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[18F]fluoro-2-deoxy-D-glucose (FDG) is one of the most utilized tracers for positron emission tomography (PET) applications in
oncology. FDG-PET relies on higher glycolytic activity in tumors compared to normal structures as the basis of image contrast. As a
glucose analog, FDG is transported into malignant cells which typically exhibit an increased radioactivity. However, different from
glucose, FDG is not reabsorbed by the renal system and is excreted to the bladder.Thepresent paper describes a novel computational
method for the quantitative assessment of this excretion process. The method is based on a compartmental analysis of FDG-PET
data in which the excretion process is explicitly accounted for by the bladder compartment and on the application of an ant colony
optimization (ACO) algorithm for the determination of the tracer coefficients describing the FDG transport effectiveness. The
validation of this approach is performed by means of both synthetic data and real measurements acquired by a PET device for
small animals (micro-PET). Possible oncological applications of the results are discussed in the final section.

1. Introduction

Positron emission tomography (PET) [1] is an imaging tech-
nique capable of detecting picomolar quantities of a labeled
tracer with temporal resolution of the order of seconds. FDG-
PET [2–4] is a PET modality in which [18F]fluoro-2-deoxy-
D-glucose (FDG) is used as a tracer to identify several kinds
of tumors, since malignant cells typically exhibit an increased
FDG uptake in PET scans. Although FDG is a glucose
analog, there are several differences between the uptake and
metabolism of FDG compared with normal glucose. Both
molecules, for example, are transported into cells by the same
proteins, and both are phosphorylated by hexokinase. How-
ever, FDG is trappedwithin the cell as a consequence of phos-
phorylation, and therefore it cannot be further metabolized;

unlabeled glucose, on the contrary, is either stored as glyco-
gen or rapidly metabolized. Further, at a renal level, unlike
glucose, FDG is not reabsorbed by the renal tubule, and then
it is excreted, which implies that there is radioactivity in the
bladder.We point out that this last issue has a significant con-
sequence as far as the effectiveness of the imaging procedure
is concerned; in fact, the more radioactivity is in the bladder,
the less amount of tracer is available for tumor identification.

A typical way to assess the FDG excretion in the urine is
to compute the average clearance defined as the ratio between
the (asymptotic) activity in the bladder and the time integral
of the tracer concentration in blood [5]. In nuclear imaging,
both these quantities can be computed by drawing regions
of interest (ROIs) on the bladder and on the left ventricle
and by computing the corresponding activities at different
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time points. However, clearance provides just a macroscopic
description of the FDG metabolism with no information on
the local tracer kinetics. From an experimental viewpoint,
we notice that the measurement of the activity in these ROIs
for human beings is made difficult (or even impossible)
by the acquisition modalities typical of PET (simultaneous
imaging of the left ventricle, the kidneys, and the bladder
for several time intervals would require total body long
acquisition time). In the present paper, we utilize a PET
system for small animals (mice) to show that this local
information on tracer kinetics can be inferred by applying
a nonstandard compartmental analysis to nuclear data. We
find, in particular, that a specific tracer coefficient determined
by reducing the compartmental model is strongly correlated
to average clearance and that the other computed coefficients
provide a reliable local description of the effectiveness with
which FDG is exchanged between the different physiological
compartments.

The first novelty of our approach is in the kind of
compartmental model adopted. Unlike the typical schemes
for the study of renal physiology [6, 7], which are made of
two functional compartments anatomically embedded in the
kidneys, here we add a third compartment representing the
pool where the excreted tracer is accumulated. Therefore,
here we deal with the scheme represented in Figure 1.

(i) As in [6, 7], kidneys include two compartments. Dif-
ferently from those papers, here we use the terms tis-
sue or parenchyma (instead of plasma) and preurine
(instead of tubules) for the two compartments. In
particular, the reason of the choice of the term
preurine is because in this compartment we encode
two FDG functions: the one of a (possibly small)
quantity of FDG that may in principle return to tissue
and then to the plasma stream and the one of a bigger
quantity of FDG that is captured by the tubular system
and is excreted in the urine without reabsorption.

(ii) A third compartment, the urine, is localized in the
bladder and is characterized by one single input and
no corresponding output.

(iii) The time activity curve (TAC) describes the input of
tracer in the system and is determined from regions
of interest (ROIs) of the left ventricle drawn on FDG-
PET maps at different time steps.

(iv) Estimates of the tracer concentration for the blad-
der and for the two-compartment system made of
parenchyma and preurine are obtained by means of
ROIs including bladder and kidneys, respectively.

(v) Six exchange coefficients describe the efficiency of
tracer transmission between the different compart-
ments (further exchange coefficients, e.g., the ones
describing the circulation for the bladder back to the
kidneys, are set to zero for well-established physiolog-
ical reasons).

From a mathematical viewpoint, the time-dependent
concentrations of tracer in each compartment constitute
the state variables; the time evolution of the state variables
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Figure 1: The compartmental model adopted in this paper.

