kidney transplantation; Renal transplantation; Living donors; Graft survival

INTRODUCTION

Since the introduction of kidney transplantation in South Korea in 1969, kidney transplantation rates have been increasing markedly. According to the Korean Network for Organ Sharing, 554, 1,289, and 2,293 cases were performed in 2000, 2010, and 2019, respectively—a doubling every 10 years. Over the last two decades, more than 70% of the patients receiving kidney transplantation were between 20 to 59 years old. As life expectancy after transplantation has increased, most of these cases will likely be candidates for repeat kidney transplantation at some

Received April 7, 2022 Revised May 23, 2022 Accepted May 24, 2022

Corresponding author: Kyo Won Lee Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea Tel: +82-2-3410-1669 Fax: +82-2-3410-6980 E-mail: kw1980.lee@samsung.com *These authors contributed equally to this work.

© The Korean Society for Transplantation This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

HIGHLIGHTS

- This single-center, retrospective study compared first and second living donor kidney transplant outcomes.
- No significant differences in patient or graft survival were found at 5 and 10 years.
- However, second transplants were found to be more immunologically complex in terms of donor-specific antibodies and received anti-thymocyte globulin more frequently.

point in their lifetime [1] due to the limited lifespan of allografts (10 years) [2,3].

The number of patients rejoining the kidney waitlist due to allograft loss is increasing, accounting for 9.2% of total transplant patients according to Korean national data. Among 26,074 patients on the waitlist for kidney transplantation, 2,399 would be undergoing repeat surgery. This phenomenon is occurring not only in Korea, but also worldwide, especially in the United States [4,5]. This study, therefore, sought to understand the outcomes of second kidney transplantation as the need for repeat transplantation is increasing.

This study sought to clarify the efficacy and safety of repeat renal transplantation compared to those of first transplants. Only cases of living donor kidney transplantation (LDKT) were included to reduce heterogeneity in donor-related factors. This study had the largest number of patients in a study on this topic to date, and could therefore provide stronger evidence than previous studies.

METHODS

This study was reviewed and approved by the Institutional Review Board (IRB) of Samsung Medical Center (IRB No. 2020-03-214-002). The requirement for informed consent was waived by the IRB due to the retrosepctive nature of this study.

Patients from a single institution (Samsung Medical Center, Seoul, Korea) who received treatment from February 1995 to May 2020 were analyzed. Only adult patients who underwent LDKT were included. Cases with deceased donors, three or more previous renal transplants, or multiple organ transplants were excluded. Demographics (age, sex, and body mass index [BMI]), underlying kidney disease, diabetes mellitus (DM), and hypertension for both recipients and donors were collected. Immunologic information such as panel-reactive antibody (PRA) identification, human leukocyte antigen (HLA) profile, donor-specific antibody (DSA) information, and the serum creatinine (sCr) level were reviewed. Surgical technique (total operative time, cold ischemic time, anastomosis time) and in-hospital postoperative complications were also recorded.

The primary study outcomes were death-censored graft survival and patient survival for first and second LDKT grafts. The secondary outcomes were changes in graft function over time, postoperative complications, and risk factors associated with graft failure and patient mortality. Recipients of ABO-incompatible transplants required a preconditioning process. One month prior to surgery, patients received rituximab injection, and plasmapheresis was performed to lower the immunoglobulin G titer under 1:32. If the titer was 1:256 or higher, intravenous immunoglobulin was also administered. Antithymocyte globulin (ATG) was used as an inductive agent.

Continuous variables were described as mean and standard deviation and analyzed with the independent t-test or the Mann-Whitney U-test. Categorical data were described as number and percentage and analyzed with the chi-square or Fisher's exact test. Generalized estimating equations were used to compare sCr over time. Death-censored graft survival was measured using a graph generated by the Kaplan-Meier method. The prognosis was compared using a Cox proportional-hazards model and described as the hazard ratio (HR) and 95% confidence interval (CI). For multivariable analysis, variables with P<0.05 in the univariable analysis were selected. Statistical significance was defined as P<0.05. All statistical analyses used SAS ver. 9.4 (SAS Institute, Cary, NC, USA) and R 4.0.0 (R Studio, Vienna, Austria).

