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Abstract

The basic helix-loop-helix proteins are dimeric transcription factors that are found in almost all
eukaryotes. In animals, they are important regulators of embryonic development, particularly in
neurogenesis, myogenesis, heart development and hematopoiesis.
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The basic helix-loop-helix (bHLH) proteins form a large

superfamily of transcriptional regulators that are found in

organisms from yeast to humans and function in critical

developmental processes, including sex determination and

the development of the nervous system and muscles. Because

of their functional diversity and importance, this superfamily

has been the subject of a number of recent reviews covering

many species [1,2], and also a number of reviews specific to

individual species, including Saccharomyces cerevisiae [3],

Drosophila [4,5], human [6] and Arabidopsis [7-9]. The

main emphasis in the recent literature has been on phylo-

genetic sequence analysis of bHLH families. This article gives

an overview of how bHLH proteins are classified by sequence

and summarizes their structures and functions.

Classifications of bHLH proteins by sequence
Members of the bHLH superfamily have two highly con-

served and functionally distinct domains, which together

make up a region of approximately 60 amino-acid residues.

At the amino-terminal end of this region is the basic domain,

which binds the transcription factor to DNA at a consensus

hexanucleotide sequence known as the E box. Different fam-

ilies of bHLH proteins recognize different E-box consensus

sequences. At the carboxy-terminal end of the region is the

HLH domain, which facilitates interactions with other

protein subunits to form homo- and hetero-dimeric com-

plexes. Many different combinations of dimeric structures

are possible, each with different binding affinities between

monomers. The heterogeneity in the E-box sequence that is

recognized and the dimers formed by different bHLH pro-

teins determines how they control diverse developmental

functions through transcriptional regulation [10].

The bHLH motif was first observed by Murre and colleagues

[11] in two murine transcription factors known as E12 and

E47. With the subsequent identification of many other

bHLH proteins, a classification was formulated on the basis

of their tissue distributions, DNA-binding specificities and

dimerization potential [12]. This classification, which divides

the superfamily into six classes, was initially based on a

small number of HLH proteins but has since been applied to

larger sets of eukaryotic proteins [1]. More recently, an

approach using evolutionary relationships was used to clas-

sify bHLH proteins into four major groups (A-D) [13], taking

into account E-box binding, conservation of residues in the

other parts of the motif, and the presence or absence of addi-

tional domains. The sequencing of new genomes has led to

the identification of additional bHLH families, and this evo-

lutionary classification has now been extended to include

two additional groups (E and F; Table 1) [6]. Parsimony

analysis by Atchley and Fitch [13] of a phylogenetic tree

derived from 122 sequences suggested that an ancestral

HLH sequence most probably came from group B, and group

B proteins are indeed the most prevalent type of bHLH pro-

teins in animals. The situation is similar in the Arabidopisis

genome, in which the G-box-binding bHLH proteins (part of

group B) are the most abundant group [7].



One basis for the evolutionary classification shown in Table 1

is the presence or absence of additional domains, of which

the most common are the PAS, orange and leucine-zipper

domains. PAS domains, located carboxy-terminal to the

bHLH region, are 260-310 residues long and function as

dimerization motifs [14]. They allow binding with other PAS

proteins, non-PAS proteins, and small molecules such as

dioxin. The PAS domain is named after three proteins con-

taining it: Drosophila Period (Per), the human aryl hydro-

carbon receptor nuclear translocator (Arnt) and Drosophila

Single-minded (Sim) [15]. The domain is itself made up of

two repeats of approximately 50 amino-acid residues

(known as PAS A and PAS B) separated by about 150

residues that are poorly conserved [16]. PAS-domain-con-

taining bHLH proteins (bHLH-PAS proteins) form phylo-

genetic group C. A distinct additional domain, the orange

domain, is a 30-residue sequence that is also located

carboxy-terminal to the bHLH region, from which it is sepa-

rated by a short, variable length of sequence. Transcription

factors with this additional domain, designated bHLH-O and

forming part of phylogenetic group E, include the hairy-

related proteins, called HEY1, HEY2 and HEYL in mouse

and humans [17]. The molecular function of the orange

domain is still unclear; it has been proposed that it mediates

specificity and transcriptional repression [18], but there is

also evidence that it can play a role in dimerization [17].