(the kinetics of the system) is modeled by a linear system
of ordinary differential equations for the concentrations,
expressing the conservation of tracer during flow between
compartments; the (constant) coefficients describing the
input/output rates of tracer for each compartment, called
exchange coefficients or rate constants ormicroparameters [8],
represent the unknowns to be estimated. Under the assump-
tion that the exchange coefficients are given, we solve the
direct problem of determining the explicit formal expressions
of the tracer concentration in each compartment and classify
the solutions in four families by means of spectral analysis
arguments. Then, the inverse problem of determining the
six unknown exchange coefficients is addressed by means
of an “ad hoc” implementation of Ant Colony Optimization
(ACO) [9, 10], which represents the second novelty of our
computational approach to the assessment of FDG excretion.
ACO is a statistical optimization algorithm inspired by
evolutionary strategies that, in this application, minimizes
the functional measuring the discrepancy between the exper-
imental concentrations and the analytical forms provided
by the solution of the forward problem. This functional is
characterized by a notable number of local minima, and
therefore for its minimization, biology-inspired strategies are
certainly more effective than deterministic nonlinear opti-
mization techniques [11]. Further, the gradient of this same
functional has singularities (mainly in some specific direc-
tions), and therefore gradient-based schemes may be rather
dangerous.

The paper content is organized as follows. In Section 2,
we describe the Cauchy problem modeling the direct prob-
lem and determine the exchange coefficients by means of
statistical optimization. Section 3 shows some applications to
synthetic and real PET measurements. Our conclusions are
offered in Section 4.

2. Materials and Methods

2.1. The Direct Problem. The state variables of the three-
compartment model adopted in this paper are the tracer
concentrations in the tissue (𝐶

𝑡
), in the preurine (𝐶

𝑝
), and in
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the urine contained in the bladder (𝐶
𝑢
) (all these con-

centrations are in BqmL−1). Moreover, the kinetic process
in the system is initialized by the TAC 𝐶

𝑏
, representing

the tracer concentration in blood. The usual conditions for
compartmental analysis hold; for example, tracer is uni-
formly distributed in each compartment at each instant [12],
diffusive effects are neglected, and physiological processes
are in a steady state. The six constant exchange coefficients
(rate constants, in minutes−1) between compartments in
contact are denoted as 𝑘

𝑎𝑏
, where the suffixes 𝑎 and 𝑏

denote the target and source compartment, respectively. For
example, 𝑘

𝑢𝑝
is the rate constant of tracer carried “to” the

bladder pool 𝑢 “from” the preurine pool 𝑝. We assume 𝑘
𝑎𝑏

≥

0 for all cases.
Conservation of tracer exchanged between compart-

ments leads to the following system of linear ordinary
differential equations with constant coefficients:

�̇�
𝑡
= − (𝑘

𝑏𝑡
+ 𝑘
𝑝𝑡
) 𝐶
𝑡
+ 𝑘
𝑡𝑝
𝐶
𝑝
+ 𝑘
𝑡𝑏
𝐶
𝑏
,

�̇�
𝑝

= 𝑘
𝑝𝑡
𝐶
𝑡
− (𝑘
𝑡𝑝

+ 𝑘
𝑢𝑝

) 𝐶
𝑝
+ 𝑘
𝑝𝑏

𝐶
𝑏
,

�̇�
𝑢
= 𝑘
𝑢𝑝

𝐶
𝑝
,

(1)

with initial conditions𝐶
𝑡
(0) = 𝐶

𝑝
(0) = 𝐶

𝑢
(0) = 0, and where

the dependence on time is implicit.The first two equations in
(1) can be written in the compact form

Ċ = AC + K𝐶
𝑏
, (2)

with initial condition C(0) = 0. Here, in fact,

C := [
𝐶
𝑡

𝐶
𝑝

] ; (3)

A = [
− (𝑘
𝑏𝑡

+ 𝑘
𝑝𝑡
) 𝑘

𝑡𝑝

𝑘
𝑝𝑡

− (𝑘
𝑡𝑝

+ 𝑘
𝑢𝑝

)
] =: [

−𝑎 𝑏

𝑐 −𝑑
] ; (4)

K := [
𝑘
𝑡𝑏

𝑘
𝑝𝑏

] . (5)

The definition of A corresponds to

𝑎 := 𝑘
𝑏𝑡

+ 𝑘
𝑝𝑡
, 𝑐 := 𝑘

𝑝𝑡
,

𝑑 := 𝑘
𝑡𝑝

+ 𝑘
𝑢𝑝

, 𝑏 := 𝑘
𝑡𝑝

(6)

with inverse relations

𝑘
𝑝𝑡

= 𝑐, 𝑘
𝑏𝑡

= 𝑎 − 𝑐,

𝑘
𝑡𝑝

= 𝑏, 𝑘
𝑢𝑝

= 𝑑 − 𝑏.

(7)

In the first part of this subsection, we will show how the
structure of matrix A is related to the explicit forms of
tracer concentration in the different compartments. In the
framework of compartmental analysis, this issue is crucial for
the study of the inverse problem performed in the next sub-
section.