RESULTS

Clinical Characteristics

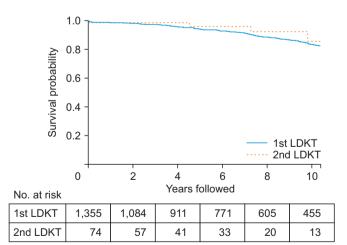
A total of 1,429 patients met the inclusion criteria. Of them, 1,355 received a first LDKT and 74 received a second LDKT. There were no statistically significant differences in sex, age, prevalence of DM, or hypertension between the two groups. The BMI of recipients of first transplants,

 Table 1. Clinicopathologic characteristics by history of kidney transplantation

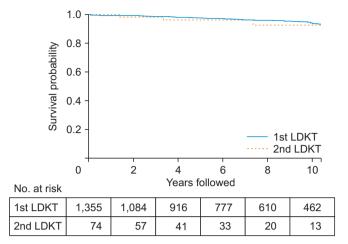
plantation				
Characteristic	First LDKT (n=1,355)	Second LDKT (n=74)	P-value	
Follow-up period (yr)	7.8±5.5	5.9±4.7	-	
Recipient factor				
Age (yr)	45±12	47±9.8	0.315	
Sex (male)	791 (58.0)	37 (50.0)	0.155	
BMI (kg/m ²)	23±3.4	22±3.6	0.001	
DM	300 (22.0)	10 (14.0)	0.080	
HTN	1,083 (80.0)	55 (74.0)	0.244	
Cause of renal failure	.,	,	< 0.001	
DM nephropathy	266 (20.0)	4 (5.4)		
GN	432 (32.0)	28 (38.0)		
ADPCKD	55 (4.1)	7 (9.5)		
HTN	179 (13.0)	3 (4.1)		
Other	432 (31.0)	32 (43.0)		
Dialysis duration (day)	593±1,099	1,000±1,274	<0.001	
Preemptive transplantation	309 (23.0)	8 (11.0)	0.016	
Donor factor	007 (20.0)	0 (11.0)	0.010	
Age (yr)	42±12	42±11	0.442	
Sex (male)	669 (49.0)	45 (61.0)	0.055	
BMI (kg/m ²)	24±3.1	24±3.8	0.828	
DM (kg/m)	12 (0.89)	1 (1.4)	0.501	
HTN	70 (5.2)	7 (9.5)	0.113	
sCr (mg/dL)	0.82±0.16	0.86±0.17	0.115	
Immunologic factor	0.0210.10	0.0010.17	0.105	
ABO incompatible	148(11.0)	6 (8.1)	0.565	
Induction	140(11.0)	0 (0.1)	<0.001	
No agent	430 (32.0)	6 (8.1)	VU.001	
Basiliximab	430 (32.0) 537 (40.0)	8 (11.0)		
ATG	388 (29.0)	60 (81.0)		
Initial maintenance	300 (29.0)	00 (01.0)	>0.999	
CNI+antimetabolite	1,341 (99.0)	74 (100)	20.999	
Sirolimus or everolimus	14 (1.0)	0		
mHLAI	14 (1.0)	0	0.642	
0-2	950 (70.0)	50 (68.0)	0.042	
3-4	405 (30.0)	24 (32.0)		
mHLA II	405 (30.0)	24 (32.0)	0 0 2 7	
0-1	1 104 (01 0)	61 (02 0)	0.837	
	1,104 (81.0)	61 (82.0)		
2	251 (19.0)	13 (18.0)	-0.001	
DSA	1 261 (02 0)		<0.001	
(-)	1,261 (93.0)	56 (76.0)		
(+) 94 (7.0) 18 (24.0)				
Operation-related factor (min)	260404	200.75	0 1 0 0	
Total operation time	269±84	288±75	0.102	
Cold ischemic time	134±123	146±119	0.068	
Anastomosis time	32±16	33±12	0.257	

Values are presented as mean±standard deviation or number (%).

LDKT, living donor kidney transplantation; BMI, body mass index; DM, diabetes mellitus; HTN, hypertension; GN, glomerular nephropathy; ADPCKD, autosomal dominant polycystic kidney disease; sCr, serum creatinine; ATG, anti-thymocyte globulin; CNI, calcineurin inhibitor; mHLA, monocytic human leukocyte antigen; DSA, donor-specific antibody.


however, was significantly higher than that of recipients of second transplants (P=0.001). There were also significant differences in the causes of renal failure between the two groups. The demographic characteristics of donors between the two groups did not show statistically significant differences.

There were significant differences in immunologic risk, as shown by a DSA (+) rate of 24% in the second LDKT patients versus 6.9% in the first LDKT patients (P<0.001). Inductive immunosuppressive agent use also showed significant differences (P<0.001), as 81% of second LDKT patients were treated with ATG, versus the first KT patients, of whom 32% received no inductive agent, 40% basiliximab, and 29% ATG. There were no statistically significant differences in the total operative time, cold ischemic time, or anastomosis time between the two groups (Table 1).


