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A link between the gut microbiome and Parkinson’s disease (PD) has been intensively
studied, and more than 100 differential genera were identified across the studies.
However, the predominant genera contributing to PD remain poorly understood. Inspired
by recent advances showing microbiota distribution in the blood and brain, we, here,
comprehensively investigated currently available fecal microbiome data (1,914 samples)
to identify significantly altered genera, which were further validated by comparison to the
results from microbiome analysis of blood (85 samples) and brain (268 samples). Our
data showed that the composition of fecal microbiota was different from that of blood
and brain. We found that Blautia was the unique genus consistently depleted across
feces, blood, and brain samples of PD patients (P < 0.05), despite using rigorous criteria
to remove contaminants. Moreover, enrichment analyses revealed that host genes
correlated with Blautia genus abundance were mainly involved in mitochondrial function
and energy metabolism, and mapped to neurodegenerative diseases (NDDs) and
metabolic diseases. A random forest classifier constructed with fecal microbiota data
demonstrated that Blautia genus was an important feature contributing to discriminating
PD patients from controls [receiver operating characteristic (ROC)-area under curve
(AUC) = 0.704, precision-recall curve (PRC)-AUC = 0.787]. Through the integration of
microbiome and transcriptome, our study depicted microbial profiles in the feces, blood,
and brain of PD patients, and identified Blautia genus as a potential genus linked to PD.
Further studies are greatly encouraged to determine the role of Blautia genus in the
pathogenesis of PD.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder characterized by dopaminergic
neuron degeneration in substantia nigra (SN) (Surmeier, 2018).
Apart from typical motor impairment, many PD patients
also experience non-motor symptoms like gastroparesis and
constipation (Chaudhuri et al., 2006; Pfeiffer, 2016), which
often happen years before developing motor symptoms
(Cersosimo and Benarroch, 2012). Over the last decade,
numerous metagenomics studies in human and animals have
demonstrated that alterations of gut microbiota composition
were closely associated with PD pathophysiology (Qian et al.,
2018b; Dong et al., 2020; Aho et al., 2021). Short-chain fatty acids
(SCFAs) produced by gut microbiota could affect α-synuclein-
induced neuronal cell death and neuroinflammation through
regulating the activity of G protein-coupled receptors (GPCRs)
(Dalile et al., 2019). Thus, gut microbiota is hypothesized to
be a putative diagnostic marker and therapeutic target for PD.
Although over 100 genera were reported to be significantly
changed in PD patients in two latest meta-analysis (Romano
et al., 2021; Shen et al., 2021), no consensus was achieved yet.

Besides the gastrointestinal tract, recent studies have indicated
that low-abundance microbiota was also observed in other organs
or tissues like tumors, and even in samples from blood, liver
and lung, which might serve as a part of microenvironment
in situ (Lelouvier et al., 2016; Castillo et al., 2019; Klann et al.,
2020; Poore et al., 2020; Dohlman et al., 2021). It was reported
that age-related changes in intestinal permeability and immune
function facilitated the entry of gut bacteria into blood (Nagpal
et al., 2018). Indeed, gut permeability was found to be increased
(leaky gut) in PD patients (Forsyth et al., 2011). A recent 16S
rRNA amplicon study demonstrated the existence of microbiota
in the blood of PD patients (Qian et al., 2018a), showing a
significant difference in blood microbiota composition between
PD patients and controls.

Studies have also evinced the existence of microbiota in the
brain of both PD or Alzheimer’s disease (AD) patients and
healthy controls, termed as “pathogenic microbial infections”
and “brain microbiome,” respectively (Emery et al., 2017; Pisa
et al., 2020). As gut microbiota could enter blood owing to an
increased gut permeability, microbiota in the brain might be
derived from blood, especially in PD patients with blood-brain
barrier (BBB) leakage (Emery et al., 2017). Taken together, these
findings suggested that microbiota in both blood and brain may
play a potential role in the pathogenesis of PD. However, little
is known about the microbiota profile in the blood and brain
of PD patients, nor 16S rRNA or metagenomics study targeting
brain microbiota is now available for PD patients. A recently
developed algorithm and software, Kraken2, has been applied in
identifying resident microbiota in tumor tissue and blood using
RNA-Seq data, with high sensitivity and specificity (Wood et al.,
2019; Poore et al., 2020). Thus, it is possible for us to evaluate the
microbiota composition in the brain of PD patients using publicly
available RNA-Seq data from PD patients’ brain.

