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1  |  INTRODUC TION

Age-related thymic involution is one of the most ubiquitous 
changes during immune system senescence. Most vertebrates ex-
perience thymic involution, which presents as a decrease in thymic 
epithelial cells (TECs) and accumulation of adipose tissue within the 
thymus. Human thymic involution is thought to begin as early as 

1 year of age (Hale, 2004; Murray et al., 2003; Palmer et al., 2018). 
The murine thymus reaches its peak mass at 4 weeks, followed by 
a gradual diminution (Sutherland et al., 2005). Recently, Wu et al. 
examined medullary thymic epithelial cell (mTEC) transcriptomes 
from mice at 2, 6, and 10 weeks of age and showed that age-
related TEC degeneration occurs as early as 6 weeks after birth, 
as evidenced by reduced cell cycle-related gene expression and 
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Abstract
The thymus is the primary immune organ responsible for generating self-tolerant and 
immunocompetent T cells. However, the thymus gradually involutes during early life 
resulting in declined naïve T-cell production, a process known as age-related thymic 
involution. Thymic involution has many negative impacts on immune function includ-
ing reduced pathogen resistance, high autoimmunity incidence, and attenuated tumor 
immunosurveillance. Age-related thymic involution leads to a gradual reduction in 
thymic cellularity and thymic stromal microenvironment disruption, including loss of 
definite cortical-medullary junctions, reduction of cortical thymic epithelial cells and 
medullary thymic epithelial cells, fibroblast expansion, and an increase in perivascular 
space. The compromised thymic microenvironment in aged individuals substantially 
disturbs thymocyte development and differentiation. Age-related thymic involution is 
regulated by many transcription factors, micro RNAs, growth factors, cytokines, and 
other factors. In this review, we summarize the current understanding of age-related 
thymic involution mechanisms and effects.
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increased inflammatory response-related gene expression (Wu 
et al., 2018). Because the thymus involutes as early as 4–6 weeks 
in mice and 1  year in humans, ages when most other organs do 
not show any signs of aging, thymic involution may be an evolu-
tionarily conserved process (Chaudhry et al.,  2016). Some scien-
tists have speculated that thymic involution has an undiscovered 
biological purpose and have divided thymic involution into an early 
phase (growth-dependent thymic involution) and a late phase (age-
dependent thymic involution) (Aw & Palmer, 2012). The early phase 
(growth-dependent thymic involution) may be due to a bioener-
getic trade-off (Boehm & Swann, 2013). In early life, it is essential 
to maintain high thymic activity and produce broad T-cell receptor 
(TCR) diversity to protect against infections (Aw & Palmer, 2012). 
Once the T-cell repertoire is established, it may be beneficial for 
the organism to reduce thymic activity and redistribute energy to 
other organs. In contrast, the late phase (age-dependent thymic in-
volution) may be similar to the aging process of other organs (Aw 
& Palmer, 2012). In this review, we mainly discuss age-dependent 
thymic involution.

Thymic involution leads to a decline in new naïve T-cell pro-
duction and a collapse in peripheral TCR repertoire, resulting 
in impaired immune function (Figure  1). Thymic involution is 

associated with increased susceptibility to many diseases, includ-
ing cancer, infection, and autoimmunity (Fahy et al., 2019; Goronzy 
& Weyand,  2003). It is well known that aging is associated with 
increased incidence of infectious diseases and neoplastic dis-
eases, which is commonly attributed to systematic immunosenes-
cence and a gradual accumulation of genetic mutations (Gavazzi 
& Krause, 2002; Pawelec, 2017). Recently, using a delicate math-
ematical model, Palmer et al. showed that age-related decline in 
T-cell production caused by thymic involution is a major risk fac-
tor for many cancers and infectious diseases in humans (Palmer 
et al.,  2018). A connection between age-related thymic demise 
and autoimmunity has been shown in many studies. For example, 
Hosaka et al. demonstrated that thymus transplantation could 
correct autoimmune disease in aging MRL/+ mice that exhibit 
dramatic thymic involution (Hosaka et al., 1996). In addition, some 
studies suggest that thymic aging might be involved in rheumatoid 
arthritis progression in humans (Goronzy & Weyand, 2003). Thus, 
a more complete understanding of the mechanisms and impacts 
of age-related thymic involution will help us to better understand 
and prevent immunosenescence-associated diseases during aging. 
In this review, we summarize the current knowledge on age-related 
thymic involution mechanisms and effects.

F I G U R E  1 Effects of age on thymic development and function. Age-related thymic involution leads to a gradual reduction in thymic 
cellularity and thymic stromal microenvironment disruption, including the loss of definite cortical-medullary junctions, a reduction in cTECs 
and mTECs, fibroblast expansion, an increase in perivascular space (PVS), and more. The disrupted thymic stromal microenvironment 
disturbs thymocyte development causing decreased ETP and DP frequency, increased DN frequency, and abnormal CD3+ DN cell 
accumulation. The young thymus is able to produce functionally competent T cells expressing a broad TCR repertoire, whereas the aged 
thymus produces fewer naïve T cells with a restricted TCR repertoire
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2  |  THE IMPAC T OF AGE ON THYMIC 
DE VELOPMENT AND FUNC TION

