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Abstract
Progranulin is a glycoprotein marking chronic inflammation in obesity and type 2 diabetes. Previous studies suggested
PSRC1 (proline and serine rich coiled-coil 1) to be a target of genetic variants associated with serum progranulin levels.
We aimed to identify potentially functional variants and characterize their role in regulation of PSRC1. Phylogenetic
module complexity analysis (PMCA) prioritized four polymorphisms (rs12740374, rs629301, rs660240, rs7528419)
altering transcription factor binding sites with an overall score for potential regulatory function of Sall > 7.0. The effects
of these variants on transcriptional activity and binding of transcription factors were tested by luciferase reporter and
electrophoretic mobility shift assays (EMSA). In parallel, blood DNA promoter methylation of two regions was tested in
subjects with a very high (N = 100) or a very low (N = 100) serum progranulin. Luciferase assays revealed lower
activities in vectors carrying the rs629301-A compared with the C allele. Moreover, EMSA indicated a different binding
pattern for the two rs629301 alleles, with an additional prominent band for the A allele, which was finally confirmed
with the supershift for the Yin Yang 1 transcription factor (YY1). Subjects with high progranulin levels manifested a
significantly higher mean DNA methylation (P < 1 × 10−7) in one promoter region, which was in line with a significantly
lower PSRC1 mRNA expression levels in blood (P = 1 × 10−3). Consistently, rs629301-A allele was associated with
lower PSRC1 mRNA expression (P < 1 × 10−7). Our data suggest that the progranulin-associated variant rs629301
modifies the transcription of PSRC1 through alteration of YY1 binding capacity. DNA methylation studies further
support the role of PSRC1 in regulation of progranulin serum levels.

Key messages
& PSRC1 (proline and serine rich coiled-coil 1) SNPs are associated with serum progranulin levels.
& rs629301 regulates PSRC1 expression by affecting Yin Yang 1 transcription factor (YY1) binding.
& PSRC1 is also epigenetically regulated in subjects with high progranulin levels.
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Introduction

Progranulin (PGRN) is a glycoprotein with a wide range of
functions involved, e.g., in inflammatory pathways, metabo-
lism, cell proliferation, and lysosome regulation [1–3]. PGRN
is encoded by the GRN gene [4], whose mutations can cause
frontotemporal lobar degeneration and neuronal ceroid
lipofuscinosis [5, 6], but may potentially be also involved in
the pathogenesis of Alzheimer’s disease [6–9].

Recent genome-wide association studies identified several
loci associated with serum progranulin levels. The most prom-
inent are the CELSR2-PSRC1-MYBPHL-SORT1, theCDH23-
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PSAP, and theGRN locus [10–12]. In particular, the Sortilin 1
gene (SORT1) has been extensively studied as a target gene of
the associated variants and shown to regulate circulating low-
density lipoprotein levels influencing risk of cardiovascular
diseases [13, 14]. SORT1 is affected by several microRNAs,
e.g., miR-146a and miR-182, and is considered to play a role
in arterial calcification and chronic inflammation in endothe-
lial cells [15–17].

Besides SORT1, PSRC1 (proline and serine rich coiled-
coil 1) has been suggested by recent data including eQTLs
(expression quantitative trait locus) [11] to be a target gene
of single-nucleotide polymorphisms (SNPs) associated
with serum progranulin levels. Furthermore, gene silencing
experiments demonstrated the role of PSRC1 in regulation
of progranulin secretion in vitro; however, the functional
variant and underlying molecular mechanism have not yet
been clarified.

In the present study, we therefore performed in silico and
in vitro experiments to identify the potentially causal variants
for increased serum progranulin levels and to elucidate their
role in transcriptional and epigenetic regulation of PSRC1.

Material and methods

The Sorbs cohort

A total of 200 individuals with a mean BMI of 26.0 ±
4.2 kg/m2 and a mean age of 46 ± 16 years were included
in the PSRC1 promoter methylation analysis. They are
part of a metabolically well-characterized cohort of
Sorbs from Eastern Germany that was extensively
phenotyped for a wide range of anthropometric and met-
abolic traits (Supplementary Table 1) [18, 19]. The 200
subjects were selected according to their maximal distance
in progranulin serum levels, building one group with very
high (mean ± SD 151.98 ± 20.86 ng/ml; N = 100) and the
other one with very low (mean ± SD 73.98 ± 10.04 ng/ml;
N = 100) concentrations. In addition, both groups were
matched for age and BMI by filtering the groups using
t-statistics, and for gender and smoking status by
conducting a chi-square test. Subjects with diabetes were
not included in the present analysis. All participants gave
their written informed consent, and the study was ap-
proved by the ethics committee of the University of
Leipzig.

