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Abstract N-of-1 trial is a type of clinical trial which has been applied in chronic recur-
rent conditions that require long-termnon-curative treatment. In this type of trials, each
patient will be randomly assigned to one of the treatment sequences and repeatedly
crossed over twoormore treatments of interests. Through this cross-comparingmethod
(cross-over phase), investigator can identify anoptimal treatment (medicine or therapy)
for the patient and treat the patient with the optimal treatment in an extension phase.
This design could efficiently reduce the placebo effect, which is often seen in clinical
trials, andmaximize the true treatment effect. This type of design has been used in some
traditional Chinesemedicine (TCM) clinical trials lately.However, it brings some chal-
lenges for collecting and analyzing the data.Researchon statisticalmethodologyof this
type of design is rarely found in the literature. The goal of this research is to discuss the
application of theN-of-1 design to personalized treatment studies.Wewill demonstrate
a real study conducted in TCM and present some theoretical and simulation results.

Keywords N-of-1 design · Personalized medicine · Traditional Chinese medicine ·
Cross-over · Simulation

1 Introduction

In controlled clinical trials, patients were enrolled according to the inclusion and
exclusion criteria. The purpose for setting these criteria is to ensure a homogeneous
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patient population to be studied. In study design stage, we define inclusion and exclu-
sion criteria according to the knowledge of the medical conditions and prognostic
factors of the disease to be treated. However, we often find out that an active treat-
ment in a well-controlled study only works for a subset of patients, although the
therapeutic mechanism is well characterized. For example, molecule-targeted cancer
drugs are only effective for certain percentage of patients even though they had the
tumor-expressing targets. Some newly developed drugs may be abandoned because
no significant improvements have been detected across a population, whereas it is
highly possible that subgroups of patients could benefit from them [1]. If drugs A and
B are both proven to be effective to a disease, however, we often see that some patients
obtained treatment benefit from drug A, some obtained treatment benefit from drug
B and some did not have any benefit from either of them. Even for a highly effective
drug, the level of treatment benefit for different people may vary. There may be many
reasons behind it. One of them may be the genetic differences in patients or some
unknown prognostic factors of the disease [2,3]. For patients who did not respond to
the drug, there might be some characteristics or genetic information that may interfere
with the drug effect which had not been known yet at the time of the study. These
phenomena suggest us reconsider the medical research and drug development and pay
more attention to personalized medicine or treatment.

The goal of personalized medicine is to achieve the optimal clinical outcome by
steering patients to the right drug at the right dose and right timing [1]. In recent years,
there are extensive researches which studied personalized medicine/treatment, and
most of the approaches focus on patients’ known prognostic factors, genetic infor-
mation, or biomarkers. The review paper by Zhao et al. nicely summarized recent
researches and statistical methods for personalized medicine/treatment. There are two
types of approaches for studying personalized medicines, the single-stage study and
multi-stage study. In single-stage study, one identifies a personalized treatment based
on patients’ baseline information to maximize the treatment benefit or minimize the
risk due to the treatment, whereas in themulti-stage study, one identifies a personalized
treatment based on a sequence of treatment approaches at each stage so that treatments
are adaptive to patients’ characteristics, disease histories, and other evolving biomark-
ers [1]. Formulti-stage study,Murphy and others have published a number of papers on
statistical methodology of adaptive treatment strategies, also called dynamic treatment
regimes, which are sequential treatment assignments for individual patients [4–8]. In
this manuscript, we will introduce a new statistical method for personalized medicine,
the N-of-1 design, which could be considered as a special kind of multi-stage adaptive
strategy. In the N-of-1 design, two or more treatments are provided to a patient in
cross-over fashion and the best one to the patient will be identified and picked for
long-term follow-up treatment.