Primary Outcomes: Graft and Overall Survival

The 5-year graft survival rate was 94% in the first LDKT group and 96% in the second LDKT group. The 10-year graft survival rate was 84% in the first LDKT group and 86% in the second LDKT group. These differences were not statistically significant (P=0.399) (Fig. 1). During 20 years of follow-up, 199 graft losses were observed in the first LDKT group and 5 graft losses in the second LDKT group.

The 5-year patient survival rate was 98% in the first LDKT group and 96% in the second LDKT group. The 10-

Fig. 1. Kaplan-Meier plot for death-censored graft survival for 10 years. The 5-year graft survival rates were 94% and 96%, and the 10-year rates were 84% and 86% in first and second living donor kidney transplantation (LDKT) patients, respectively. The differences were not statistically significant (P=0.399).

Fig. 2. Kaplan-Meier plot for patient survival for 10 years. The 5-year patient survival rates were 98% and 96%, and the 10-year rates were 94% and 93% in first and second living donor kidney transplantation (LDKT) patients, respectively. The differences were not statistically significant (P=0.766).

year patient survival rate was 94% in the first LDKT group and 93% in the second LDKT group. These differences were not statistically significant (P=0.766) (Fig. 2). Among the 64 deaths in the first LDKT group, 44 had functioning grafts, while all three patients who died in the second LDKT group had functioning grafts.

Risk Factors Associated with Graft Failure and Patient Death

Univariate analysis showed that a history of kidney transplantation, DM (recipient), BMI (recipient), age (donor), ABO-incompatible transplantation, and the number of HLA II mismatches, were associated with an increased risk of graft failure. Subsequent multivariate analysis confirmed that the age of the donor (HR, 1.03; P<0.001) and the number of HLA II mismatches (HR, 1.63; P=0.006) increased the risk of graft failure of LDKT (Table 2). Univariate analysis showed that a history of kidney transplantation, age (recipient), DM (recipient), age (donor), hypertension (donor), and number of HLA II mismatches were associated with patients' overall survival. Multivariate analysis showed that age (recipient: HR, 1.07; P<0.001), hypertension (donor: HR, 2.51; P=0.046), and number of HLA II mismatches (HR, 1.97; P=0.016) were associated with higher risk of mortality (Table 3). A history of previous transplantation, however, was not a statistically significant risk factor for graft or patient survival.

Table 2. Risk facto		-		
Risk factor	Univariate ana	lysis	Multivariate and	alysis
NISK Idetoi	HR (95% CI)	P-value	HR (95% CI)	P-value
Recipient				
Age	0.99 (0.98-1.00)	0.054	-	-
Sex	1.09 (0.82-1.44)	0.557	-	-
BMI	1.05 (1.01-1.09)	0.021	1.04 (1.00-1.08)	0.074
DM	1.43 (1.00-2.04)	0.050	1.26 (0.87-1.82)	0.227
HTN	0.74 (0.54-1.03)	0.078	-	-
Donor				
Age	1.03 (1.02-1.04)	<0.001	1.03 (1.02-1.04)	<0.001
Sex	0.79 (0.60-1.04)	0.095	-	-
BMI	1.01 (0.97-1.06)	0.518	-	-
DM	1.01 (0.14-7.23)	0.991	-	-
HTN	0.66 (0.21-2.06)	0.471	-	-
sCr	0.66 (0.28-1.56)	0.341	-	-
History of KT	0.68 (0.28-1.66)	0.402	0.83 (0.34-2.02)	0.677
ABO incompatible	2.16 (1.18-3.96)	0.013	1.64 (0.88-3.05)	0.118
Inductive agent				
r-ATG vs. no agent	1.41 (0.91–2.19)	0.128	-	-
Basiliximab vs. no agent	1.16 (0.81-1.65)	0.429	-	-
r-ATG vs. basiliximab	1.22 (0.78-1.91)	0.386	-	-
No. of HLA I mismatches	1.28 (0.96-1.71)	0.100	-	-
No. of HLA II mismatches	1.82 (1.29-2.56)	<0.001	1.63 (1.15-2.32)	0.006
DSA(+)	1.68 (0.88-3.20)	0.117	-	-
Total operation time	1.00 (0.99-1.00)	0.961	-	-
Cold ischemic time	1.00 (1.00-1.00)	0.090	-	-
Anastomosis time	0.99 (0.99-1.01)	0.573	-	

HR, hazard ratio; CI, confidence interval; BMI, body mass index; DM, diabetes mellitus; HTN, hypertension; sCr, serum creatinine; KT, kidney transplantation; r-ATG, rabbit anti-thymocyte antigen; HLA, human leukocyte antigen; DSA, donor-specific antibody.