2.1  |  The impact of age on thymic stromal cells

Aged-related thymic involution reduces thymic cellularity in mice 
by 50% at 16 weeks in comparison with its adult peak at 4 weeks, 
eventually leading to less than 5% thymic cellularity (Baran-Gale 
et al., 2020; Dooley & Liston, 2012; Gray et al., 2006; Sutherland 
et al., 2005). In humans, thymus size reduction begins as early as 
1 year of age, and it continues to decline at a rate of approximately 
3% per year until middle age before slowing down to less than 
1% per year (George & Ritter, 1996). Morphological analysis has 
shown that cortical and medullary thymic epithelial region struc-
ture becomes increasingly less reticular and less globular with 
age in mice, and the definite cortical-medullary junction is also 
gradually lost with age (Aw et al., 2008; Baran-Gale et al., 2020) 
(Figure 1). Furthermore, aging is concomitant with thymic epithe-
lial space contraction and perivascular space (PVS) augmentation 
in humans (Steinmann et al., 1985) (Figure 1). The aged thymus dis-
plays obvious TEC reduction, fibroblast and adipocyte expansion, 
and senescent cell accumulation (Aw et al., 2008; Gray et al., 2006; 
Palmer,  2013). Compared with 4  week old mice, TEC cellularity 
is reduced by about 50% at 16 weeks and over 80% at 50 weeks 
(Baran-Gale et al., 2020). In particular, the mTEC population de-
creases gradually with age, leading to a decline in mTEC/cortical 
thymic epithelial cell (cTEC) ratio in aged mice (Gray et al., 2006). 
Although it is widely accepted that TEC number significantly de-
creases with thymic aging, a recent publication indicated that 
thymic aging leads to the contraction of cTEC complex cell pro-
jections, but has no effect on TEC cell number in mice (Venables 
et al., 2019). The authors of this article speculated that the use of 
mechanical/enzymatic methods to isolate TECs in previous stud-
ies may have led to a gross underestimate of total TEC number, 
and they believed that the genetic labeling approach used in their 
study could overcome this (Venables et al., 2019).

Proliferation of both CD45− non-TECs stromal cells and TECs 
decreases dramatically with thymic aging in mice (Gray et al., 2006). 
Impaired TEC proliferation in aged mice was recently further 
demonstrated using transcriptome analysis (Cowan et al.,  2019; 
Ki et al.,  2014). Thymic aging is accompanied by a decline in TEC 
marker expression, including EpCAM, keratin, CD205, and Ulex 
Europaeus Agglutinin 1 (Aw et al., 2008). During thymic aging, the 
ratio of MHCIIhi TECs to MHCIIlo TECs clearly decreases, reflect-
ing a reduced TEC antigen presentation ability in aged mice (Gray 
et al., 2006). However, it is notable that some recent studies have 
shown that the emergence of MHCIIlo TEC subsets during thymic 
development has other specific roles, such as supporting invariant 
NKT (iNKT) cell development in the thymus (Kozai et al., 2017; Lucas 
et al.,  2020). Tissue-restricted antigen expression also diminishes 
with age, representing a potential mechanism for age-related in-
crease in autoimmune diseases (Baran-Gale et al., 2020; A. Griffith 
et al., 2015; Griffith et al., 2012). Aging also impairs TEC secretion 

ability, as demonstrated by diminished production of the thymo-
poietic cytokine IL-7 in mice (Aspinall & Andrew,  2000; Ortman 
et al., 2002). IL-7 administration in older mice and in the rhesus ma-
caque increases thymic output (Aspinall et al.,  2007; Pido-Lopez 
et al., 2002).

Advances in bulk RNA-seq and single-cell RNA-seq (scRNA-seq) 
technology have allowed us to more comprehensively investigate 
TEC subpopulation changes and transcriptional profile changes 
during thymic aging. A recent scRNA-seq study compared TEC sub-
sets in young and old mice. Most mTECs considerably diminished 
and most cTECs dramatically increased in percentage upon aging, 
which is consistent with previous reports (Yue et al.,  2019). The 
mTEC progenitor subsets also reduced with age; however, there was 
a much higher frequency of bipotent TEC progenitors in the aged 
thymus compared to young mice (Yue et al., 2019). It is worth noting 
that the mTEC and cTEC subsets in this study were divided roughly 
based on t-distributed stochastic neighbor embedding analysis, and 
the precise nature of these subsets needs to be further elucidated 
experimentally. A more recent study subdivided TECs from 1, 4, 16, 
32, and 52 week old mice into 9 different subtypes using scRNA-seq 
analysis. In this study, the authors showed that the proportion of 
both perinatal cTECs and mature mTECs were significantly reduced 
with aging, in contrast to the proportion of mature cTECs and inter-
typical TECs, which increased with aging (Baran-Gale et al., 2020). 
By using scRNA-seq and lineage tracing mouse models, the authors 
demonstrated that intertypical TECs represent a TEC progenitor 
state and that aging compromises intertypical TEC differentiation 
into mature mTECs (Baran-Gale et al., 2020). They further analyzed 
the transcriptional signatures of mature cTECs, mature mTECs, and 
intertypical TECs during aging and found that an inflamm-aging 
transcriptional signature was restricted to mature cTECs and mature 
mTECs, rather than intertypical TECs (Baran-Gale et al., 2020).