N-of-1 design is composed of a series of pairs of treatments [9]: within each pair,
there are always a period on experimental treatment (A) and another period on alterna-
tive treatment or placebo (B). The order of treatments A andB is randomly determined.
By evaluating the differences between treatments A and B, the main purpose of N-of-1
design is to find the best treatment or to determine whether a certain treatment is truly
effective for a particular patient. N-of-1 design was first systematically explained in
psychology [10] and may be rarely used in clinical trials so far. But N-of-1 design
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drew some attention in the medical field since 1986 [11] and since then have been
applicable for some chronic diseases with symptomatic conditions, such as arthri-
tis [12–15], asthma [16,17], fibromyalgia [18,19], insomnia [20], and attention deficit
hyperactivity disorder [21–23]. N-of-1 design could also be used to evaluate the safety
of study drug to improve patient adherence to clinical trial [24]; to improve patient
management and save costs for chronic diseases [25]; to examine surgical procedures
[26]; and to help decisionmaking for treatments that might have adverse consequences
or costs [27].

Earlier N-of-1 trials always focused on very limited number of patients (usually
one single patient) instead of a large population of patients [28–30], so N-of-1 design
falls well in the scope of personalized medicine/treatment. In recent years, in some
publications, individual N-of-1 trials were aggregated to evaluate population treatment
effects and provide the robustness of a regular RCT trial, since each patient contributes
more than one set of perfectly matched data. In a recent review [31], it was reported
that out of 108 included n-of-1 trials over 25 years (including single-patient trials
and multiple-patient trials), about half of them used t test and the other half used only
graphical comparison (plotting responses over time and determining efficacy by visual
inspection) with no statistical analysis; of the 60 multiple-patient trials, 43 % reported
on a pooled analysis, 23 % of which used Bayesian methodology and the others
used frequentist statistics. A few studies [27] used hierarchical Bayesian method [32]
which could combine the results from single-patient trials and get posterior estimates
of the population treatment effects as well as the individual patient treatment effects,
using either normal likelihood distributions [33] or binomial likelihood distributions
[34]. The conclusions drawn may differ between various Bayesian analyses due to
sensitivity to the informative prior distribution used [34].

Here we propose an alternative method to analyze the data and compare the treat-
ment effect. We also believe that N-of-1 trial could not only be carried out on one
patient at a time, but it also has great potential to be incorporated to traditional ran-
domized trials, which could be beneficial to a larger population of patients. Thus we
developed a brand new clinical trial design which consists of two phases: a cross-over
phase and an extension phase (Fig. 1). The cross-over phase actually follows N-of-1
design, and in this phase, patients take two potentially active treatments A and B alter-
nately. At the end of cross-over phase, treatments A and B are evaluated by treatment
effects (always by scores) for each patient. For one particular patient, if treatment A
is better than B, this patient stays in treatment group A; and the same rule applies to
patients in favor of treatment B. Then all the patients with successful assignments of
treatment A or B will enter extension phase, in which a patient will only be given one
treatment, A or B, according to the assignment. At the end of the trial, information
gathered in both cross-over phase and extension phase will be used to analyze the
treatment effects.

From statistical point of view, there are quite a fewquestions for this newdesign. For
example, how to estimate the sample size to ensure the powers covering both phases?
How to define the overall endpoint and how to analyze it? How many cross-overs are
needed to avoid a false positive decision? In this manuscript, we try to address these
questions.
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Fig. 1 N-of-1 design without placebo

2 Method

2.1 A Motivational Example and Concept

Assume that we are studying two active drugs (Drugs A and B) on a disease population
and a 10 % placebo (P) response was observed for this population. The entire study
population contains two subgroups U (r∗100% of people) and V((1 − r)∗100% of
people). These two subgroups react differently on Drugs A and B. Let us assume
that Drug A works on subgroup U with effect of 0.5 (full effect), but it works on
subgroup V with effect of only 0.1 (the same as placebo). On the contrary, Drug B
works on subgroup U with effect of only 0.1, but it works on subgroup V with full
effect of 0.5. If r = 0.5, the effects of drugs A and B on the whole population are both
0.3 and �AP = �BP = 0.2, where �AP and �BP denote the treatment differences
of A or B versus placebo, respectively. Using the N-of-1 design, in the ideal case,
if we could correctly apply Drug A to subgroup U and Drug B to subgroup V, we
have �AP = �BP = 0.4, which enhances the treatment benefit greatly by correct
assignment of the drugs. This leads to a generalization of the N-of-1 design to active
drug/placebo-controlled study as illustrated in the following diagram (Fig. 2).