Secondary Outcomes: Graft Function and Complications

This study analyzed sCr for 10 years after transplantation to evaluate graft function over time. Results showed the average sCr of both groups increased over time, though there was no statistically significant difference in the rate of change between the groups (P=0.238). In short, there were no significant differences in graft function over time between the recipients of first and second LDKTs.

Risk factor	Univariate analysis		Multivariate analysis	
RISK Tactor	HR (95% CI)	P-value	HR (95% CI)	P-value
Recipient				
Age	1.08 (1.05-1.11)	<0.001	1.07 (1.04–1.10)	<0.001
Sex	1.05 (0.65-1.70)	0.841	-	-
BMI	1.05 (0.98-1.12)	0.196	-	-
DM	2.22 (1.30-3.79)	0.004	1.18 (0.67–2.09)	0.565
HTN	0.85 (0.47-1.53)	0.578	-	-
Donor				
Age	1.03 (1.01-1.05)	0.009	1.02 (0.99-1.04)	0.195
Sex	1.07 (0.66-1.72)	0.784	-	-
BMI	1.01 (0.94-1.09)	0.836	-	-
DM	1.68 (0.13-21.48)	0.689	-	-
HTN	3.81 (1.63-8.90)	0.002	2.51 (1.02-6.17)	0.046
sCr	0.69 (0.16-3.08)	0.629	-	-
History of KT	1.19 (0.37-3.80)	0.766	1.68 (0.51-5.56)	0.396
ABO incompatible	0.76 (0.18-3.17)	0.708	-	-
Inductive agent				
r-ATG vs. no agent	1.14 (0.55-2.36)	>0.999	-	-
Basiliximab vs. no agent	0.91 (0.50-1.67)	>0.999	-	-
r-ATG vs. basiliximab	1.25 (0.59–2.67)	>0.999	-	-
No. of HLA I mismatches	1.14 (0.68-1.90)	0.628	-	-
No. of HLA II mismatches	2.46 (1.44-4.19)	<0.001	1.97 (1.14-3.42)	0.016
DSA(+)	0.80 (0.20-3.32)	0.763	-	-
Total operation time	1.00 (1.00-1.00)	0.529	-	-
Cold ischemic time	1.00 (1.00-1.00)	0.487	-	-
Anastomosis time	1.00 (1.00-1.00)	0.219	-	-

Table 3. Risk factors associated with patient death

HR, hazard ratio; CI, confidence interval; BMI, body mass index; DM, diabetes mellitus; HTN, hypertension; sCr, serum creatinine; KT, kidney transplantation; r-ATG, rabbit anti-thymocyte antigen; HLA, human leukocyte antigen; DSA, donor-specific antibody.

Postoperative bleeding-defined as requiring transfusion after surgery-was the most common postoperative complication in both groups (13% vs. 12% in the first and second KT groups, respectively), followed by lymphocele, wound complication, and ureteral leakage. There was no significant difference in frequency or type of complication between the two groups (P=0.340).

Medical complications such as infections and malig-

 Table 4. Inductive agents in second transplantation with 10-year graft failure

lanare		
Variable	Second LDKT (n=74)	10-Year graft failure
No agent	6 (8.1)	1 (17)
Basiliximab	8 (11)	1 (13)
ATG	60 (81)	2 (3.4)

Values are presented as number (%).

LDKT, living donor kidney transplantation; ATG, anti-thymocyte globulin.

nancy showed no statistically significant differences between the two groups. The prevalence of cytomegalovirus antigenemia was 53.4% (727/1,378) versus 48.6% (36/74) in first and second LDKTs, respectively (P=0.47), while that of BK virus was 15.7% (217/1,378) versus 13.5% (10/74) for first and second LDKTs, respectively (P=0.74). The incidence of malignancy after transplantation was 6.1% (84/1378) versus 4.1% (3/74) for first and second LDKTs, respectively (P=0.62).

Immunosuppression in the Repeat Transplantation Group Among the 74 patients in the repeat transplantation cohort, of whom one out of six received no inductive therapy (17%), one of eight received basiliximab (13%), and two of 60 received ATG (3.4%) experienced graft failure within 10 years of follow-up. While these numbers were not statistically significant—due in part to the small sample size— ATG may have had positive impacts on graft survival compared to no agent or basiliximab (Table 4).