By comparing thymic stromal cell population transcriptomes 
from 1-, 3-, and 6-month-old mice, Ki et al. found that the expression 
of E2F3 transcriptional targets and cell cycle-associated genes de-
creased with early thymic aging in cTECs and mTECs (Ki et al., 2014). 
A similar study showed that the decline in E2F3 transcriptional tar-
gets and cell cycle-associated genes occurs as early as 6 weeks in 
mice (Wu et al., 2018). E2F3 is a transcription factor that regulates 
cell proliferation and many cell cycle-associated genes (Humbert 
et al., 2000); thus, reduced E2F3 activity results in decreased TEC 
cell-cycle progression in aged mice. Cell cycle-related gene down-
regulation during thymic aging was further confirmed by another 
study that showed a decline in myc targets and ribosomal genes with 
thymic aging in mice (Cowan et al., 2019). By using a FoxN1MycTg 
mouse model, in which myc is overexpressed in TECs, the authors 
further demonstrated that myc mainly promotes ribosomal gene 
expression in TECs, which are distinct from cyclin D1 regulated 
genes (Cowan et al.,  2019). These bulk RNA-seq and scRNA-seq 
results provide an overview of TEC transcriptional and cell subset 
changes during thymic aging. Some representative cTEC and mTEC 
transcripts that are downregulated during aging are summarized in 
Table 1.
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In addition to TECs, aging also affects other stromal cells in 
the thymus. Thymic aging coincides with adipocyte accumulation 
around the thymus, and the increase in adipose tissue may inhibit 
thymic function through adipocytokine secretion (Dixit,  2010). 
Fibroblast percentage also increases in the aging thymus (Figure 1) in 
species including mice, humans, and fish, suggesting that this may be 
a conserved feature (Bertho et al., 1997; Gray et al., 2006; Torroba & 
Zapata, 2003). Recently, a thymic stromal cell transcriptome analysis 
revealed that proinflammatory gene expression increased with aging 
in mouse thymic dendritic cells, which in turn may accelerate thymic 
aging (Ki et al., 2014). Another interesting study demonstrated that 
thymic B cell function is also impaired with aging in mice; the authors 
showed that Aire and Aire-dependent tissue-restricted antigen ex-
pression decline in aging thymic B cells (Cepeda et al., 2018). Thus, 
aging impairs many cell subsets in the thymic microenvironment.

2.2  |  Thymocyte development in the aged thymus

In addition to thymic stromal cells, thymocyte development is 
also drastically disturbed during thymic aging. Some studies have 
shown that hematopoietic stem cells (HSCs) of aged mice display 
an increased bias toward myeloid differentiation concomitant with 
a diminished lymphoid lineage differentiation ability (Beerman 
et al., 2010). HSC abnormalities in aged mice may affect the seeding 
of early T-lineage progenitors (ETPs) within the thymus. Indeed, ETP 

frequency declines with aging, and their potential ability to reconsti-
tute the thymus is also reduced (Min et al., 2004, 2005). ETPs from 
young mice are able to differentiate into all stages of thymocytes 
when seeded into thymic lobes; in contrast, this differentiation abil-
ity is impaired in ETPs from aged mice (Min et al., 2004). However, 
the effect of aging on HSCs and ETPs is controversial. Zhu et al. es-
tablished an elegant mouse model in which they transplanted a fetal 
thymus into the kidney capsule of aged mice, thus providing a young 
thymic microenvironment for aged lymphohematopoietic progenitor 
cells (LPCs) (Zhu et al., 2007). Using this model, they demonstrated 
that the LPCs derived from aged mice and young mice have simi-
lar abilities to differentiate into ETPs and subsequent thymocyte 
subpopulations when transplanted into the young thymic micro-
environment, indicating that LPCs do not have a defect synchro-
nized with age-related thymic involution (Zhu et al., 2007). Another 
study showed that the ETP defects in aged thymi are mainly due 
to changes in thymic epithelial architecture, including the poorly 
defined cortico-medullary junction and reduced medulla cellularity, 
rather than ETP-intrinsic defects (Gui et al., 2007). Thus, although 
aging may have some effects on HSCs and ETPs, the impairment of 
ETPs and subsequent thymocyte subpopulations in aged mice can 
be mainly attributed to thymic microenvironment disruption.

ETPs subsequently differentiate into double negative (DN) 
(CD4−CD8−) subpopulations that include DN1 (CD44+CD25−), DN2 
(CD44+CD25+), DN3 (CD44−CD25+), and DN4 (CD44−CD25−) 
(Liang, Zhang, Dong, et al.,  2021; Luan et al.,  2019). The DN 

Cell types Genes

Average expression level (TPM)

Newborn Adult Aged

mTECs Cell cycle-related 
genes or E2F3 
targets

Ccna2 75.87 63.14 41.00

Ccnb1 93.8 86.26 60.38

Ccnb2 73.15 56.97 41.63

Cdk1 96.96 78.58 57.27

Cdkn2d 38.29 34.65 19.96

Ribosomal genes Rpl23a 1224.37 1002.92 760.76

Rpl10a 361.87 330.44 242.68

Rps24 601.92 545.33 344.34

Rps29 1714.98 1339.24 919.09

Rpl9 1313.21 1105.58 726.28

cTECs Cell cycle-related 
genes or E2F3 
targets

Ccna2 53.09 41.22 5.92

Ccnb1 52.71 53.66 2.13

Ccnb2 38.14 80.92 8.57

Cdk1 64.35 21.59 2.75

Cdkn2d 39.73 45.84 33.06

Ribosomal genes Rpl23a 1267.49 827.83 626.10

Rpl10a 531.99 326.59 210.05

Rps24 728.18 398.52 180.39

Rps29 1696.40 881.87 426.52

Rpl9 2077.67 986.22 662.24

Note: According to the RNA-seq data of Cowan et al. (2019).