Fig. 2 Generalization of the N-of-1 design with placebo
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In this design, patients will be randomly assigned to treatment sequences A/B,
B/A, and P/P at 1:1:1 ratio. Treatments will be crossed over according to the assigned
sequence. The cross-over can be repeated for k (k ≥ 1) times (say 2 or 3 times) so that
the treatment efficacy (e.g., symptom relief score) can be sufficiently identified. At the
end of the cross-over phase, patient’s efficacy score will be reviewed and patient will
be given the treatment with better score in the extension phase. Of course, the criteria
of “better” could be predefined clinically (For example, a 10 % better is considered
clinically meaningful). Patients assigned to P/P will be handled in the same way.
There will be no impact to the treatment assignment in the extension phase for the P/P
patients. The entire process should be handled in blinded fashion.

Whether to include a P/P depends on the objectives of the study. If A is an experi-
mental drug, B is an approved drug and both are for the same indication, the goal is to
assess non-inferiority of A versus B, then including P/P will enable us to demonstrate
the drug sensitivity (or “assay” sensitivity) in the sense that Drug A must be superior
to placebo. If both A and B are approved drugs, the goal is to evaluate whether A is
better than B or vice versa or they are equivalent or this is a personalized treatment
study, then it is not necessary to include the P/P sequence.

We will discuss the pros and cons and statistical challenges of these scenarios in
the following sections.

2.2 Sample Size Consideration

Since the design consists of two parts (cross-over and extension), we need to estimate
the sample size so that the sufficient statistical power for tests in cross-over and exten-
sion phases would be warranted. In other words, we need to calculate the sample size
required for cross-over phase and the sample size for extension phase as well.

For the cross-over phase, the sample size formula for comparing Drug A to Drug
B (in each group) is derived as

nA = nB = 2σ 2
c (zα/2 + zβ)2

kδ2c
(1 − ρ),

where k is the number of cross-over periods; σc, δc are standard errors and treatment
differences, respectively, and ρ is the within-subject correlation. As can be seen, the
more repeats of the cross-over, the less sample size will be needed for detecting the
difference between A and B. Also the higher the correlation is (assuming r > 0), the
less sample size will be needed.

For determining whether assigning patients to Drug A or Drug B, one can set a
threshold according to clinical criteria, say 10 %. For example, if the overall efficacy
score under A is 10 % better than B, then assign the subject to Drug A in extension;
if the overall efficacy score under B is 10 % better than A, then assign the subject to
Drug B in extension; if the overall efficacy scores between A and B are within 10 %,
the subject can be randomly assigned to either A or B.

For the extension phase, the total sample size (combined active groups A and B)
formula for comparing Drug A to Drug B is derived as
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nAB = σ 2
e (zα/2 + zβ)2

r(1 − r)δ2e
,

where σe and δe are standard errors and treatment differences in extension phase,
respectively; and r is the proportion of patients assigned to Drug A. If r = 0.5 (the
same proportion to A or B), then the sample size formula is the same as the usual
two-sample parallel design with 1:1 allocation ratio. From practical point of view,
if r > 0.75, i.e., more than 75 % of the patients were in favor of A, one can easily
conclude that A is a favorable treatment (Drug) formajority of patients. In other words,
you may not need the extension phase to draw the conclusion. Therefore, for planning
purpose, we could restrict 0.5 ≤ r ≤ 0.75 in the N-of-1 design.