Detailed description of all study participants is provided in
the Supplemental Table 1.

Functional annotation

Functional annotation for all SNPs in linkage disequilibrium
(LD, defined as r2 ≥ 0.86 in Europeans of the 1000 Genomes

Phase 1 data) with the leading SNP (rs660240) from the initial
GWAS (genome-wide association study) for progranulin se-
rum levels [11] was performed using the phylogenetic module
complexity analysis (PMCA) [20] by Genomatix GmbH
(München, Germany). This method was used to narrow down
potentially causal cis-regulatory variants for further functional
analysis in vitro.

Cell culture

HepG2 and HeLa cell lines (ATCC; Manassas, Virginia)
were used for all in vitro studies. Cells were maintained in
Dulbeccos Modified Eagle Medium (DMEM; Gibco;
5.56-mM glucose, 1-mM pyruvate, 4-mM L-glutamine,
ThermoFisher Scientific, Germany) supplemented with
10% fetal bovine serum (Biochrom GmbH, Germany).

Preparation of reporter constructs

Single-stranded oligonucleotides harboring each SNP as well
as a Xho I restriction site on the 5′ and 3′ ends were purchased
from MWG-Biotech (Ebersberg, Germany). Oligo-sequences
are given in Table 1. Complementary oligos were annealed.
Annealed oligos were digested with Xho I and cloned to the
minimal promotor containing firefly luciferase vector
pGL4.23.

Luciferase reporter assays

Functional relevance of candidate SNPs (rs12740374,
rs629301, rs660240, rs7528419; all LDs r2 > 0.94) on
transcriptional activity was evaluated by luciferase assay.
HepG2 as well as HeLa cells were transfected for the
luciferase assay. Cells were co-transfected with luciferase
reporter constructs and the Renilla luciferase vector
pGL4.74 as internal control using Fugene HD (Promega,
Madison, WI) according to the manufacturer’s proce-
dures. After 48 h, cells were harvested and luciferase ac-
tivity was measured using the Dual Luciferase System
(Promega, Madison, WI) as described in the manufac-
turer’s instructions. Ratio of firefly to Renilla luciferase
was calculated. Assays were performed at least in tripli-
cates, and values were normalized to pGL4.23/pGL4.74
empty control.

Electrophoretic mobility shift assay

The JASPAR (http://jaspar.genereg.net) and PROMO
(http://alggen.lsi .upc.es/cgi-bin/promo_v3/promo/
promoinit.cgi?dirDB=TF_8.3) online databases were used
to predict transcription factor binding to alleles of
candidate SNPs. Nuclear protein was extracted from
HeLa cells. IRDye 700 (SNPs) or IRDye 800 (positive
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control) labeled single-stranded oligos were purchased
from metabion (Planegg, Germany). Oligo-sequences are
given in Table 1. Oligos were annealed to generate double-
stranded probes. Electrophoretic mobility shift assay
(EMSA) was conducted as follows. Each reaction
contained of 7-μg nuclear extract, 4-nmol probe, 1 X bind-
ing buffer (10-mM TRIS, 50-mM NaCl, pH 7.5), 2-mM
dithiothreitol, 1-μg hering sperm DNA, and 0.25%
Tween 20. Binding reaction was performed 30 min at room
temperature. For supershift reactions, 4 μg of anti-Yin
Yang 1 (YY1) (clone H-10, Santa Cruz Biotechnology
Inc., Dallas, TX) was added to the reaction mixture and
reactions were incubated for further 30 min. Samples were
separated on a 4% native polyacrylamide gel in 0.5 X
TRIS-Borate-EDTA (45-mM TRIS, 45-mM boric acid, 1-
mM EDTA) followed by visualization with an Odyssey
Infrared Imager (LI-COR Biosciences, Lincoln, NE).