TA B L E  1 The expression levels of the 
representative downregulated genes in 
mTECs and cTECs during aging
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subsets subsequently become double positive (DP) (CD4+CD8+) 
cells that further differentiate into CD4 or CD8 single positive 
(SP) T cells through the process of positive and negative selection 
(Germain, 2002). Although both DN and DP population cell numbers 
are significantly reduced with aging, DN subset frequency increases 
2–3 times in aged (24–27 months old) mice compared with young 
(2–3 months old) mice, whereas the percentage of DP (CD4+CD8+) 
subpopulations significantly diminishes with age (Thoman,  1995). 
Among DN subsets, there is a considerable reduction in DN2 and 
DN3 subset cell numbers with thymic aging in mice (Aspinall, 1997). 
Additionally, thymic aging is concomitant with the abnormal accu-
mulation of CD3+ DN cells within the thymus (Aw et al., 2009, 2010). 
Aging also interferes with later stages of thymocyte development. 
DP and SP thymocytes in aged mice display deregulated CD3 ex-
pression, which may lead to attenuated TCR-dependent stimulation 
(Aw et al.,  2009). Indeed, thymocytes from older mice exhibit an 
impaired mitogen response ability, which is manifested by a fail-
ure to upregulate the activation marker CD69 and proliferate (Aw 
et al., 2010; Djikic et al., 2014). Consistent with impaired thymocyte 
differentiation in the aged thymus, T-cell receptor excision circles 
(TRECs) within the thymus also significantly decline with aging in 
mice and humans (Ortman et al., 2002; Palmer et al., 2018). Thus, 
aging impairs multiple thymocyte developmental stages.

2.3  |  Thymic involution effects on thymic output

Mature CD4 SP and CD8 SP thymocytes are exported to the pe-
riphery where they play a role in immunological surveillance (Liang, 
Zhang, Zhang, et al., 2021; Zhang et al., 2021). Age-related thymic 
involution causes an obvious reduction in the thymic output of 
naïve T cells and subsequently decreases peripheral T-cell diversity 
(Chaudhry et al., 2016; Cowan et al., 2020). Diminished thymic pro-
duction of naïve T cells leads to homeostatic expansion of existing T 
cells, resulting in memory T-cell augmentation (Surh & Sprent, 2000). 
Although it is well accepted that the thymic output of peripheral 
naïve T cells progressively declines with aging in mice (den Braber 
et al., 2012), in humans, the relationship of thymic involution to pe-
ripheral naïve T-cell maintenance is a matter of debate. Many stud-
ies using TRECs as a measurement of thymic output demonstrate 
that peripheral naïve T-cell thymic output declines with aging in hu-
mans (Fagnoni et al., 2000; Ferrando-Martinez et al., 2011; Mitchell 
et al., 2010; Naylor et al., 2005). However, Braber et al. showed that 
adult human peripheral naïve T-cell pool maintenance occurs almost 
exclusively through cell proliferation, rather than thymic output (den 
Braber et al., 2012). Thus, the contribution of thymic output to naïve 
T-cell pool maintenance in adults needs further investigation.

Aging also interferes with naïve T-cell properties and functions 
(Srinivasan et al., 2021). Naïve T cells from aged mice express ele-
vated levels of senescence markers and display reduced proliferation 
ability upon antigen stimulation (Akbar & Henson, 2011; Chaudhry 
et al., 2016). Chemokine receptor expression is also altered in CD4+ 
T cells of aged mice, exhibiting a deregulation of CCR1, 7, and 8 

and CXCR2, 4, and 5, which may impair their migration ability (Mo 
et al., 2003). The reduced number of naïve T cells together with the 
disrupted function of naïve T cells during aging leads to impaired 
immunological surveillance ability in aged organisms.