In this study, we investigated microbiota landscape among
feces, blood and brain samples from PD patients and controls.

Meanwhile, microbiota genera with consistent changes across
three sample types were selected as candidate “key genera.”
To further evaluate the association of “key genera” with PD,
a correlation analysis was performed between “key genera”
and differentially expressed genes (DEGs), both of which were
identified from the same brain RNA-Seq data. In addition,
an enrichment analysis was also conducted to estimate the
function of DEGs tightly correlated with “key genera.” Moreover,
a random forest classifier constructed with microbiota genera
data was built to assess the importance of “key genera” in
distinguishing PD patients from controls.

MATERIALS AND METHODS

Data Collection and Description
A comprehensive search was conducted on the Sequence Read
Archive (SRA) database1 and European Nucleotide Archive
(ENA) database2 using the following keywords: “Parkinson’s
disease,” “blood,” “brain,” “gut,” “feces,” “16S,” “rRNA,” “RNA-
Seq,” “transcriptome,” “microbiota,” and “microbiome.” Gene
expression microarray data of the brain in PD patients were
retrieved in the Gene Expression Omnibus (GEO) database. Only
samples from Homo sapiens were included in this study. All
metadata sets were downloaded from the SRA database or GEO
database according to the unique Project ID of each study. The
geographic distribution of all included studies (Figure 1A) and
workflow (Figure 1B) for this study was presented in Figure 1.

Data Processing
The 16S rRNA and RNA-Seq data downloaded from the ENA
were processed with QIIME2 2020.8.0 (Bolyen et al., 2019) and
Kraken 2.1.1 (Wood et al., 2019) according to the standardized
pipeline, respectively. Briefly, the quality of each sequence read
was checked by trim-galore (V.0.6.6), and a base with Phred score
less than 20 was removed from further analysis. For each 16S
rRNA dataset, all reads were input into QIIME2 as demultiplexed
sequences, which were then denoised to generate amplicon
sequence variants (ASVs) using DADA2 (Callahan et al., 2016).
The cluster-features-closed-reference method was used to pick
up OTUs. The classify-consensus-vsearch method was applied
to assign taxonomy using 99% Greengenes database 13.8 and
99% SILlVA 138 as reference. Recent Shotgun metagenomic data
(PRJNA433459) (Qian et al., 2020), which were re-analyzed with
Kraken2 in this study, were further used to verify the results
obtained from 16S rRNA. For each RNA-Seq dataset, all reads
were classified with Kraken2 using minikraken_8GB_20200312
database as reference, and Bracken was then applied to count
the relative abundance of taxonomy based on the read length
(Wood et al., 2019).

The same RNA-Seq data used above were also applied
to detect gene expression levels in the brain. RNA-Seq and
microarray data were processed with two web tools, GREIN3

1https://www.ncbi.nlm.nih.gov/sra
2https://www.ebi.ac.uk/ena/browser/home/
3http://www.ilincs.org/apps/grein/?gse=
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FIGURE 1 | The geographical distribution of included studies and integrative meta-analysis pipeline. There were ten, one, and five studies included in microbiota
analysis for feces (16S rRNA), blood (16S rRNA), brain (RNA-Seq) individually, and nine brain microarray studies were enrolled in transcriptome analysis (A). Raw
sequence data were downloaded from SRA and ENA database, and brain transcriptome data (microarray) were downloaded from GEO. 16S rRNA sequences were
processed with DADA2/QIIME2 pipeline to obtain taxonomy data, and also were processed PICRUSt2 for functional prediction (B). The five RNA-Seq studies used
in microbiota analysis (Kraken2) were also used in brain transcriptome analysis (GREIN web platform) (B). Different genera and genes (RNS-Seq) were first calculated
with DESeq2 in each study, and then pooled together using fixed effect model meta-analysis. Enrichment analyses (GO, KEGG, and GSEA) were performed using
genes significantly associated with commonly changed genera (B).
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(Al Mahi et al., 2019) and ImaGEO4 (Toro-Domínguez et al.,
2019), respectively. Briefly, unique GSE ID obtained from the
GEO was used as query in GREIN and ImaGEO individually,
and data were processed with the default parameters. A meta-
analysis was conducted automatically to identify DEGs in the
ImaGEO after microarray data were processed. All statistical
analyses were conducted with R (version 4.0.4) (Chambers, 2008)
unless otherwise stated, and P value less than 0.05 was considered
statistically significant.