Let us first assume that 𝑐 ̸= 0 and 𝑏 ̸= 0. Then, the solution
of (2)–(7) is given by

𝐶
𝑡
= 𝑐
1
𝑏𝐸
1
+ 𝑐
2

(𝑑 + 𝜆
2
) 𝐸
2
, (8)

𝐶
𝑝

= 𝑐
1
(𝑎 + 𝜆

1
) 𝐸
1
+ 𝑐
2
𝑐𝐸
2
, (9)

𝐸
𝑖
= ∫

𝑡

0

𝑒
𝜆𝑖 (𝑡−𝜏)𝐶

𝑏
(𝜏) 𝑑𝜏 = 𝑒

𝜆𝑖𝑡 ∗ 𝐶
𝑏
, 𝑖 = 1, 2, (10)

where ∗ denotes the convolution operator, the constants 𝑐
1

and 𝑐
2
are defined as

𝑐
1
=

−𝑐𝑘
𝑡𝑏

+ (𝑑 + 𝜆
2
) 𝑘
𝑝𝑏

(𝑎 + 𝜆
1
) (𝑑 + 𝜆

2
) − 𝑏𝑐

,

𝑐
2
=

(𝑎 + 𝜆
1
) 𝑘
𝑡𝑏

− 𝑏𝑘
𝑝𝑏

(𝑎 + 𝜆
1
) (𝑑 + 𝜆

2
) − 𝑏𝑐

,

(11)

and 𝜆
1
, 𝜆
2
are the eigenvalues of the matrix A with explicit

values

𝜆
1
=

− (𝑎 + 𝑑) + √(𝑎 + 𝑑)
2
− 4 (𝑎𝑑 − 𝑏𝑐)

2
,

𝜆
2
=

− (𝑎 + 𝑑) − √(𝑎 + 𝑑)
2
− 4 (𝑎𝑑 − 𝑏𝑐)

2
.

(12)

We observe that both 𝜆
1
and 𝜆

2
are negative. The concen-

tration 𝐶
𝑢
is evaluated by inserting (9) in the third equation

of (1), which leads to

𝐶
𝑢
(𝑡)

𝑘
𝑢𝑝

= ∫

𝑡

0

𝐶
𝑝
(𝜎) 𝑑𝜎

= ∫

𝑡

0

[𝑐
1
(𝑎 + 𝜆

1
) 𝐸
1
(𝜎) + 𝑐

2
𝑐𝐸
2
(𝜎)] 𝑑𝜎.

(13)

We utilize the identity

∫

𝑡

0

∫

𝜎

0

𝐶 (𝜏) 𝑒
𝑤 (𝜎−𝜏)

𝑑𝜏𝑑𝜎 =
1

𝑤
∫

𝑡

0

𝐶 (𝜎) 𝑒
𝑤 (𝑡−𝜎)

𝑑𝜎

−
1

𝑤
∫

𝑡

0

𝐶 (𝜏) 𝑑𝜏,

(14)

where 𝐶 is any continuous function and 𝑤 is a real parame-
ter and find

𝐶
𝑢
(𝑡)

𝑘
𝑢𝑝

= 𝑐
1

(𝑎 + 𝜆
1
)

𝜆
1

𝐸
1
+ 𝑐
2

𝑐

𝜆
2

𝐸
2

− [𝑐
1

(𝑎 + 𝜆
1
)

𝜆
1

+ 𝑐
2

𝑐

𝜆
2

]∫

𝑡

0

𝐶
𝑏
(𝜏) 𝑑𝜏.

(15)

We now suppose that 𝑏 = 0 and 𝑐 ̸= 0 in the definition of
the matrix A; that is,

A = [
−𝑎 0

𝑐 −𝑑
] . (16)
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In this case, we set 𝜆
1
= −𝑎 and 𝜆

2
= −𝑑. This corresponds

to vanishing denominators in (11). Integration of the linear
system leads to

𝐶
𝑡
= 𝜒
1
(𝜆
1
− 𝜆
2
) 𝐸
1
,

𝐶
𝑝

= 𝑐 𝜒
1
𝐸
1
+ 𝜒
2
𝐸
2
,

(17)

where 𝐸
1
and 𝐸

2
are convolutions defined as in (10) and

𝜒
1
=

𝑘
𝑡𝑏

𝜆
1
− 𝜆
2

, 𝜒
2
= 𝑘
𝑝𝑏

−
𝑐𝑘
𝑡𝑏

𝜆
1
− 𝜆
2

. (18)

Moreover, integrating the third equation in (1) leads to

𝐶
𝑢

𝑘
𝑢𝑝

=
𝑐𝜒
1

𝜆
1

𝐸
1,𝑏

+
𝜒
2

𝜆
2

𝐸
2,𝑏

− [
𝑐𝜒
1

𝜆
1

+
𝜒
2

𝜆
1

]∫

𝑡

0

𝐶
𝑏
(𝜏) 𝑑𝜏.

(19)

We then consider the case 𝑏 ̸= 0, 𝑐 = 0; that is,

A = [
−𝑎 𝑏

0 −𝑑
] . (20)

Again we have 𝜆
1

= −𝑎 and 𝜆
2

= −𝑑. The solution of the
Cauchy problem for this upper triangular system is

𝐶
𝑡
= 𝜎
1
𝐸
1
+ 𝑏𝜎
2
𝐸
2
,

𝐶
𝑝

= (𝜆
2
− 𝜆
1
) 𝜎
2
𝐸
2
,

(21)

with

𝜎
1
= 𝑘
𝑡𝑏

−
𝑏𝑘
𝑝𝑏

𝜆
2
− 𝜆
1

, 𝜎
2
=

𝑘
𝑝𝑏

𝜆
2
− 𝜆
1

(22)

and 𝐸
1
, 𝐸
2
defined as in (10).