DNA methylation analysis

In parallel, DNA methylation analyses were performed for
two sequence segments within the PSRC1 promoter region
(PyroMark assay 1 5′-3′UTR: TCTCCGCGCACGCG
AGCACGCGCACTCGCAGCCTCAACCCTCGGCTC
CGCCACCGGGATGCAGTCTTCTG, PyroMark assay2
5 ′ - 3 ′ U T R : A C C G T T C T G G A G A C T G G G
TGCTCGGCGGCCCAGCAGAGGG AGCGGGG) using
the pyrosequencing technique as described elsewhere [21]
(Qiagen, Hilden, Germany) to test potential epigenetic differ-
ences in the PSRC1 promoter locus between subject with high
vs. low progranulin serum levels. PyroMark assays were de-
signed using the PyroMark Assay Design software 2.0
(Qiagen, Hilden, Germany). Briefly, target region was virtu-
ally bisulfite converted and primers were selected according to

program-specific quality criteria. All reactions were per-
formed in duplicates including two non-template controls
per plate and sequenced on PyroMark Q24 (Qiagen, Hilden,
Germany).

rs629301 genotype data

Based on i) our previous GWAS [11] which revealed
rs629301 (A>C; MAF = 0.24) to be associated with serum
progranulin and as a strong eQTL for the PSRC1 gene locus,
and ii) present findings from the functional annotation studies
using PMCA (see below in the “Results” section) further
supporting the functional role of this variant, we focused on
rs629301 for downstream functional analysis. Genotype data
was available from a genome-wide data set for 977 individuals
from the German population of Sorbs [22]. Rs629301 geno-
type distribution (AA/AC/CC: 616/322/39) was in Hardy-
Weinberg equilibrium (P = 0.7).

Statistical analysis

CpG methylation levels per site were used as continuous
variables, and mean levels were calculated per assay. All
analyses were performed using R [23]. Wilcoxon rank sum
t test was used to compare differences between subjects
showing high vs. low progranulin serum levels. A chi-
square test was used to estimate differences in the genotype
distribution between both groups. Linear regression was
applied to detect differences of PSRC1 mRNA expression
levels (available from previous studies) [11] between the
different genotypes using additive mode of inheritance
(AA vs. AC vs. CC coded as 0 vs. 1 vs. 2, respectively)
including adjustments for age and sex.

Table 1 Oligo-sequences used for preparation of reporter constructs and EMSA

Application 5′-3′ sequence

rs12740374 Luciferase assay taagcactcgagGAGGAAGAGTAAACACAGTGCTGGCTCGGCTGCCCTGAGG[G/T]
TGCTCAATCAAGCACAGGTTTCAAGTCTGGGTTCTGGTGTctcgagtgcaag

rs629301 Luciferase assay taagcactcgagCTAACCATCAGATTGTACAGTTTGGTTGTTGCTGTAAATA[T/G]
GGTAGCGTTTTGTTGTTGTTGTTTTTTCATGCCCCATACTctcgagtgcaag

rs660240 Luciferase assay taagcactcgagAGAGAGAGTTAATATATTTGTTTTATTTATTTGCTTTTTG[T/C]
GTTGGGATGGGTTCGTGTCCAGTCCCGGGGGTCTGATATGctcgagtgcaag

rs7528419 Luciferase assay taagcactcgagAAAGGACAAAGCCACACGCAGCCAGGGCTTCACACCCTTC[A/G]
GGCTGCACCCGGGCAGGCCTCAGAACGGTGAGGGGCCAGGctcgagtgcaag

rs12740374 EMSA CTGCCCTGAGG[G/T]TGCTCAATCAAGC

rs629301 EMSA GCTGTAAATA[T/G]GGTAGCGTTTTG

YY1 control EMSA CCGATAAGACGCCATTTTAAGTCCTACGTCA

5′-3′ sequences of (+) strand are given. Genomic sequences are depicted in upper case letters; Xho I restriction site is given in underlined lower case
letters. Parentheses indicate positions of SNP
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Statistical analyses for in vitro experiments were performed
using the Graphpad Prism software version 6 (Graphpad
Software Inc., San Diego, CA). Differences in luciferase as-
says were assessed by one-way ANOVA followed by
Dunnett’s post hoc test to account for multiple comparisons.
A P value of < 0.05 was considered as statistically significant
in all analyses.

Results

Phylogenetic module complexity analysis identifies
four genetic variants with potential regulatory
function

Ten SNPs in tight LD (defined as r2 ≥ 0.86 in Europeans;
Supplementary Table 3) with the GWAS lead SNP
rs629301, previously shown to be associated with
progranulin serum level [11], were functionally annotated
using the PMCA [20] method to identify cis-regulatory
variants, most likely affecting PSRC1 gene expression
(Table 2). Among the 10 analyzed variants, we identified
4 SNPs (rs12740374, rs629301, rs660240, and rs7528419)
with an overall score for the prediction of a potential reg-
ulatory region of Sall > 7.0, suggesting that these variants
are classified and belong to a complex region [20]. The
highest PMCA score was found for rs12740374 (Sall =
9.0, Table 1).