Characterization of Microbial
Communities in Parkinson’s Disease
To alleviate batch effects (hypervariable region, sequencing
platform, and country, etc.), microbiota analysis was performed
at the genus level. To exclude the impacts of bacterial
contamination, those genera previously reported as potential
contaminants or widely distributed in the tubes and agents
(Supplementary Data 1) (Salter et al., 2014; Davis et al., 2018;
Eisenhofer et al., 2019) were removed. To identify contaminants
in blank tubes and agents, Salter et al. routinely process the
a negative ‘blank’ controls without adding sample template
alongside human-derived samples by 16S rRNA and shotgun
metagenomics (Salter et al., 2014). A list of contaminant
genera was detected in sequenced negative ‘blank’ controls
(Supplementary Data 1), which were removed from microbiota
analysis in our study. In addition, as gut microbiota is the main
source of bacteria in human, we also excluded genera (“pan-
contaminants”) exclusively found in the blood and brain. In this
study, all data analyses were conducted using the microbiota
genera data after removing pan-contaminants unless otherwise
stated. The relative abundance of bacteria at the Phylum level was
calculated and plotted using the tax_stackplot within amplicon
(V.1.1.5) package (Liu Y.-X. et al., 2021). A heatmap of genera
with a relative abundance equal or more than 0.5% was also
plotted for each sample types (feces, blood, and brain) using the
pheatmap (V.1.0.12) package (Kolde and Kolde, 2015). Since the
sequencing depth and genera abundance among feces, blood, and
brain samples was different, rarefied genera data were only used
for diversity analysis. For the α-diversity analysis in the feces and
blood or brain (RNA-Seq), 3,000, and 1,000 counts were extracted
randomly from each sample without replacement to estimate
Observed, Chao1, Shannon, and Simpson evenness indices using
the phyloseq (V.1.34.0) package (McMurdie and Holmes, 2013).
For β-diversity analysis, the relative abundance of genera profiles
were used to calculate β-diversity with the following parameters
(dist = “bray,” method = “PCoA,” Micromet = “Adonis”) in
amplicon package (Liu Y.-X. et al., 2021).

Predicted Microbiota Function
To assess the difference in microbiota function between PD
patients and controls, we used Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States
(PICRUSt2) to determine the predicted function of gut microbial
communities from 16S rRNA sequencing data (Douglas et al.,
2020). The KEGG Orthology (KO) metagenome prediction

4https://imageo.genyo.es/

data were obtained using the picrust2_pipeline.py script in
PICRUSt2. After that, the predicted KO abundances data were
categorized into KEGG pathway abundances of Level 2 and
Level 3. Finally, a meta-analysis was performed to identify the
different KEGG pathways of Level 2 and Level 3 between PD
patients and controls.

Meta-Analysis of Genera and Gene Level
The genus-level abundance data were processed with qiime2R
(V.0.99.4) and phyloseq package (Bisanz, 2018). Since pooling
summary statistics from each study was more robust in alleviating
between-study heterogeneity than pooling raw data directly from
all studies (Duvallet et al., 2017), the genus-level abundance
data from each study were analyzed with DESeq2 (Love et al.,
2014). The summary statistics (log2 fold-changes and 95%CIs)
of a single genus from each study were then pooled with a
fixed-effect meta-analysis using the meta (V.4.18-2) package
(Schwarzer and Schwarzer, 2012). Due to only one study available
for blood 16S rRNA, no meta-analysis was performed. The
significantly different genera between PD patients and controls
across brain, blood, and feces samples were summarized to obtain
the common genera/genus with the same change direction, and a
corresponding heatmap was plotted using the ggplot2 (V.3.3.3)
package (Wickham, 2011).

For gene expression data with RNA-Seq (GREIN processed),
raw counts data from each study were used to calculate log2
fold-changes of each gene using the DESeq2 (V.1.30.1) package
(Love et al., 2014). After that, a meta-analysis was performed to
identify the DEGs between PD patients and controls using the
meta package (Schwarzer and Schwarzer, 2012).

Correlation Analysis and Enrichment
Analysis
To explore the potential interaction between Blautia genus
and host genes, a correlation analysis was performed between
the Blautia genus and each host gene (RNA-Seq) using the
corrplot (V.0.89) package with Spearman method (Wei et al.,
2017). Correlation coefficients with a magnitude above 0.3 were
considered to have a correlation.