Finally, we consider the diagonal case 𝑏 = 0, 𝑐 = 0; that
is,

A = [
−𝑎 0

0 −𝑑
] . (23)

Then, it is straightforward to obtain

𝐶
𝑡
= 𝑘
𝑡𝑏
𝐸
1
, 𝐶

𝑝
= 𝑘
𝑝𝑏

𝐸
2
,

𝐶
𝑢
= −𝑘
𝑝𝑏

𝐸
2
+ 𝑘
𝑝𝑏

∫

𝑡

0

𝐶
𝑏
(𝜏) 𝑑𝜏.

(24)

2.2. Solution of the Inverse Problem. The model equations
obtained in the previous section describe the time behavior
of the tracer concentration in the three compartments of the
renal system, given the TAC for tracer concentration in blood
and the transmission coefficients. Given such equations,
compartmental analysis requires the determination of the
tracer coefficients by

(1) utilizing measurements of the tracer concentrations
provided by nuclear imaging;

(2) applying an optimization scheme for the solution of
the inverse problem.

In nuclear imaging experiments, the reconstructed
images can provide information on the tracer concentration
in the kidneys and in the bladder as well as in the input
arterial blood as measured in the left ventricle. Specifically,
an acquisition sequence is set up providing count data sets
collected at subsequent time intervals. For each data set, an
image reconstruction algorithm is applied, ROIs are drawn
within the left ventricle, the kidneys, and the bladder, and
the corresponding tracer concentrations are computed.Obvi-
ously, the tracer concentration in the kidneys is an estimate
of 𝐶
𝑡
+ 𝐶
𝑝
plus the tracer carried by the blood contained

in the kidneys’ vascular system. This last term cannot be
identified in the images and will be accounted for in the opti-
mization procedure. Specifically, the optimization scheme we
will implement minimizes, at each time point, the functional

C :=

(𝐶
𝑡
+ 𝐶
𝑝
) − 𝐶exp



2

+

𝐶
𝑢
− 𝐶
𝑢



2

, (25)

where 𝐶
𝑢
, 𝐶
𝑡
, and 𝐶

𝑝
are the analytical solutions of the

direct problem computed at the given time point; 𝐶
𝑢
is the

concentration measured from the ROI in the bladder at the
time point; 𝐶exp := (𝐶

𝑘
− 𝑉
𝑏
𝐶
𝑏
)/(1 − 𝑉

𝑏
), where 𝐶

𝑘
is the

concentration measured from the ROI on the kidneys, 𝐶
𝑏

is the value of the TAC at the specific time value, and 𝑉
𝑏

measures the blood fraction with which the kidneys’ vascular
system is supplied. In the following, we will assume 𝑉

𝑏
= 0.2,

which is a physiologically sound value [13].
The minimization of the functional C is realized by

means of an Ant Colony Optimization (ACO) scheme [9].
ACO is a statistical-based optimization method developed
in the 1990s with the aim of providing a reliable although
not optimal solution to some nondeterministic polynomial-
time hard combinatorial optimization problems. While an
ant is going back to the nest after having taken some food,
it releases a pheromone trace that serves as a trail for next
ants, which are able to reach food detecting pheromone.
Since the pheromone decays in time, its density is higher
if the path to food is shorter and more crowded; on the
other hand, more pheromone attracts more ants, and at
the end, all ants follow the same trail. This behavior is
paraphrased in ACO identifying the cost functional C with
the length of the path to food and the pheromone traces
with a probability density which is updated at each iteration
depending on the value of the cost function for a set of states.
In practice, at each iteration, the cost function is evaluated
on a set of 𝑃 admissible states, and the states are ordered
according to increasing values of the cost function. Then
ACO defines a probability distribution which is more dense
in correspondence with the cheaper states, and, on its basis,𝑄
new states are extracted. A comparison procedure identifies
the new best 𝑃 states which form the next set of states.
Formally, the starting point of the algorithm is a set of𝑃 states

𝐵 := {U
𝑘
= (𝑢
1,𝑘

, . . . , 𝑢
𝑁,𝑘

)} , (26)

such that

U
𝑘
∈ 𝑆 ⊂ R

𝑁
, 𝑘 = 1, . . . , 𝑃, (27)
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that are ordered in terms of growing cost; namely, C(U
1
) ≤

⋅ ⋅ ⋅ ≤ C(U
𝑃
). Next, for each 𝑗 = 1, . . . , 𝑁 and 𝑖 = 1, . . . , 𝑃, one

computes the parameters

𝑚
𝑖,𝑗

= 𝑢
𝑗,𝑖
, 𝑠

𝑖,𝑗
=

𝜉

𝑃 − 1

𝑃

∑

𝑝=1


𝑢
𝑗,𝑝

− 𝑢
𝑗,𝑖


(28)

and defines the probability density function

G
𝑖
=

𝑃

∑

𝑖=1

𝑤
𝑖
N
[𝑚𝑖,𝑗,𝑠𝑖,𝑗]