3  |  AGE-REL ATED THYMIC INVOLUTION 
MECHANISMS

3.1  |  Thymic stromal cell alterations lead to thymic 
involution

Although the T-lineage differentiation potential of HSCs and ETPs is 
partially compromised in aged mice compared with young mice (Min 
et al., 2004; Zediak et al., 2007), increasing evidence suggests that 
thymic involution is mainly caused by age-related thymic stromal cell 
degeneration, particularly TEC degeneration (Chen et al., 2009; A. 
V. Griffith et al.,  2015; Gui et al.,  2012; Zhu et al.,  2007). For ex-
ample, a global transcriptome analysis of thymic stromal cells and 
lymphocytes revealed that mouse thymic stromal cells, in contrast 
to lymphocytes, are deficient in catalase (A. V. Griffith et al., 2015). 
This results in elevated H2O2 levels and stromal cell oxidative dam-
age, which subsequently leads to thymic atrophy. The authors fur-
ther showed that thymic atrophy could be ameliorated by genetic 
and biochemical restoration of antioxidant activity (A. V. Griffith 
et al., 2015). Similar to this study, another publication revealed that 
the thymi of human Down syndrome patients exhibited prema-
ture senescence, and TECs from Down syndrome patients showed 
increased oxidative stress (Marcovecchio et al.,  2021). Using a 
genome-wide computational approach, another group showed that 
age-associated thymic degeneration is primarily a stromal cell func-
tion change (Griffith et al., 2012). Many studies support the pivotal 
role of thymic stroma in thymic aging. Mackall et al. showed that 
lethally irradiated older mice exhibit impaired thymopoiesis com-
pared with lethally irradiated young mice after both were injected 
with young bone marrow (Mackall et al., 1998). A similar experiment 
showed that intrathymic injection of young ETPs failed to restore 
normal thymopoiesis in older mice but did so in young mice (Zhu 
et al.,  2007). In contrast, the same study showed that fetal thymi 
transplants into the kidney capsules of young or old mice had similar 
thymopoiesis (Zhu et al., 2007). Overall, these findings suggest that 
the thymic stroma is a key factor in regulating age-related thymic 
involution. Likely, the durable identity of the thymus is established 
by its stromal components because developing thymocytes are only 
transiently present in the thymus (Petrie & Zuniga-Pflucker, 2007).

3.2  |  Molecular regulation of thymic involution

Foxn1 is essential for embryonic thymic organogenesis and TEC 
maintenance in adults (Zuklys et al., 2016), and emerging evidence 
suggests that Foxn1 also plays a critical role in preventing age-
related thymic involution (Abramson & Anderson,  2017). Foxn1 
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expression progressively declines with aging (Figure 2), and Foxn1 
overexpression ameliorates age-related thymic deterioration, indi-
cating that Foxn1 is a pivotal regulator of thymic aging (Bredenkamp 
et al., 2014; Chen et al., 2009; O'Neill et al., 2016; Rode et al., 2015; 
Zook et al., 2011). Sun et al. generated a loxP-floxed-Foxn1 mouse 
model carrying a ubiquitous CreERT transgene with a low level of 
spontaneous activation leading to a gradual loss of Foxn1 expres-
sion with age (Sun et al.,  2010). By examining this mouse model's 
phenotype at different ages, Sun et al. demonstrated that gradual 
Foxn1 loss with age substantially accelerates age-related thymic 
involution (Sun et al., 2010). In contrast, Foxn1 overexpression re-
stores most of the changes caused by thymic involution in old mice, 
including thymic mass enlargement, increased ETP frequency, el-
evated EpCAM+MHCII+ TEC cell number, and CD4+ and CD8+ naïve 
compartment expansion in the spleen (Bredenkamp et al.,  2014; 
Zook et al., 2011). Moreover, a recent study showed that engrafting 
Foxn1-reprogrammed embryonic fibroblasts could rejuvenate aged 
thymic architecture and function in both male and female mice (Oh 
et al., 2020). Collectively, these studies demonstrate a crucial role 
for Foxn1 in regulating age-associated thymic degeneration.

The Wnt signaling pathway attenuates with aging in the thy-
mus (Ferrando-Martinez et al., 2015; Kvell et al., 2010; Yang, Youm, 
Sun, et al., 2009) (Figure 2). Ferrando-Martínez et al. found that the 
nonadipocytic component of the human thymus expresses higher 
levels of Wnt pathway inhibitors in the elderly than in the young, 
thus attenuating the Wnt pathway (Ferrando-Martinez et al., 2015). 

Using thymic stromal cell transcriptome analysis, Griffith et al. re-
vealed that Wnt signaling deregulation is the most significant hall-
mark of thymic degeneration (Griffith et al., 2012). A previous study 
illustrated that the expression of Axin, a Wnt inhibitor, on mTECs 
and fibroblasts increases with aging in humans and mice, and Axin 
knockdown by RNA interference ameliorates age-related thymic de-
generation (Yang, Youm, Sun, et al., 2009). Another study showed 
that Wnt pathway reduction during aging may involve the epithelial–
mesenchymal transition (EMT) process in mice, which we will discuss 
further below (Kvell et al., 2010).

Growth factors and cytokines also play critical roles in age-
related thymic involution. Prolongevity ketogenic hormone fibro-
blast growth factor 21 (FGF21) expression gradually declines in the 
thymus with age, and loss of FGF21 function in middle-aged mice 
accelerates age-dependent thymic deterioration (Figure 2), suggest-
ing that FGF21 expression could protect against age-related thymic 
involution (Youm et al., 2016). Leukemia inhibitory factor (LIF), on-
costatin M (OSM), IL-6, and stem cell factor (SCF) expression levels 
all increase with age in mice (Figure 2), and this elevated expression is 
associated with thymic involution (Sempowski et al., 2000). Studies 
have shown that these cytokines may originate from adipocytes 
or TECs (Dooley & Liston, 2012; Ventevogel & Sempowski, 2013). 
Another proinflammatory cytokine, IL-1β, is mainly expressed by 
macrophages in the thymus (Figure 2), and its increased expression 
levels also lead to thymic involution (Dixit, 2012; Finn et al., 2018; 
Guarda et al., 2011). Consistent with this, IL-1β receptor is primarily 