A number of bHLH protein families, mostly in phylogenetic

group B, have a leucine-zipper domain contiguous with the

second helix of the HLH domain; like the HLH domain, this

mediates dimerization. Proteins that have only a leucine-zipper

domain coupled with a basic domain (denoted bZIP) and no

HLH domain are a separate family of DNA-binding proteins

in their own right (reviewed in [19]). The sequence of the

zipper consists of a repeating heptad, with hydrophobic and

apolar residues occurring at the first and fourth positions

and polar and charged residues at the remaining positions.

Leucine is the residue that predominates at position 4; it

thus lends its name to the zipper motif. One bHLH protein

that has a leucine-zipper domain (and that is therefore

denoted a bHLHZ protein) is Max, which forms the hub of a

network of bHLH transcription factors. Max is known to

form homodimers and heterodimers with the group B pro-

teins Myc, Mad, Mnt and Mga, and these complexes each

have sequence-specific DNA-binding and transcriptional

functions [20]. 

The additional domains in bHLH proteins, such as the

leucine zipper, are always carboxy-terminal to the bHLH

region. The position of the bHLH and additional domains

within the complete sequence of the protein varies widely

between different families, however. This variable pattern of

domain positioning has led to the proposal that bHLH pro-

teins have undergone modular evolution by domain shuf-

fling, a process that involves domain insertion and

rearrangement [21]. 

Structures of bHLH proteins
In comparison with the volume of sequence data, structural

data for the bHLH superfamily of transcriptional regulators

are still relatively sparse. Just nine bHLH protein structures
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Table 1

Classification of bHLH proteins by sequence

Phylogenetic Description Classification according Examples of classified proteins (family names)
group to Murre et al. [12]

A Bind to CAGCTG or CACCTG I, II MyoD, Twist, Net

B Bind to CACGTG or CATGTTG III, IV Mad, Max, Myc

C Bind to ACGTG or GCGTG. Contain a PAS domain Single-minded, aryl hydrocarbon receptor 
nuclear translocator (Arnt), hypoxia-inducible
factor (HIF), Clock

D Lack a basic domain and hence do not bind DNA but V ID
form protein-protein dimers that function as antagonists 
of group A proteins

E Bind preferentially to N-box sequences CACGCG or VI Hairy
CACGAG. Contain an orange domain and a WRPW 
peptide

F Contain an additional COE domain, involved in Coe (Col/Olf-1/EBF)
dimerization and DNA binding

This classification of bHLH proteins is based on sequence comparisons, E-box binding, conservation of residues in parts of the protein other than the
bHLH region and the presence or absence of additional domains. It was first adopted by Atchley and Fitch [13] and extended by Ledent and coworkers
[6]. The older classification based on tissue distributions, DNA-binding specificities and dimerization, proposed by Murre and coworkers for a much
smaller set of sequences [12], is shown for comparison.



have been deposited to date in the Protein Data Bank (PDB;

see Table 2) [22]. The CATH [23] and SCOP [24] protein-

structure classifications classify eight of these structures into

one superfamily (Table 2; SREBP-2 has not been classified).

A number of the structures (PDB codes 1an2, 1hlo, 1nlw,

1nkp, and 1am9) include an additional zipper domain that is

carboxy-terminal to the HLH region. Two of the structures

solved are heterodimers: a Max-Myc complex (PDB code

1nkp) and a Max-Mad complex (PDB code 1nlw). The

remaining complexes are homodimeric, and all but one

include the structure of the bound DNA double helix, giving

insights into the binding specificity at the E box. Representa-

tives of these bHLH structures are shown in Figure 1.

The structure of MyoD (Figure 1a) is typical of many bHLH

proteins, comprising two long � helices connected by a short

loop, which in the case of MyoD is 8 residues in length. The

first helix (H1) includes the basic domain, which makes

contact with the major groove of the DNA. MyoD is a

homodimer in which the two monomers make identical con-

tacts with the DNA. Comparisons of this structure with that

of Max (which includes an additional leucine zipper domain;

Figure 1d-f) reveal that the presence or absence of this

domain does not significantly affect the structure of the

bHLH segment [25]. 