Finally, we take the maximum of the two sample sizes to get the sample size for
the entire study.

nAB = max

{
4σ 2

c

kδ2c
(1 − ρ),

σ 2
e

r(1 − r)δ2e

}
(zα/2 + zβ)2.

If the study included a placebo arm, we need to consider the sample size for placebo
group. If the allocation ratio of active sequences (A/B and B/A) to placebo sequence
(P/P) is 1:1:1, we obtain the sample size for placebo:

nP =
(
1 + 2r

2r

)
σ 2
e (zα/2 + zβ)2

δ2e
.

With these formulas, one can plan the N-of-1 study according to the study objectives
by assuming different study parameters (i.e., k, r, σc, δc, σe, and δe).

2.3 Efficacy Analysis Consideration

The proportion (r ) of patients distributed to Drug A at the end of cross-over phase
could be an important qualitative variable for assessing whether these two drugs are
(1) no difference or (2) one is superior to the other. We can form a hypothesis test with
H0: r = 50 % (i.e., A=B) versus H1: r > 50 % + p to test whether more patients
will stay with Drug A compared to B. This could be the first step of analyzing the
differences by simply applying the χ2 test. However, this provides only the qualitative
evaluation, not the quantitative evaluation.

The primary objective of the design is to identify the optimal treatment for a long-
term therapy. The efficacy measurements (safety as well) are collected during the
cross-over phase as well as the extension phase. We need to combine the data in both
phases together to assess the overall effect. To do so, we need to derive a composite
variable that is able to carry the information gathered in both phases.

2.4 Composite Efficacy Measure

In cross-over phase, each patient undergoes two different treatments. Thus in extension
phase, whether to continue on Drug A or B is a conditional random variable I. We
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could define an overall endpoint by combining the efficacy measurements from both
cross-over and extension phases.

Let XA and XB denote the efficacy measurement at cross-over phase for Drug A
and Drug B; Y denote the efficacy measurement at extension phase; IA, IB denote the
indicators whether the patient is assigned to Drug A or Drug B; Z denote the overall
efficacy measurement. Thus, we got the following expression for Z :

ZA = XA + Y ∗ IA; ZB = XB + Y ∗ IB,

where IA is 1 if A is assigned and 0 otherwise; IB is 1 if B is assigned and 0 otherwise.

2.5 Test Statistics

(a) Comparing Drug A to Drug B Let xAi j , x
B
i j denote the outcome of i th patient at j th

cross under treatment A or B; yAi , y
B
i denote the outcome during extension phase

for i th patient under Drug A or Drug B. Then we have the overall score for i th
patient as the following:

ZA
i = 1

k

k∑
j=1

xAi j + yAi IAi and ZB
i = 1

k

k∑
j=1

xBi j + yBi (1 − IAi ),

where k is the number of cross-over. Thus we have the treatment difference
between A and B:

�AB = 1

n

n∑
i=1

ZA
i − 1

n

n∑
i=1

ZB
i = 1

n

n∑
i=1

1

k

k∑
j=1

(
xAi j − xBi j

)

+ 1

n

n∑
i=1

(
yAi IAi − yBi (1 − IAi )

)
or

�AB = (X̄ A − X̄ B)︸ ︷︷ ︸
(1)

+ ( ¯Y A I − ¯Y B(1 − I ))︸ ︷︷ ︸
(2)

,

where ¯Y A = 1
n

n∑
i=1

yAi and ¯Y B = 1
n

n∑
i=1

yBi .