F I G U R E  2 Age-related thymic involution mechanisms. Both positive and negative regulators of thymic involution have been identified. 
Positive regulators include Foxn1, E2F3, myc, Wnt4, FGF21, KGF, IL-7, IL-22, miR-181a-5p, Lamin-B1, Leptin, GH, IGF-1, Ghrelin, and 
GHSR, which exhibit reduced activity with age. Negative regulators include Axin, LIF, OSM, IL-6, SCF, IL-1β, miR-125a-5p, miR-205-5p, and 
follistatin, which exhibit increased activity with age. In addition, CR can attenuate age-related thymic involution, while obesity and sex 
hormones exacerbate age-related thymic involution
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expressed in TECs, and ablation of Nlrap3 and Asc, which are re-
quired for IL-1β activation, protect against age-related thymic de-
mise and immunosenescence in mice (Youm et al., 2012). In contrast, 
some cytokines and growth factors play positive roles in prevent-
ing age-associated thymic degeneration. Studies have shown that 
IL-7, IL-22, and keratinocyte growth factor administration reverse 
age-induced thymic involution in humans and mice (Ventevogel & 
Sempowski, 2013).

MicroRNAs (miRNAs) have been implicated in the aging process 
in many organisms, and the role of miRNAs in age-associated thy-
mic deterioration was recently investigated. Guo et al. compared 
various miRNA expression levels in TECs from 2-month-old and 
20-month-old mice and identified many differentially expressed 
miRNAs (Guo et al.,  2013). Whole thymus miRNA expression 
has also been examined during aging. Compared with thymi from 
1-month-old mice, 50 and 81 miRNAs were differentially expressed 
in thymi from 10-month-old and 19-month-old mice, respectively 
(Ye et al., 2014). Among these differentially expressed miRNAs, miR-
181a-5p and miR-125a-5p, which were downregulated and upregu-
lated during aging, respectively, have been studied further. Guo et al. 
revealed that miR-181a-5p expression decreased in TECs of 10- to 
19-month-old mice compared to 1-month-old mice, and miR-181a-5p 
promoted mTEC proliferation by targeting transforming growth 
factor beta receptor I (Tgfbr1), which exhibits increased expres-
sion with aging. This suggests that miR-181a-5p could prevent age-
related thymic demise by interfering with TGFβ signaling that could 
negatively regulate the development of mTECs and promote thymic 
involution (D. G. Guo et al., 2016; Hauri-Hohl et al., 2008, 2014; Xu 
et al., 2018). In contrast to miR-181a-5p, Xu et al. revealed that miR-
125a-5p expression increased in TECs of aged mice compared with 
TECs of young mice. They found that miR-125a-5p suppressed Foxn1 
expression, which may underlie its role in promoting age-related 
thymic involution (Xu et al., 2018; Xu, Sizova, et al., 2017). A more 
recent study showed that miR-205-5p expression in TECs mark-
edly increased with aging in mice, and miR-205-5p promoted age-
associated thymic involution by inhibiting TEC proliferation (Gong 
et al., 2020). Another study compared differentially expressed miR-
NAs in the thymi of 10-month-old newborn babies and 70-year-old 
humans and showed that 106 miRNAs were significantly changed 
in elderly thymi (Ferrando-Martinez et al.,  2015). Furthermore, 
some of the altered miRNAs in this study, such as miR-25, miR-134, 
and miR-7f, could modulate the Wnt pathway (Ferrando-Martinez 
et al.,  2015). In addition to age-related thymic involution, microR-
NAs also regulate stress-induced thymic involution. Papadopoulou 
et al. showed that miR-29a could prevent pathogen-associated thy-
mic involution via targeting the IFN-α receptor in TECs, and Hoover 
et al. revealed that miR-205 expression in TECs could maintain thy-
mopoiesis following inflammatory perturbations in mice (Hoover 
et al., 2016; Papadopoulou et al., 2012). Thus targeting miRNAs may 
be a potential strategy to rejuvenate age-induced diminished thymic 
function (Xu, Zhang, et al., 2017).

Recently, some new thymic involution regulators have been iden-
tified. Lamin-B1 is a cellular architectural protein that has recently 

been shown to play a critical role in preventing thymic aging in mice 
(Yue et al., 2019). Yue et al. demonstrated that the increased proin-
flammatory cytokines produced by thymic myeloid immune cells 
during aging diminishes Lamin-B1 expression in TECs and promotes 
cell senescence, which subsequently induces age-related thymic 
involution (Yue et al.,  2019) (Figure  2). Other recent studies have 
shown that imbalances in follistatin, activin A, and BMP4 signaling 
drive thymic involution in mice (Lepletier et al., 2019), while liver X 
receptors, a class of nuclear receptors that sense intracellular oxys-
terols and cholesterol biosynthetic pathway intermediates, may pro-
tect against premature thymic involution in mice (Chan et al., 2020). 
Additionally, results from our lab showed that TEC-specific deletion 
of tuberous sclerosis complex 1 (Tsc1), a negative regulator of mTOR 
activity (Liang, Zhang, Zhang, et al., 2021), also accelerates thymic 
involution in mice (unpublished data). Interestingly, sirtuin 6 (Sirt6) 
is a chromatin deacylase that has been implicated as a key factor in 
aging (Chang et al., 2020); however, our recent publication showed 
that Sirt6 deficiency in TECs has no obvious effects on thymic aging 
in mice (Zhang et al., 2021).