rs629301 alters gene expression in vitro

Funct iona l re levance of the 4 candida te SNPs
(rs12740374, rs629301, rs660240, rs7528419) on tran-
scriptional activity was tested by using luciferase reporter
assays. We observed significant differences in luciferase
activities in both HepG2 and HeLa cells only for
rs629301. Luciferase activities were lower in pGL4-
rs629301A compared with pGL4-rs629301C allele carry-
ing vector (Fig. 1 a and b). In addition, for rs12740374,
the pGL4-rs12740374T showed higher luciferase activity
than the pGL4-rs12740374G vector, although both alleles
appeared to increase luciferase activities when compared
with control vectors (Fig. 1 a and b).

rs629301 affects binding of Yin Yang 1 regulating the
transcription of PSRC1

Based on findings from luciferase assays, we next tested
the binding of the rs629301 and rs12740374 minor and
major alleles and demonstrated DNA-protein complexes
only using oligo (A) for the major allele sequence of the
rs629301 (Fig. 2). In summary, similar protein-binding
pattern for the two rs12740374 alleles was observed Ta
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(Fig. 2). In contrast, a different binding pattern for the two
rs629301 alleles was found, with an additional prominent
band for the A allele (Fig. 2). Moreover, JASPAR and
PROMO databases suggested YY1 transcription factor
consensus binding site around rs629301 (Fig. 3a).
Addition of YY1 antibody led to a supershift of the prom-
inent band observed in the rs629301 A allele (Fig. 3b).
No supershifting for binding in the major and minor allele
sequences of rs12740374 (data not shown) and minor al-
lele of the rs629301 was present (Fig. 3b).

PSRC1 DNA methylation is increased in subjects with
high serum progranulin levels

The subpopulation of individuals selected according to
their either very high (N = 100, mean ± SD 151.98 ±
20.86 ng/ml) or very low (N = 100, mean ± SD 73.98 ±
10.04 ng/ml) serum progranulin level (Fig. 4a, P < 1 ×
10−15) revealed a significant inverse difference in the
PSRC1 mRNA expression levels (Fig. 4b, P = 1 × 10−3).
PSRC1 promoter methylation for assay 1 (Fig. 4c) is in line
with this and shows a significantly (P < 1 × 10−7) higher
mean methylation level in “high progranulin” subjects.

The second analyzed assay within the PSRC1 promoter
did not show significant differences between the
progranulin groups (data not shown).

Rs629301 is associated with PSRC1 mRNA expression
and serum progranulin levels

Distribution of rs629301 genotypes between the progranulin
groups (“high” AA= 76, AC = 18, CC = 0; “low” AA = 36;
AC = 44; CC = 14) clearly indicated overrepresentation of
the A allele in the “high” progranulin group (Fig. 5a,
P < 1 × 10−8). Again, inverse with the protein levels, the A
allele was significantly associated with lower PSRC1 mRNA
expression (Fig. 5b, P < 1 × 10−7, additive mode of inheri-
tance), whereas, albeit not significant (Fig. 5c), PSRC1 meth-
ylation levels were increased.

Discussion

Progranulin is a secreted protein with important functions
in processes including immune and inflammatory re-
sponses, metabolism, and embryonic development [24].

Fig. 1 Transcription activity of
four candidate SNPs using
luciferase assay. Promotor
activity of firefly luciferase levels
is shown relative to Renilla
luciferase. Values are normalized
to the luciferase levels of
pGL4.23/pGL4.74 empty vector.
Three replicate experiments were
performed in duplicates, mean ±
SD is shown. Analysis was done
by one-way ANOVA followed by
Dunnett’s post hoc
Test.*P < 0.05, **P < 0.01,
***P < 0.001, ***P < 0.0001. ns,
not significant. a Luciferase
activity in HepG2 cells. b
Luciferase activity in HeLa cells
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It is assumed to be involved in chronic inflammation in
obesity and T2D [1, 25]. Heritability of circulating
progranulin levels is estimated to be around 30% [11].
A previous genome-wide association meta-analysis of
five European cohorts along with subsequent eQTL anal-
yses in peripheral blood mononuclear cells (PBMCs)
pointed to PSRC1 as a potential target gene of the locus

significantly associated with serum progranulin levels
[11]. Moreover, functional studies in cell cultures sup-
ported the role of PSRC1 in the regulation of progranulin
secretion. In particular, 60% reduction of PSRC1 expres-
sion by siRNA silencing in murine 3T3-L1 preadipocytes
resulted in a consecutive reduction in progranulin secre-
tion of approximately 30% [11]. To identify the poten-
tially causal variant altering PSRC1 expression, we per-
formed in silico and in vitro analyses and tested the ef-
fect of epigenetic regulation on progranulin serum levels
in vivo. In summary, rs629301 turned out to be the most
likely causative variant explaining the association of the
abovementioned locus with circulating progranulin
levels.