Parts (1) and (2) are the differences contributed by cross-over phase and extension
phase, respectively.
The expectation of�AB = δc+ (μAr −μB(1−r)). Under assumption of constant
within-subject correlation, we have

Var(�AB) = 2σ 2
c

nk
(1 − ρ) + σ 2

A

n
r + σ 2

B

n
(1 − r) + 1

n
(μA + μB)2r(1 − r).
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Thus we can formulate the overall test statistics for comparing Drug A versus
Drug B.

zAB = δ̂c + (μ̂Ar − μ̂B(1 − r))√
2σ 2

c
nk (1 − ρ) + σ 2

A
n r + σ 2

B
n (1 − r) + 1

n (μ̂A + μ̂B)2r(1 − r)
,

where n is the number of patients; k is the number of cross-over; σ̂c, σ̂A, σ̂B are
sample standard errors; δ̂c is the treatment difference between A and B in cross-
over phase; μ̂A and μ̂B are the average effects of groups A and B in extension
phase; ρ is the correlation; r is the proportion of patients assigned to Drug A. The
detailed derivations of formulas are given in Online Appendix.

(b) Comparing active drug to placebo We can write the sample means of Drugs A,
B, and P as the following

Z̄ A = 1

n

n∑
i=1

1

k

k∑
j=1

xAi j

︸ ︷︷ ︸
(1)

+ 1

n

n∑
i=1

yAi IAi

︸ ︷︷ ︸
(2)

; Z̄ B = 1

n

n∑
i=1

1

k

k∑
j=1

xBi j

︸ ︷︷ ︸
(1)

+ 1

n

n∑
i=1

yBi I
B
i

︸ ︷︷ ︸
(2)

;

Z̄ P = 1

m

m∑
i=1

1

2k

2k∑
j=1

xPi j

︸ ︷︷ ︸
(3)

+ 1

m

m∑
i=1

yPi

︸ ︷︷ ︸
(4)

.

We got

E(�AP) = E(X̄ A − X̄ P ) + E( ¯Y A I − ¯Y P ) = δ̂c + μ̂Ar − μ̂P

Var(Z̄ A) = Var((1)) + Var((2)) + 2∗cov((1), (2))

= 1

nk
σ 2(1 + (k − 1)ρ) + 1

n
(σ 2r + μ2

Ar(1 − r)) + 2

n
σ 2ρr;

and

Var(Z̄ P ) = 1

2mk
σ 2(1 + (2k − 1)ρ) + 1

m
σ 2(1 + 2ρ).

Finally, we got the test statistics for comparing Drug A to placebo as

zAP = δ̂c + μ̂Ar − μ̂P√
1
nk σ 2(1 + (k − 1)ρ) + 1

n (σ 2r + μ2
Ar(1 − r)) + 2

n σ 2ρr + 1
2mk σ 2(1 + (2k − 1)ρ) + 1

m σ 2(1 + 2ρ)

.

With the same approach, we can get the test statistics for comparing Drug B to
placebo.
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2.6 Simulation

A simulation study was performed using R (see R scripts in Online Resource). As
previously stated, the entire study population contains two subgroups U and V, which
react differently on drugs A and B. We assumed that for population U, Drug A has
full effect 0.5 but Drug B only has effect 0.1 (Table 1). For population V, the situation
is the opposite. And placebo effects on two populations are both 0.1.

We calculated the sample size for traditional parallel design of comparing Drug
A versus placebo or Drug B versus placebo, which is n = 98 per group, to obtain
power=80 %. Using this sample size, we calculated the power using our new design
by performing simulation 1000 times. Apparent power increase has been observed
(Table 2). And slight type I error inflation was observed, compared with 0.05 (Table
3). Most likely, the source of inflation may come from the over-selection for subjects’
assignment based on better scores in the cross-over phase.

Some additional simulation results with various different parameters were also
summarized in Tables 4 and 5. From Table 4, we could see that the power decreases
as correlation increases.