3.3  |  Sex hormones in thymic involution

Steroid hormone levels change dramatically with aging, and ster-
oid hormones play a critical role in promoting age-related thymic 
involution (Gui et al.,  2012). The role of sex hormones in thymic 
involution was first reported in 1904 in a study that found that cas-
trated cattle had enlarged thymi (Henderson,  1904). Additionally, 
the fact that the thymus degenerates most rapidly after puberty, 
when steroid hormone production reaches its peak, further sup-
ports the role of steroid hormones in thymic involution (Abramson 
& Anderson,  2017). Thymic involution is also more rapid in males 
than in females (Gui et al.,  2012; Hun et al.,  2020), implying that 
androgens may have a more dramatic impact on thymic involution. 
Although both TECs and thymocytes express androgen recep-
tors (Olsen et al.,  2001), androgen-mediated thymic involution is 
caused by direct impact on TECs rather than thymocytes because 
TEC-specific (but not thymocyte-specific) androgen receptor dele-
tion leads to androgen-mediated thymic involution resistant in mice 
(Olsen et al., 2001). More recently, a comprehensive transcriptome 
analysis showed that sexual dimorphism significantly affects cTECs 
(Dumont-Lagace et al.,  2015). cTECs from male mice display low 
proliferation rates, and androgen-dependent signaling represses the 
expression of genes involved in cTEC development and function, 
such as Foxn1, Dll4, Psmb11, and Ctsl (Dumont-Lagace et al., 2015). 
Consistently, another study demonstrated that sex steroid blockade 
could increase Dll4 expression and its downstream targets on cTECs 
in mice, which further promotes thymopoiesis by modulating Notch 
signaling (Velardi et al., 2014). Notably, although castration is an ef-
fective way to regenerate the aged thymus, the thymic regrowth in-
duced by castration is transient (Griffith et al., 2012).

Pregnancy also causes thymic involution, mainly mediated by 
progesterone (Clarke & Kendall,  1989). Studies have shown that 
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progesterone receptor expression in thymic stromal cells is re-
quired for thymic involution during pregnancy in mice (Tibbetts 
et al.,  1999). Interestingly, thymic involution during pregnancy 
may be essential for normal fertility (Tibbetts et al., 1999). A re-
cent study uncovered that RANK expression in TECs promoted 
sex hormone-mediated thymic involution and natural regulatory 
T-cell development during pregnancy, which is critical for suc-
cessful pregnancy and prevention of gestational diabetes (Paolino 
et al., 2021).

3.4  |  Metabolic regulation of thymic involution

Caloric restriction (CR) has long been known to play a critical role 
in increasing life span. Recently, CR was also shown to be effec-
tive at preventing age-related thymic involution. Yang et al. showed 
that CR could inhibit thymic adipogenesis and reduce age-related 
thymic involution in mice (Yang, Youm, Vandanmagsar, et al., 2009). 
Another study conducted on nonhuman primates obtained similar 
results; the authors showed that long-term CR effectively improves 
naïve T-cell production and preserves T-cell receptor repertoire di-
versity (Messaoudi et al., 2006). Thymus transcriptome analysis in 
short-term CR mice showed that CR altered catalytic activity and 
metabolic processes (Omeroglu Ulu et al., 2018). Short-term CR also 
altered the expression of leptin, ghrelin, Igf1, and adiponectin, some 
of which were reported to be associated with age-related thymic in-
volution (Omeroglu Ulu et al., 2018).

Obesity increases the risk of infections and cancer, which may 
be partly ascribed to obesity's negative impact on thymic invo-
lution. High-fat diet fed mice display disrupted thymic structure, 
including a reduced medullary region and an absence of the cortico-
medullary junction (Gulvady et al., 2013). Diet-induced obesity also 
leads to thymocyte apoptosis, reduces thymic output, and compro-
mises TCR repertoire diversity in mice (Yang, Youm, Vandanmagsar, 
et al., 2009). Progressive adiposity in middle-aged humans also de-
creases thymic output (Yang, Youm, Vandanmagsar, et al.,  2009). 
Resveratrol, a phytoalexin produced from plants, has been shown 
to have the potential to inhibit obesity-induced thymic involution 
(Gulvady et al.,  2013; Wei et al.,  2020). Leptin is a potent adipo-
kine that is responsible for sensing a positive energy balance state 
and reducing food intake (Friedman & Halaas, 1998). Leptin (ob/ob 
mouse)- and leptin receptor (db/db mouse)-deficient mice display se-
vere obesity that subsequently causes significant thymic involution 
(Dixit, 2012; Howard et al., 1999). Leptin administration rescues this 
accelerated thymic involution in ob/ob mice (Howard et al., 1999). 
Another study showed that leptin receptor is mainly expressed in 
the medullary region of the thymus (Gruver et al., 2009). Consistent 
with results in mice, human patients with loss-of-function leptin and 
leptin receptor mutations also display T-cell functional defects that 
could be partially reversed by recombinant leptin administration 
(Farooqi et al., 2002, 2007). Furthermore, naïve CD8 T-cell mainte-
nance in nonagenarians has been shown to be associated with high 
leptin levels (Chen et al., 2010).