(𝑡) , (29)

with 𝑖 = 1, . . . , 𝑃, 𝜉, 𝑞, real positive parameters to be fixed,
and 𝑤

𝑖
= N
[1,𝑞𝑃]

(𝑖). By sampling 𝑆 𝑄 times withG
𝑗
, the pro-

cedure generates 𝑄 new states U
𝑃+1

, . . . ,U
𝑃+𝑄

, enlarging the
set 𝐵 to 𝐵 = {U

1
, . . . ,U

𝑃+𝑄
}. If U

𝑘1
, . . . ,U

𝑘𝑄
are the 𝑄 states

of 𝐵 of greater cost, the updated 𝐵 is defined as

𝐵 = 𝐵 \ {U
𝑘1
, . . . ,U

𝑘𝑄
} . (30)

This procedure converges to an optimal solution of the
problemby exploiting the fact that the presence of theweights
𝑤
𝑖
, in the definition ofG

𝑗
, gives emphasis to solutions of lower

costs since 𝑤
1

> ⋅ ⋅ ⋅ > 𝑤
𝑃
. This fact, associated with the

influence that a proper choice of parameters 𝜉 and 𝑞 has on
the shape of the Gaussian functions, determines the way in
which the method tunes the impact of the worse and best
solutions. The algorithm ends when the difference between
any two states of 𝐵 is less than a predefined quantity or when
the maximum allowable number of iterations is reached. The
initial set 𝐵 of trial states is chosen by sampling a uniform
probability distribution.

The implementation of ACO for the optimization of the
exchange coefficients inC is based on the following steps.

(1) The four ACO parameters are fixed as follows. 𝑃 and
𝑄 are chosen as in [14]. Specifically, 𝑃 is a multiple of
the number of coefficients to optimize plus one and

𝑄 = [
𝑃

2
] + 1, (31)

where [⋅] indicates the floor and 𝑞 and 𝜉 are fixed
searching for a trade-off between the risk of a solution
space of a too high complexity and the risk of a too
high computational demand. In order to realize this
trade off, we have applied a heuristic procedure based
on the outcome of the experiments with synthetic
data (see Section 3.1). Specifically, in all applications,
we have used 𝜉 = 0.4 and 𝑞 = 10

−2. Anyhow, the
method is very robust with respect to the choice of 𝜉
and 𝑞.

(2) The values of the tracer coefficients are initialized to
six randomnumbers picked up in the interval, respec-
tively, (0.5, 1.5) for the coefficient 𝑘

𝑏𝑡
and (0, 1) for

the others coefficients (this choice is based on the
literature [15]).

(3) The ACO procedure is then run using 𝐶
𝑢
, 𝐶
𝑡
, and 𝐶

𝑝

as the solutions in the general full matrix case. If,
during the ACO iterations, the reconstructed values
for the tracer coefficients become statistically con-
sistent with values for which the associated direct
problem is described by a triangular or a diagonal
matrix, the algorithm automatically switches to utilize
the corresponding solution in the computation of C.

In the following section, we show how this statistics-based
compartmental analysis works in the case of synthetic data
and real measurements recorded by a micro-PET system. In
this specific application, the advantages of ACO with respect
to deterministic optimization are that it does not suffer local
minima and singularities in the functional gradient.

3. Results and Discussions

Compartmental analysis is a valid approach to physiological
studies of animal models by means of PET data. An “Albira”
micro-PET system produced by Carestream Health is cur-
rently operational at the IRCCS San Martino IST, Genova,
Italy, and experiments with mice are currently performed by
using different tracers, mainly for applications to oncology.
In this section, we describe the performance of our approach
to compartmental analysis in the case of synthetic data
simulated by mimicking “Albira” acquisition for FDG-PET
experiments. Then, we will describe the results of data
analysis for five real experiments performed by using FDG.

3.1. Application to Synthetic Data. In order to produce the
synthetic data, we started from six initial values for the tracer
coefficients. These selected values generate a matrix A and
a vector K as in (4) and (5). The corresponding solutions
for 𝐶
𝑡
, 𝐶
𝑝
, and 𝐶

𝑢
associated with the Cauchy problem (1)

are given in (8), (9), and (15). The solutions are sampled at 27
time points corresponding to the distribution of acquisition
times performed by “Albira” for this kind of experiments.The
red line in Figure 2(a) represents the TAC 𝐶

𝑏
that has been

obtained by fitting with a gamma variate function a set of
real measurements acquired from a healthy mouse in a very
controlled experiment [16]. The vectors corresponding to the
discretization of 𝐶

𝑡
and 𝐶

𝑝
are then summed together and

affected by Poisson noise; the same kind of noise is applied
to the vector corresponding to the discretization of 𝐶

𝑢
, as

represented in Figure 2(a). ACO is applied 30 times to these
synthetic data set to obtain 30 sets of reconstructed values of
the exchange coefficients; in correspondence with each set we
then computed the concentration curves and superimposed
them in Figure 2(b), thus producing confidence strips for the
reconstructed concentrations. The same kind of experiment
has been performed again, choosing as initial values the ones
that give rise to a lower triangular system as in (16), an upper
triangular system matrix as in (20), and a diagonal system as
in (23). In Table 1, we present the average values of the tracer
coefficients and the standard deviations of the values recon-
structed by the 30 runs of ACO over the same set of input
vectors. The results show that ACO is reliable in reproducing
the ground truth values. In the cases of the upper triangular
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Figure 2: Simulated experiment with a full matrixA as in (4). Results obtained with the following ACO parameters:𝑃 = 13,𝑄 = 7, 𝑞 = 0.015,
and 𝜉 = 0.4 for 30 runs of the algorithm. (a) Red line represents𝐶

𝑏
, green line represents𝐶

𝑢
, and blue line represents the total measurement on

kidneys. In black, the same data corrupted by Poisson noise. (b) Superimposition of synthetic data (white dots) and reconstructed confidence
strips of concentrations.