In Table 5, we simulated the cases when r (proportion to A) varies, which are closer
to the conditions in the real world, where the proportion to one subgroup cannot be

Table 1 Patient population and
rate of responses to study drugs

Study population (W ) Drug A Drug B Placebo (P)

Sub-population U 0.5 0.1 0.1

Sub-population V 0.1 0.5 0.1

Table 2 Power increase in simulation

r (proportion to A) ρ (correlation) k (no. of cross-overs) Power (A vs. P) Power (B vs. P)

0.5 0.3 1 0.906 0.905

0.5 0.3 2 0.957 0.949

0.5 0.3 3 0.964 0.971

0.5 0.3 4 0.984 0.981

Table 3 Type I error inflation in simulation

r (proportion to A) ρ (correlation) k (no. of cross-overs) Type I error

0.5 0.3 1 0.090

0.5 0.3 2 0.092

0.5 0.3 3 0.097

0.5 0.3 4 0.098

0.5 0.8 1 0.073

0.5 0.8 2 0.070

0.5 0.8 3 0.072

0.5 0.8 4 0.075
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Table 4 Simulation results with various ρ (correlation)

r (proportion to A) ρ (correlation) k (no. of cross-overs) Power (A vs. P) Power (B vs. P)

0.5 0 3 0.997 0.999

0.5 0.1 3 0.998 0.996

0.5 0.2 3 0.990 0.988

0.5 0.3 3 0.977 0.976

0.5 0.4 3 0.966 0.957

0.5 0.5 3 0.953 0.949

0.5 0.6 3 0.918 0.913

0.5 0.7 3 0.923 0.912

0.5 0.8 3 0.917 0.910

0.5 0.9 3 0.871 0.874

0.5 1.0 3 0.867 0.862

Table 5 Simulation results with various r (proportion to A)

r (proportion to A)ρ
(correlation)

k (no. of
cross-overs)

Power (A vs. P) Power
(B vs. P)

N (sample
size)

0.2 0.3 3 0.684 1.00 613

0.3 0.3 3 0.879 0.903 273

0.4 0.3 3 0.879 0.964 154

0.5 0.3 3 0.968 0.977 98

0.6 0.3 3 0.988 0.703 69

0.7 0.3 3 0.977 0.255 50

0.8 0.3 3 0.983 0.069 39

always 0.5. The sample sizes used here were calculated based on traditional parallel
design of comparing Drug A versus placebo to obtain power=80 %. As suggested in
this table, increasing of r leads to the enhancement of power of A versus placebo, and
the gain of power (compared to traditional design) starts from r = 0.3.

3 A Case Report

One of the important utilizations of our new design is the clinical trials with traditional
Chinese medicine (TCM). TCM has been used for thousands of years and plays an
important role in treating various diseases in China and Asian countries. However, it is
still notwidely accepted due to lack of solid evidence to support its efficacy claims [35].
Doctors may prescribe TCM treatment by adding or removing certain components
according to observation of individual patient’s characteristics, symptoms, pulse, color
of tong, etc. This highly complies with the idea of personalized medication/treatment,
but it also leads to some challenges in conducting a traditional randomized clinical
trial. Thus the N-of-1 design, which is a combination of personalized clinical trial and
randomized clinical trial, could play a critical role here. Recently there are several
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ongoing TCM clinical trials using the N-of-1 design. We have been involved in a
Chinese National 11th 5-Year Plan Research Project to evaluate personalized TCM
treatment to patients with diabetic retinopathy and glaucoma. This study used the N-
of-1 design to identify the best treatment to the patients and in an extension phase let
patients continue on the best treatment identified.

3.1 Background

The objective of the study is to use our new design to study methodology in design
and evaluation of TCM clinical trials. The study population includes the patients aging
35–75 with diabetic retinopathy and glaucoma. We selected two TCM drugs: one with
effect in treating this disease (treatment A) and one with no effect in treating this
disease (treatment B, placebo).

3.2 Treatment Procedure

This study involvedDrugA (the drug of interest) andDrugB (the placebo). Therewere
two cross-over periods (k = 2). In each cross-over period, a patient took treatments
in sequence A/B or B/A. The sequence of treatments within a period for each patient
was randomly generated using SAS procedure “proc plan.”

There were 10 weeks in each cross-over period. In the first 4 weeks, patients took
the first drug and the 5th week was the wash-out period; in weeks 6th–9th, patients
took the second drug and the 10th week was the wash-out period. In the 5th and 10th
week, treatment efficacy information was collected. After evaluating the cross-over
period, a better drug (Drug A or Drug B) was selected for each patient and the patient
took this drug for 12 weeks.