Two interesting features revealed by the three-dimensional

structure of the Pho4 bHLH domain (Figure 1b) are the exis-

tence of a short stretch of �-helix in the loop region that

links helix H1 to helix H2 and the recognition of DNA bases

outside the E-box sequence [26]. The Pho4 protein binds

DNA as homodimer, and its two subunits form a parallel

four-helix bundle (Figure 1b). The short �-helix region in the

loop lacks the stabilizing hydrogen-bonding network

observed in other bHLH proteins. In the Pho4 structure,

each half-site of the symmetrical E box is recognized by a

triad of residues, but bases beyond the E box, including a GG

sequence at the 3� end, are also recognized [26]. Base recog-

nition outside the E box is also observed for MyoD, but in

this structure it occurs at the 5� end of the E box [25].

Sterol regulatory element binding protein 1a (SREBP-1a;

Figure 1c) is an example of a bHLH structure that includes

one of the additional domains, the leucine zipper. SREBPs

are bHLHZ transcription activators that bind to a DNA

target site as a homodimer and are essential for cholesterol
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Table 2

The bHLH protein structures available in the Protein Data Bank (PDB)

PDB Protein Protein Species Group SCOP superfamily CATH homologous CATH sequence 
code Chains name superfamily family

1mdy* ABCD MyoD bHLH Mouse A Helix-loop-helix MyoD basic-helix-loop-helix 4.10.280.10.1
DNA-binding domain domain, subunit B

1an4 AB USF bHLH Human B Helix-loop-helix MyoD basic-helix-loop-helix 4.10.280.10.2
DNA-binding domain domain, subunit B

1an2 AC Max bHLHZ Mouse B Helix-loop-helix MyoD basic-helix-loop-helix 4.10.280.10.2
DNA-binding domain domain, subunit B

1hlo AB Max bHLHZ Human B Helix-loop-helix MyoD basic-helix-loop-helix 4.10.280.10.2
DNA-binding domain domain, subunit B

1nlw* BE Max bHLHZ Human B Helix-loop-helix MyoD basic-helix-loop-helix 4.10.280.10.2
DNA-binding domain domain, subunit B

1nkp* BE Max bHLHZ Human B Helix-loop-helix MyoD basic-helix-loop-helix 4.10.280.10.2
DNA-binding domain domain, subunit B

1nkp* AD Myc prot-oncogene Human B Helix-loop-helix MyoD basic-helix-loop-helix 4.10.280.10.2
bHLHZ DNA-binding domain domain, subunit B

1am9* ABCD SREBP-1a bHLHZ Human B Helix-loop-helix MyoD basic-helix-loop-helix 4.10.280.10.3
DNA-binding domain domain, subunit B

1ukl CDEF SREBP-2 HLHZ Human B NC NC NC

1a0a* AB Pho4 bHLH S. cerevisiae B Helix-loop-helix MyoD basic-helix-loop-helix 4.10.280.10.4
DNA-binding domain domain, subunit B

1nlw* AD Mad bHLHZ Human B Helix-loop-helix NC NC
DNA-binding domain

The PDB codes and protein names for nine bHLH proteins deposited in the PDB are shown with their superfamily names from the CATH [23] and
SCOP [24] classifications and their sequence family numbers from CATH. Max has more than one structure solved, including two complexes (1nkp, Max-
Myc and 1nlw, Max-Mad). *Structures shown in Figure 1; NC, the protein is not yet included in the CATH or SCOP protein structure classifications.
SREBP, steroid response element binding protein. ‘Protein chains’ indicates the chain identification letter assigned to individual subunits in the PDB files.



metabolism [27]. Unlike other bHLH proteins that recognize

a symmetrical E box, SREBP-1a recognizes an asymmetrical

sterol regulatory element. This asymmetric recognition is

possible because of the presence of a tyrosine residue in the

basic domain. The tyrosine replaces the arginine observed in

other bHLH proteins such as Max, and this change results in

the loss of polar interactions with the DNA [27]. Recently, a

crystal structure of another SREBP, SREBP-2, has been

solved [28], in which SREBP-2 is bound in a complex with

importin-�, a molecule that mediates the transport of mole-

cules into and out of the nucleus; the structure reveals that

SREBP-2 is imported into the nucleus as a homodimer. 