Table 1: Simulated values of tracer coefficients providing different cases for thematrixA; reconstructed average values and standard deviations
over 30 runs of ACO (same random initialization guess) and over 30 runs of LM (30 different random initializations). Values under 10

−3 are
set to 0.

𝑘bt 𝑘tp 𝑘pt 𝑘up 𝑘tb 𝑘pb

A full
g. t. 1 0.02 0.02 0.08 0.3 0.3
ACO 1.01 ± 0.11 0.02 ± 0.01 0.02 ± 0.01 0.08 ± 0.01 0.32 ± 0.03 0.31 ± 0.02

LM 1.13 ± 1.04 0.02 ± 0.06 0.03 ± 0.05 0.08 ± 0.04 0.28 ± 0.29 0.31 ± 0.26

A u. t.
g. t. 0.8 0 0.02 0.1 0.4 0.2
ACO 0.88 ± 0.10 0 ± 0 0.02 ± 0.01 0.11 ± 0.01 0.41 ± 0.05 0.20 ± 0.02

LM 0.92 ± 0.71 0 ± 0 0.06 ± 0.05 0.16 ± 0.22 0.39 ± 0.25 0.19 ± 0.11

A l. t.
g. t. 0.6 0.03 0 0.1 0.35 0.35
ACO 0.59 ± 0.05 0.03 ± 0.01 0 ± 0 0.10 ± 0.01 0.35 ± 0.02 0.35 ± 0.02

LM 0.64 ± 0.33 0.06 ± 0.08 0 ± 0 0.09 ± 0.12 0.36 ± 0.17 0.39 ± 0.21

A diag.
g. t. 0.7 0 0 0.2 0.2 0.4
ACO 0.71 ± 0.03 0 ± 0 0 ± 0 0.21 ± 0.01 0.20 ± 0.01 0.41 ± 0.03

LM 0.74 ± 0.36 0 ± 0 0 ± 0 0.17 ± 0.11 0.25 ± 0.12 0.46 ± 0.31

In the first columns: g. t. stands for ground truth, u. t. for upper triangular, l. t. for lower triangular, and diag. for diagonal.

and diagonal matrices, the reason why, for some coefficients,
ACO gives zero to the average and standard deviation is due
to the fact that our implementation contains a threshold for
the parameter outputs (equal to 10

−3). In this experiment,
these coefficients are underthreshold for all runs, and there-
fore the averages and standard deviations are set to null.

The main advantage of using ACO for the reduction of
this compartmental model is in the fact that this statistical

approach, asmost evolutionarymethods, is particularly effec-
tive in exploring the solution space. This property becomes
evident by performing the same analysis of synthetic data
by means of a standard least-squares method. Therefore, we
have utilized the Levenberg-Marquardt (LM) approach [17]
for a comparison test. We note that ACO is a statistical
method, and, for a given initialization, different runs of
ACO produce different results. On the contrary, LM is
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Figure 3: Analysis of real data from one of the murine models. Results obtained with the following ACO parameters: 𝑃 = 25, 𝑄 = 13,
𝑞 = 0.0001, and 𝜉 = 0.65 for 20 runs of ACO. (a) Red line represents 𝐶

𝑏
; blue dots represent 𝐶

𝑡
+ 𝐶
𝑝
while green dots represent 𝐶

𝑢
. (b)

Superimposition of concentrations in the bladder (green) and in the kidneys (blue) computed by solving the forward problem where the
tracer coefficients are reconstructed by ACO.The error bars are Poisson that correspond to the square root of the measured counts.

a deterministic method, and therefore, in our tests, we have
applied themethod 30 times using 30 different initializations.
However, each initialization has been chosen as in ACO,
that is, by randomly drawing the six values of the tracer
coefficients in the intervals (0, 1) for 𝑘

𝑡𝑝
, 𝑘
𝑝𝑡
, 𝑘
𝑢𝑝
, 𝑘
𝑡𝑏
, and

𝑘
𝑝𝑏

and in (0.5, 1.5) for 𝑘
𝑏𝑡
. The results of this test are again

inTable 1, reporting the average values and the corresponding
standard deviations over the 30 realizations for the same data
sets as in the ACO experiment. These results show that ACO
is more accurate in reproducing the ground truth values and
that it does this with smaller uncertainties.

We agree that in these tests, the procedure for generating
the synthetic concentrations and the one for reconstructing
the tracer coefficients from them are based on the same
equations (in a sort of “inverse crime” procedure). However,
the synthetic data are affected by Poisson noise, and in any
case, the aim of these numerical applications was simply to
validate the reliability and stability of ACO when applied, for
the first time, to a compartmental analysis problem.