3.3 Efficacy Endpoints

Short-term efficacy measurements included physician’s symptom assessments and
patient self-symptom questionnaires. Long-term efficacy measurements included
vision, fundus fluorescein angiography, FERG and OPs, TCM symptom scales, and
VFQ-25 scales.

An important criterion is ART (Ratio of Drug A), which is the ratio of patients
staying in group A in extension phase. If ART ≥ 70 %, we could identify that Drug
A has significant effects; if 50 %<ART<70 %, Drug A has some effects; if ART ≤
50 %, Drug A has no effects at all.

The drug efficacy is measured by scores determined by physician and patient, with
the lower score, the better symptom.

3.4 Results

One problem of this study is the missing data. We planned to recruit 60 patients, but
only 41 patients participated at the beginning of cross-over phase. After cross-over
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phase was complete, only 35 patients remained in the study with 20 of them assigned
to Drug A and 15 of them to Drug B (ART=57.1 %). And only 28 patients completed
both cross-over phase and extension phase, with 16 in group A and 12 in group B
(r=57.1 %). According to ART which is between 50 and 70 %, Drug A has some
effects.

The correlation at cross-over phase was ρ = 0.69. The mean score at cross-over
phase for Drug A is−10.0; the mean score at cross-over phase for Drug B is−9.0; the
mean score at extension phase for Drug A is −2.4; the mean score at extension phase
for Drug B is −0.7. The standard error at cross-over phase is 12.94; the standard error
at extension phase forDrugA is 10.45; the standard error at extension phase forDrugB
is 10.10. Calculated test statistics z is−0.9605, leading to a two-sided p value=0.337.
This p value indicates that Drug A is not significantly better than Drug B (placebo).

4 Discussion

The new N-of-1 design described in this manuscript provides a method to study the
personalized treatment. The nature of N-of-1 design determines that the patient serves
as his/her own control, making the results more reliable. It is a design that the treatment
is not determined by somebody else like the traditional “play-the-winner” approach,
where i th subject’s treatment was determined by the success of the treatment on (i −
1)th subject [36,37]. It is also different from the “patients-like-me” approach, in which
the k most similar neighbors are examined sequentially until a statistically significant
conclusion can be drawn [38]. Comparing to personalized treatment approaches based
on genomic profile or biomarkers, the design is much simpler and easier to conduct.
The design is especially suitable for trials of chronic diseases where patient’s baseline
characteristic is hard to be determined or where the treatment effect may vary among
patients, such as in TCM.

There are a few more advantages of this new design. First of all, this design is
beneficial to the patients: in relatively early cross-over phase, we could easily identify
which treatment actually works better for a particular patient, so in the extension phase
the patient could be treated with a treatment which was proved to work better for
him/her. This design also maximizes relative treatment effects by correctly assigning
patients to corresponding drugs, thus reducing the chance that an effective treatment
(which might be effective to only subgroups of patients) being abandoned simply due
to lack of significance across the total population (which might be due to the dilution
by certain unknown prognostic factors). Thus this design could not only find best
treatments for individual patients but also evaluate general treatment effects for larger
subgroups. And the advantage of power increase indicates the potential of recruiting
fewer patients, thus cutting the cost and saving the time. Finally, the patient information
gathered within subgroups might also provide a chance for the researchers to further
summarize the common characteristics of subgroup patients, which might make it
possible to gain better understanding toward the detailed working mechanism of a
certain treatment.

There are also some limitations of this design. Thedisadvantage is that the additional
cross-over phasewill prolong the durationof study.There is slightType I error inflation.
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According to the results shown in Table 3, increasing the number of cross-over could
partially suppress the inflation. The carry-over effects in cross-over phase need to be
controlled well, for example, by increasing wash-out time, to avoid confounding the
trial results.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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