Growth hormone (GH) and its proximal mediator, IGF-1, play crit-
ical roles in preventing age-associated thymic involution. Indeed, GH 
removal by hypophysectomy leads to thymic atrophy in mice and 
humans (Napolitano et al.,  2008; Savino et al.,  2002). Circulating 
GH levels decline with aging, and GH administration partially ame-
liorates age-related thymic involution in mice (Taub et al.,  2010). 
Randomized clinical studies in middle-aged HIV patients showed 
that GH treatment increases thymic mass and elevates TRECs in 
peripheral T cells (Napolitano et al.,  2008). Similarly, exogenous 
administration of IGF-1 enhances thymopoiesis mainly through 
TEC expansion in mice (Chu et al., 2008). Furthermore, subcutane-
ous transplantation of GH3 pituitary adenoma cells, which secrete 
growth hormone, reverses thymic aging in rats (Kelley et al., 1986). A 
recent clinical trial showed that recombinant human GH administra-
tion combined with dehydroepiandrosterone and metformin could 
promote thymic regeneration and increase protective immunologi-
cal changes (Fahy et al., 2019). However, GH application in clinical 
practice needs to be carefully considered due to its significant side 
effects (Taub et al., 2010). Ghrelin is a stomach hormone that can 
induce strong GH-releasing activity through binding to its receptor-
specific 7-transmembrane GH secretagogue receptor (GHSR) (Sato 
et al., 2012). Ghrelin and GHSR expression within the thymus de-
cline with progressive age, and administration of both ghrelin and 
ghrelin-receptor agonists alleviate age-associated thymic deteriora-
tion in mice and humans (Dixit et al., 2007, 2009; Smith et al., 2007). 
Consistent with this, genetic studies revealed that ghrelin and GHSR 
deficiency accelerates age-associated thymic demise in mice (Youm 
et al.,  2009). Thus, many hormones contribute positively or nega-
tively to thymic involution.

3.5  |  Adipocyte origin during thymic involution: 
The EMT process

Adipogenesis is a notable feature of thymic involution (Dixit, 2010). 
Recently, some progress has been made in understanding how adi-
pocytes are formed during thymic aging. Using genetically modified 
reporter mice, Youm et al. first reported that TECs can transition 
to mesenchymal cells through a mechanism called EMT (Youm 
et al., 2009). These mesenchymal cells are highly plastic and have the 
potential to differentiate into adipocytes (Mani et al., 2008). Indeed, 
these mesenchymal cells express pro-adipogenic genes, which pro-
vide a possible adipocyte origin in the thymus (Youm et al., 2009). 
Some regulators play critical roles in the EMT process. Peroxisome 
proliferator-activated receptor gamma (PPARγ), a member of the nu-
clear receptor superfamily of ligand-activated transcription factors, is 
involved in adipocyte development (Tontonoz & Spiegelman, 2008). 
Thus, it is reasonable to speculate that PPARγ may play a key role 
in thymic involution. Indeed, an adipocyte-lineage-specific constitu-
tively active PPARγ transgene and administration of rosiglitazone, a 
PPARγ signaling activator, both promote age-related thymic involu-
tion in mice (Youm et al., 2010). In fact, the Ghrl–GHSR interaction 
and CR both protect against thymic involution by inhibiting EMT 
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and adipogenesis in mice (Yang, Youm, Vandanmagsar, et al., 2009; 
Youm et al.,  2009), and CR-mediated thymic involution inhibition 
also involves PPARγ downregulation in mouse thymic stromal cells 
(Yang, Youm, & Dixit, 2009). Furthermore, decreased Wnt4 and in-
creased LAP2α during thymic aging may promote direct TEC trans-
differentiation into pre-adipocytes or cause EMT and subsequent 
pre-adipocyte differentiation (Kvell et al.,  2010). A recent study 
showed that CD147 deletion from T cells in mice could prevent 
thymic involution by inhibiting TEC EMT, implying that the inter-
action between thymocytes and TECs contributes to age-related 
thymic involution (Chen et al., 2020). Although some progress has 
been made, adipocyte origin during thymic aging needs further 
investigation.

4  |  CONCLUSIONS

Age-related thymic involution contributes significantly to immu-
nosenescence. Although some progress has been made in under-
standing the molecular regulation of thymic involution, the detailed 
molecular regulation network is still unclear. Comprehensive infor-
mation about age-related thymic involution is needed to promote 
thymic rejuvenation in the elderly. With advances in transcriptome 
analysis, significant progress has been made in understanding over-
all thymic stromal cell changes during aging, and the use of scRNA-
seq has revealed comprehensive TEC subset changes. Thymic aging 
is associated with the downregulation of cell cycle-related genes and 
ribosome biogenesis-related genes in TECs. Recent genetic studies 
have also identified some new thymic aging regulators, including 
FGF21, lamin-B1, liver X receptors, and some miRNAs. With the cur-
rent understanding of age-related thymic involution, we can specu-
late that thymic stromal cells (especially TECs) offer potential targets 
for thymic rejuvenation in the elderly.
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