3.2. Application to Real Measurements. We considered five
healthy murine models injected with FDG and acquired
the corresponding activity by means of a dynamic acqui-
sition paradigm over 27 experimental time points. The
images have been reconstructed by applying an expectation-
maximization iterative algorithm [18], and ROIs have been
drawn on the reconstructed images around the left ventricle
to reproduce the time activity curve. ROIs have been also
drawn around the kidneys and the bladder in order to
compute the input concentrations. In Figure 3(a), concerning
one of the mice, the red line describes the TAC 𝐶

𝑏
(we have

plotted the solid line connecting themeasured concentrations

in order to distinguish the input function from the other
concentrations) while the green points represent the con-
centrations for the bladder. The blue points correspond to
the measured concentration in the kidneys, and the error
bars correspond to the square root of the measured counts.
Then, ACO has been applied 30 times against these data.
The initialization values for the tracer coefficients are the
same for all 30 runs and are obtained by drawing randomly
𝑘
𝑏𝑡
in (0.5, 1.5) and the others five coefficients within (0, 1).

Then, for each run, the set of reconstructed tracer coefficients
are used to solve the direct problem in order to obtain
reconstructions of 𝐶

𝑢
and 𝐶

𝑝
+ 𝐶
𝑡
. The confidence strips

resulting from the superposition of the 30 reconstructions of
the concentration are represented in Figure 3(b).

The results of this analysis for all models are given in
Table 2 containing the average and standard deviation (over
the 30 realizations) of the tracer coefficients. These coeffi-
cients have dimension minutes−1 and can be interpreted as
a measure of the effectiveness with which FDG is exchanged
from one compartment to another. Table 2 also reports the
results obtained by applying LM to the same data sets with 30
different random realizations of the initialization values. The
comparison between the performances of the two methods
indicates that ACO and LM provide similar average values,
although ACO is characterized by smaller uncertainties.
Further, these results show that the model we adopted in
this analysis can be utilized to quantitatively assess the FDG
metabolism in the renal system. For example, the fact that
𝑘
𝑝𝑏

≃ 𝑘
𝑢𝑝

and 𝑘
𝑡𝑝
, 𝑘
𝑝𝑡

are smaller provides a quantitative
evaluation of the excretion of FDG into the bladder once it
is transferred into the preurine. Further, 𝑘

𝑏𝑡
> 𝑘
𝑡𝑏
shows that

the fraction of FDG which is absorbed by the cells (and not



8 Computational and Mathematical Methods in Medicine

Table 2: Results of the data analysis in the case of 5 murine models. Reconstructed average values and standard deviations over both ACO
(30 runs over the same random initialization) and LM (30 different random initializations).

𝑘bt 𝑘tp 𝑘pt 𝑘up 𝑘tb 𝑘pb

1ACO 1.16 ± 0.39 0.03 ± 0.02 0.04 ± 0.03 0.31 ± 0.06 0.22 ± 0.02 0.26 ± 0.02

1LM 1.32 ± 1.64 0.07 ± 0.11 0.05 ± 0.09 0.41 ± 0.62 0.17 ± 0.21 0.29 ± 0.22

2ACO 0.93 ± 0.16 0.07 ± 0.04 0.04 ± 0.02 0.21 ± 0.03 0.19 ± 0.02 0.19 ± 0.03

2LM 1.16 ± 1.12 0.10 ± 0.09 0.04 ± 0.06 0.29 ± 0.31 0.22 ± 0.17 0.20 ± 0.13

3ACO 0.93 ± 0.13 0.04 ± 0.02 0.03 ± 0.01 0.21 ± 0.07 0.19 ± 0.03 0.19 ± 0.04

3LM 0.88 ± 1.01 0.05 ± 0.05 0.04 ± 0.05 0.22 ± 0.19 0.18 ± 0.20 0.19 ± 0.14

4ACO 1.19 ± 0.18 0.06 ± 0.03 0.02 ± 0.01 0.38 ± 0.11 0.32 ± 0.03 0.31 ± 0.03

4LM 1.11 ± 1.41 0.07 ± 0.09 0.02 ± 0.05 0.43 ± 0.39 0.27 ± 0.31 0.30 ± 0.23

5ACO 1.11 ± 0.10 0.06 ± 0.03 0.05 ± 0.03 0.32 ± 0.02 0.33 ± 0.02 0.29 ± 0.02

5LM 1.03 ± 1.31 0.08 ± 0.07 0.05 ± 0.06 0.27 ± 0.29 0.33 ± 0.41 0.27 ± 0.19

In the first columns, 1ACO indicates the results concerning the first murine model provided by ACO and so on.
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Figure 4: Correlation between the average clearances ⟨Cl⟩ and rate
coefficients 𝑘
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(from blood to preurine) for five healthy models.

directly transferred into preurine) is effectively transported
back to the blood flow and therefore again put at disposal
of the excretion process. Finally, 𝑘

𝑝𝑏
can be considered as

a quantitative measure of this process, since, as shown in
Figure 4, the five 𝑘

𝑝𝑏
values in Table 2 significantly correlate

with the corresponding values of the averaged clearance
defined as

⟨Cl⟩ =
𝐶
𝑢
(𝑇)𝑉
𝑢
(𝑇)