DISCUSSION

This study analyzed the clinical data of 1,429 patients who underwent LDKT. Graft and patient survival rates were not significantly different between the first and second transplant groups (P=0.399 and P=0.766, respectively). Graft function (as measured by sCr) over time was comparable (P=0.238). Multivariate analysis, furthermore, showed that repeat transplantation increased neither the risk of graft failure (HR, 0.83; P=0.677) nor patient death (HR, 1.68; P=0.396). These results support the hypothesis that second renal transplantation with a living donor kidney is as safe and effective as first transplantation procedures, which is consistent with previous studies of repeat renal transplantation. Pour-Reza-Gholi et al. [6] compared the clinical outcomes of 103 cases of second

renal transplantation with 2,009 cases of first transplants and showed comparable 5-year patient survival. As that study included both living and deceased donors, however, there were limitations involving the heterogeneity of donor-related factors. El-Agroudy et al. [7] also compared the outcomes of 1,352 first transplants and 52 cases of second renal transplants from living related donors only and showed no significant differences in overall patient survival and graft survival between the two groups. As that study included Egyptian patients only, however, there could be differences in demographic characteristics [7].

Patients who consider repeat transplantation after graft loss have two options: waiting for a deceased donor or looking for an appropriate living donor. Previous studies have shown that repeat transplantation has clear survival benefits compared to remaining on dialysis. Ojo et al. [8] analyzed graft failure in 19,208 patients and found that retransplantation (risk ratio [RR], 0.77; P<0.01) reduced the risk of long-term patient mortality compared to those who remained on the waitlist (RR=1.0). Rao et al. [9] also showed that retransplantation was associated with a covariate-adjusted 50% reduction in mortality relative to remaining on dialysis after graft loss. Repeat kidney transplantation, however, can be challenging due to organ shortages [4]. The key advantage of LDKT is that it can reduce the wait time before transplantation compared to deceased donor transplantation [10]. With an appropriate living donor for repeat transplantation, therefore, the risk of mortality can be reduced compared to remaining on the waitlist. As repeat renal transplantation from living donor has comparable outcomes compared to first transplant, it is a reasonable choice for patients with allograft loss.

Recipients of repeat transplants did show higher immunologic risk than those of first transplants [11,12], with the presence of DSA significantly higher in patients with prior transplantation (6.9% vs. 24%, P<0.001) (Table 1). Despite these immunologic disadvantages, our results showed comparable graft survival between first and second transplants. The only statistically significant difference in immunosuppressive strategy between the two groups was the use of an inductive agent (P<0.001). More than 80% of patients who received repeat transplantation were treated with ATG, while 40% of patients who underwent first kidney transplantation used basiliximab (a monoclonal antibody against CD25, an IL-2 receptor alpha chain) or ATG (11%).

ATG blocks T cell membrane proteins globally, depleting antibodies and producing profound and durable

lymphopenia, while basiliximab specifically blocks the IL-2 signal pathway [13]. This study compared patient outcomes, including immunologic vulnerability, to determine whether the global immunosuppressive effects of ATG over basiliximab had a significant impact. Table 4 showed that the use of ATG seems to have protective effects on graft survival compared to no agent or the use of basiliximab. Univariate analysis, however, found no increased risk of graft failure by the type of inductive agent (Table 2). Previous studies do not indicate ATG as being superior to no agent or basiliximab as an inductive agent for repeat transplantation for graft and patient survival [14-16]. We are therefore cautious in concluding that use of ATG in repeat transplantation truly contributed to the improved results, even with the immunologic disadvantages in repeat transplantation patients in our study. Further investigation of inductive agents in repeat transplantation is needed.

This study has some limitations, including its retrospective design and the analysis of data from a single center. Repeat transplantation patients are also subject to selection bias, as they tend to be healthier or show better kidney performance than those who return to dialysis after allograft loss. The relatively small size of the repeat transplantation group was also a challenge for analysis. This study is nonetheless valuable, as it provides more robust evidence of the safety and efficacy of repeat kidney transplantation specifically with living donors. This study shows that repeat renal transplantation with living donor kidneys offers comparable graft survival, patient survival, and graft function to first transplantation procedures, with no significant increase in complications. Repeat kidney transplantation with living donors is therefore a reasonable choice to reduce the waiting time for transplantation.