Two of the most interesting structures to be solved to date

are those of the Max-Mad (Figure 1d) and Max-Myc (Figure

1e) heterodimer complexes bound to double-stranded DNA

[29]. In each monomer, the amino-terminal � helix is a con-

tinuous secondary-structural element that includes the basic

region and the � helix H1, and the carboxy-terminal � helix

is made up of two continuous �-helical segments, helix H2

and the leucine-zipper region. The Myc-Max and Mad-Max

complexes are quasi-symmetric heterodimers that have

interfaces made up of hydrophobic and polar interactions

involving residues in helices H1 and H2 and the leucine

zipper. Mutation studies suggest that dimer specificity is

controlled by the amino acids Gln91 and Asn92 (in the Max

numbering) in the Myc-Max dimer. The studies also show

that Glu125 controls Mad-Max heterodimer formation [29].

One interesting feature of the Myc-Max crystal structure

(Figure 1e,f) is the presence of two heterodimers in the

asymmetric unit of the crystals. The two structures form a

heterotetramer in which the head-to-tail assembly of leucine

zippers from different heterodimers results in the formation

of an antiparallel four-helix bundle (Figure 1f). It has been

shown previously that Myc-Max heterodimers can form

higher multimeric structures [30], and there is evidence to

suggest that the tetramer observed in the crystal also exists

under physiological conditions [29].

Functions of bHLH proteins
The heterogeneity of DNA sequences recognized and dimers

formed by the bHLH proteins enable them to function as a

diverse set of regulatory factors. The bHLH proteins can be

divided into those that are cell specific and those that are

widely expressed. The cell-type-specific members of the

superfamily are involved in cell-fate determination in many

different cell lineages and form an integral part of many
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Figure 1
Representative structures of bHLH proteins from the Protein Data Bank [22]. In each diagram, the protein is shown as a secondary-structure cartoon
and the DNA double helix is shown in stick representation. (a) MyoD bHLH-domain homodimer (PDB code 1mdy). (b) Pho4 bHLH-domain homodimer
(1am9). (c) SREBP-1a bHLH-domain homodimer (1aoaC). (d) Max-Mad heterodimer (1nlw). (e) Max-Myc heterodimer (1nkp). (f) Max-Myc
heterotetramer (1nkp). In (d-f) the Max HLH monomer is shown in dark gray. The scales are not comparable between different structures.
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processes, including neurogenesis, cardiogenesis, myogene-

sis, and hematopoiesis (Table 3). The bHLH proteins

involved in neurogenesis include Drosophila Atonal and

other ‘proneural’ proteins [31]. In vertebrates, Mash-1,

Math-1 and the neurogenins are important in the initial

determination of neurons, whereas Nero-D, NeuroD2,

MATH-2 and others are differentiation factors [32]. The

bHLH transcription factors dHAND and eHAND are impor-

tant in cardiac development in vertebrates [33]. The myo-

genic regulatory factors, including MyoD, MRF-4, Myf-5 and

myogenin, together regulate both the establishment and dif-

ferentiation of the myogenic lineage [34]. The stem cell

leukemia (SCL) protein is a bHLH transcription factor that

is essential for hematopoiesis and is associated with acute T-

cell leukemia [35].

One family of bHLH proteins that is widely expressed in

many different cell types is the Myc family. The Myc genes

are among the most frequently affected genes in human

tumors [36]. Myc proteins are known to regulate translation

initiation [37] and they also function as transcriptional acti-

vators when they form heterodimers with Max proteins

(also members of group B) [38]. There is some evidence,

however, that these dimers may also operate as negative

regulators of transcription (reviewed in [39]). Max is also

known to form homodimers and heterodimerize with other

bHLH proteins including Mad [38]. This dimerization

network of Myc/Max/Mad transcription proteins has a

large number of target genes involved in the cell cycle, and

the network has been considered to function as a transcrip-

tion module [20]. 

In summary, the bHLH superfamily constitutes a large and

diverse class of proteins, with over 125 different proteins

identified in humans and 145 in Arabidopsis. The discovery

of their diverse functions in the cell cycle, cell-lineage devel-

opment and tumorigenesis has elevated the interest in them

in the 15 years since they were first identified by Murre and

co-workers [11]. So what do the coming years hold in store

for this superfamily? With the sequencing of more genomes,

it is expected that further superfamily members and new

sequence families will be identified. With an increasing

number of proteins targeted and solved by structural-

genomics consortia, the structural data available for this

superfamily will also grow. The knowledge gained from new

sequences and novel high-resolution structures will offer

further insights into the mechanisms by which they control

such diverse processes. This increasing knowledge base may

make them good targets for new drug therapies for condi-

tions including heart disease and cancer.
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