∫
𝑇

0
𝐶
𝑏
(𝑡) 𝑑𝑡

, (32)

where 𝑇 is the final acquisition time and 𝑉
𝑢
is the vol-

ume of the bladder. We observe that this tight correlation
between clearance and 𝑘

𝑝𝑏
indicates that the two indexes

are actually redundant. However, this conclusion would
be reasonable for the specific experimental condition of
the present study that only included normal mice with
(presumably) normal renal function. As for every sub-
stance characterized by kidney excretion, renal clearance
is the final result of a number of processes starting from

the number of molecules available for filtration, filtration
itself, possible active excretion in tubule, and (vice-versa)
reabsorption. Accordingly, measuring this last parameter
by 𝑘
𝑝𝑏

allows to identify the degree of substance reabsorption
independently from the glomerular filtration rate, whose
reduction would inevitably result in reduced FDG clear-
ance. This estimation would be of particular relevance to
study the net effect of drugs derived from phloretin aiming
to reduce serum glucose levels by reducing tubular sugar
reabsorption. More importantly, this method would permit
to identify possible pharmacologic interference caused by
other drugs on this innovative therapeutic approach to
diabetes.

4. Conclusions

This paper deals with the renal flow of a radioactive tracer,
[18F]-FDG, injected into a mouse. The time evolution of
tracer concentrations inside kidneys and from kidneys to
bladder has been modeled by a linear system of ordinary
differential equations with constant coefficients. The time
variation of the total concentration of activity inside kidneys
and bladder (essentially, the sum of the solutions) has been
estimated through an analysis of micro-PET data. The six
constant exchange coefficients, which provide information
on FDG metabolism, have been regarded as unknowns.
The related inverse problem has been solved by applying
an algorithm based on ACO. Resulting applications to real
and synthetic data have been shown and discussed also
in comparison with the results provided by a Levenberg-
Marquardt algorithm.

The mathematical approach described in this paper
provides estimates of the six unknown coefficients. Unlike
techniques based on graphical analysis, it does not require
any distinction between irreversible or reversible uptake of
tracer nor identification of a time value after which suitable
expressions evaluated from the data become linear in time
[12].Moreover, the graphical methods provide fewer parame-
ters, usually slopes and intercepts, which can be interpreted as
functions of the original model parameters [19]. Technically,
the general character of the optimization procedure based on
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ACOmakes it applicable to compartmental model structures
of a variety of types, provided that measured data on the
related total concentrations of activity are available. For
example, no practical restriction on the number of compart-
ments involved is required if the direct problems involved
in the ACO procedure are solved numerically, instead of
finding the analytic representation of the solutions, as we
have done in the present paper. Similarly, the fully numerical
approach does not require limitations such as the constraint
that the systemmatrix is sign-symmetric [20, 21] (indeed, the
upper and lower triangular matrices considered in Section 2
do not comply with sign-symmetry). We have also seen that
application of ACO to synthetic data corresponding to an
upper triangular matrix leads to the final estimate 𝑘

𝑡𝑝
=

0. This shows that the ACO approach is also capable of
recovering vanishing rate constants. More generally, our
computational approach to micro-PET data analysis shows
that (1) the tracer coefficients of the compartmental system
quantitatively measure the effectiveness of the excretion
process; (2) these parameters offer a reliable and more local
alternative to clearance, providing quantitative details to a
process that clearance is able to describe just in a global
way; and, specifically, (3) the average clearance and the rate
coefficient from blood to preurine are correlated with a
significantly high correlation coefficient.

The physiological basis for this study relies on the broad
utilization of FDG in the diagnosing and staging of cancer. In
fasting patients, this tracer accurately maps the insulin inde-
pendent glucose metabolism as an index of aggressiveness
and growth rate of neoplastic lesions. We agree that MRglc
determined by means of, for example, Patlak analysis would
provide a reliable quantitative index of glucose consumption.
However, these measurements imply the use of dynamic
imaging whose long acquisition time (50–60 minutes) would
hardly fit with the operational procedures of a PET lab.
Accordingly, clinical PET imaging almost always implies the
acquisition of only one image at the late (equilibrium) time.
Under this condition, only tracer uptake can be measured.
SUV is largely used to define cancer glucose consumption
[22] but obviously also depends upon tracer availability.
Most often, this latter variable is neglected since blood FDG
clearance by tissues is assumed to be relatively stable in the
different patients. Nevertheless, differently from glucose, a
significant amount of FDG is excreted in the urine.This tracer
sequestration has been already documented and attributed to
the low affinity of glucose symporters dedicated to glucose
reabsorption from preurine in the kidney tubules [4, 23].
Treatments or conditions able to modify FDG availability
would inevitably affect SUV values independently from
cancer glucose metabolism. Our study aimed to document
whether this phenomenon occurs and to what degree it can
affect the conventional representation of FDG uptake. As a
matter of fact, phloretin-like drugs acting on SGLT2 (one of
the two mechanisms devoted to tubular glucose reabsorp-
tion) are now entering themarket. Considering the pandemic
dimension of diabetes, an accurate evaluation of their inter-
ference on FDG kinetics would be of great interest to define
whether or not SUV remains a reliable marker of tumor
metabolism.
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