An initial PMCA prioritized four polymorphisms
(rs12740374, rs629301, rs660240, rs7528419) potentially
altering transcription factor binding sites (all with Sall >
7.0). The effects of these variants on transcriptional activ-
ity were tested by luciferase reporter assays, which re-
vealed lower activities in vectors carrying the rs629301-
A compared with the C allele. Moreover, EMSA indicated
a different binding pattern for the two rs629301 alleles,
with an additional prominent band for the A allele.
Publicly available databases JASPAR and PROMO pre-
dicted a T allele-specific YY1 transcription factor binding
site for this locus, which was subsequently confirmed by
EMSA supershift using the respective YY1 antibody.
Although these findings cannot explain the recently pos-
tulated role of PSRC1 in the control of progranulin secre-
tion, they are definitely supporting the regulatory role of
genetic variation in PSRC1 and, thus, are complementing
the previously reported rs660240 as an eQTL for PSRC1
mRNA in PBMCs [11]. Furthermore, publicly available
data for rs629301 additionally support the role of liver
as target tissue for the identified effect on PSRC1 regula-
tion by revealing the strongest eQTL on PSRC1 mRNA
expression in liver (P < 1 × 10−33, Supplementary

Fig. 3 Electrophoretic mobility
shift assay (EMSA) of rs629301.
aA allele of a YY1 binding site. b
Supershift experiment confirms
YY1 binding site prediction.
Mobility shift is indicated by
arrowheads

Fig. 2 Electrophoretic mobility shift assay (EMSA) of candidate SNPs.
Allelic differences in protein binding are only observed for SNP
rs629301. Mobility shift is indicated by arrow
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Table 2). In parallel, DNA promoter methylation of two
regions (assay 1: 10CpGs; assay 2: 4CpGs) showed that
subjects with high progranulin levels manifested a signif-
icantly higher mean DNA methylation in one promoter
region (assay 1), which was in line with a significantly
lower PSRC1 mRNA expression levels in blood.
Consistently, rs629301-A allele was associated with lower
PSRC1 mRNA expression and higher DNA methylation.

In summary, our data shed more light on the molecu-
lar mechanisms behind the associations of genetic vari-
ants with progranulin concentrations. Moreover, they
strongly support PSRC1 as a plausible target gene of
these genetic variants. Although the underlying function-
al mechanism linking progranulin and PSRC1 is not fully
understood yet, there is a good evidence that PSRC1
might be involved in progranulin-dependent regulation
of the Wnt/ß-catenin signaling pathway [26]. As has pre-
viously been shown, ß-catenin is directly regulated by
PSRC1 [27]. An increased progranulin serum level may
inhibit PSRC1 activity via Wnt binding and thereby lead
to reduction of ß-catenin, further turning down ß-catenin-

dependent transcription factors such as the TCF/LEF
family [28]. Vice versa, PSRC1 might affect progranulin
as shown by PSRC1 silencing experiments in vitro [11].
Whether there is a feedback allowing directional switches
in mutual effects between PSRC1 and progranulin re-
ma i n s t o be i nve s t i g a t e d i n f u r t h e r s t ud i e s .
Nevertheless, further support for the relationship between
PSRC1 and progranulin emerges from reports on
progranulin-deficient mice [29] and patients with psoria-
sis, where progranulin was negatively correlated with ß-
catenin expression in psoriatic skin lesions [30]. In addi-
tion, an enhanced PSCR1 activity may increase ß-catenin
expression, which in turn may inhibit NF-kB expression
and thereby lead to an anti-inflammatory potential as
demonstrated in apoE−/− mice [31].

Conclusion

In conclusion, our data suggest that the progranulin-associated
variant rs629301modifies the transcription of PSRC1 through

Fig. 4 Progranulin levels and epigenetic regulation of PSRC1 in the
Sorbs population (N = 200). a The progranulin serum level in ng/ml. b
The relative mRNA expression values of PSRC1. c The corresponding

DNA methylation levels for PSRC1 assay 1 represented in %. All data in
a–c is shown as scatter dot plots representing mean ± SD. **P < 0.01,
***P < 0.001
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alteration of YY1 binding capacity. YY1 may act indirectly as
progranulin repressor most likely by inhibitingPSRC1 expres-
sion. DNA methylation studies further support the role of
PSRC1 in regulation of progranulin serum levels.
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