ACKNOWLEDGMENTS

Conflict of Interest

Jong Man Kim is an editorial board member of the journal but was not involved in the peer reviewer selection, evaluation, or decision process of this article. No other potential conflict of interest relevant to this article was reported.

Funding/Support

This study was supported by research grant from the Ko-

rean Society for Transplantation (2022-00-01001-008).

ORCID

Namkee Oh https://orcid.org/0000-0002-6594-8973 https://orcid.org/0000-0002-7203-2568 Min Jung Kim Kyo Won Lee https://orcid.org/0000-0002-2722-7817 Hyun Cho https://orcid.org/0000-0001-7048-6366 Sook Young Woo https://orcid.org/0000-0001-6577-3221 https://orcid.org/0000-0001-9809-8525 Jinsoo Rhu Seunghwan Lee https://orcid.org/0000-0002-5516-0947 Jong Man Kim https://orcid.org/0000-0002-1903-8354 https://orcid.org/0000-0003-2545-3105 Gyu-Seong Choi Jae Berm Park https://orcid.org/0000-0001-9117-2278 Jae-Won Joh https://orcid.org/0000-0003-4823-6218

Author Contributions

Conceptualization: NO, MJK, KWL. Data curation: all authors. Formal analysis: NO, HC, SYW. Methodology: all authors. Project administration: NO, MJK, KWL. Visualization: NO, MJK, KWL. Writing-original draft: NO, MJK, KWL. Writing-review & editing: all authors.

REFERENCES

- 1. Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, Jadhav D, et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 2011;11:2093-109.
- 2. Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant 2011;11:450-62.
- 3. Poggio ED, Augustine JJ, Arrigain S, Brennan DC, Schold JD. Long-term kidney transplant graft survival: making progress when most needed. Am J Transplant 2021;21:2824-32.
- 4. Magee JC, Barr ML, Basadonna GP, Johnson MR, Mahadevan S, McBride MA, et al. Repeat organ transplantation in the United States, 1996-2005. Am J Transplant 2007;7(5 Pt 2):1424-33.
- 5. Fiorentino M, Gallo P, Giliberti M, Colucci V, Schena A, Stallone G, et al. Management of patients with a failed kidney transplant: what should we do? Clin Kidney J

2020;14:98-106.

- 6. Pour-Reza-Gholi F, Nafar M, Saeedinia A, Farrokhi F, Firouzan A, Simforoosh N, et al. Kidney retransplantation in comparison with first kidney transplantation. Transplant Proc 2005;37:2962-4.
- El-Agroudy AE, Wafa EW, Bakr MA, Donia AF, Ismail AM, Shokeir AA, et al. Living-donor kidney retransplantation: risk factors and outcome. BJU Int 2004;94:369-73.
- Ojo A, Wolfe RA, Agodoa LY, Held PJ, Port FK, Leavey SF, et al. Prognosis after primary renal transplant failure and the beneficial effects of repeat transplantation: multivariate analyses from the United States Renal Data System. Transplantation 1998;66:1651-9.
- 9. Rao PS, Schaubel DE, Wei G, Fenton SS. Evaluating the survival benefit of kidney retransplantation. Transplantation 2006;82:669-74.
- Meier-Kriesche HU, Kaplan B. Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: a paired donor kidney analysis. Transplantation 2002;74:1377-81.
- 11. Lefaucheur C, Suberbielle-Boissel C, Hill GS, Nochy D, Andrade J, Antoine C, et al. Clinical relevance of preformed HLA donor-specific antibodies in kidney transplantation. Am J Transplant 2008;8:324-31.
- Amrouche L, Aubert O, Suberbielle C, Rabant M, Van Huyen JD, Martinez F, et al. Long-term outcomes of kidney transplantation in patients with high levels of preformed DSA: the Necker high-risk transplant program. Transplantation 2017;101:2440-8.
- 13. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med 2004;351:2715-29.
- Mourad G, Garrigue V, Squifflet JP, Besse T, Berthoux F, Alamartine E, et al. Induction versus noninduction in renal transplant recipients with tacrolimus-based immunosuppression. Transplantation 2001;72:1050-5.
- 15. Brennan DC, Daller JA, Lake KD, Cibrik D, Del Castillo D; Thymoglobulin Induction Study Group. Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N Engl J Med 2006;355:1967-77.
- Schold J, Poggio E, Goldfarb D, Kayler L, Flechner S. Clinical outcomes associated with induction regimens among retransplant kidney recipients in the United States. Transplantation 2015;99:1165-71.