Host genes associated with Blautia genus (r > 0.3) were
enrolled in enrichment analyses, including Gene Ontology (GO)
(Gene Ontology Consortium, 2004), Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000), and
Gene Set Enrichment Analysis (GSEA) (Subramanian et al.,
2005) using the clusterProfiler (V.3.18.1) (Yu et al., 2012)
and enrichplot (V.1.10.2) package (Yu, 2018). Briefly, the gene
symbols with combined effect sizes were input as a query
gene list and a P value cutoff was set to 0.05. Meanwhile,
further enrichment analyses were also conducted based on
DEGs (RNA-Seq or RNA-Seq and Microarray) correlated to
Blautia genus. Moreover, to explore the relationship between
Blautia-associated genes and diseases category (Piñero et al.,
2016), Blautia-associated DEGs (overlapped between RNA-Seq
and microarray) were also used to conduct diseases enrichment
analysis with the disgenet2r (V.0.99.2) package in DisGeNET
database (Gutiérrez-Sacristán et al., 2016).
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Model Construction, Genera Extraction,
and Model Evaluation
To verify the importance of Blautia genus in discriminating PD
patients from controls, we used the microbiota data to build a
random forest (RF) model with stratified 5-fold cross-validation
(CV) using the SIAMCAT (V.1.10.0) package (Wirbel et al.,
2021). The features used for model building consist of patients’
metadata as well as genera with a relative abundance greater than
0.1% across all the samples. The metadata features consisted of
age, gender, body mass index (BMI), or hypervariable region (16S
rRNA). The RF models were built with 1,000 estimator trees
and default parameters to select the proportion of features for
each tree. The stratified 5-fold cross-validation was executed to
configure training and testing data sets. The top 30 features from
the top-performing model were selected as “important features.”
Finally, the receiver operating characteristic curve (ROC) and
precision-recall curve (PRC) with area under curve (AUC) was
used to assess the performance of models.

RESULTS

Different Taxonomic Composition and
Diversity of the Feces, Blood, and Brain
A total of 16 studies, including ten for feces, one for blood,
and five for the brain, with 2,883 participants were included
in this study before data cleaning. All the Project IDs and
details of metadata were provided in Table 1 (Supplementary
Table 1 and Supplementary Data 2). Genera reported as
potential contaminants and non-detectable in fecal microbiome
were termed as “pan-contaminants” and were removed before
microbiota analysis. For the feces, 311 genera were identified
across 2,252 individual samples. After removing contaminants

(Supplementary Data 3), 197 genera retained and 28 genera
had an average relative abundance greater than 0.5% across all
samples (Figure 2A). For the blood, 328 genera were identified
across 86 individual samples with 100 retained after excluding
pan-contaminants (Supplementary Data 4), and 14 genera had
an average relative abundance greater than 0.5% across all
samples (Supplementary Figure 1A). For the brain, 1,197 genera
were identified across 376 individual samples with 116 retained
after removing pan-contaminants (Supplementary Data 5), and
18 genera had an average relative abundance greater than 0.5%
across all samples (Supplementary Figure 1B). For fecal studies,
samples overlapping between PRJEB14674 and PRJNA601994
were de-duplicated, and 1,914 samples were finally included.
There were four replicated runs of each sample in PRJNA557205,
and the RNA-Seq data from the first run (run accession IDs)
of each sample were used in both microbiota analysis and
transcriptome analysis (Li et al., 2020).

Microbiota composition data without reported contaminants
showed that the main flora in feces were Firmicutes and
Bacteroidetes, while major flora in blood and brain were
Proteobacteria, followed by a small part of Actinobacteria
(Figure 2B). In fecal samples, patients with PD harbored a
higher relative abundance of Firmicutes, Actinobacteria, and
Synergistetes, but a lower relative abundance of Bacteroidetes
(Figure 2B and Supplementary Figure 2A), contributing to
an increased ratio of Firmicutes to Bacteroidetes (F/B) in the
feces of patients with PD. The Firmicutes phylum in PD brain
were almost depleted after excluding the pan-contaminants
(Supplementary Figure 2A).

The results of α-diversity analysis revealed that the α-diversity
of fecal microbiota was significantly higher in PD patients
than controls (Figure 2C), but no significant difference was
found in the blood and brain (Supplementary Figures 2B,D).
For β-diversity, the results of principal coordinates analysis

TABLE 1 | Summary of characteristics of the included projects for microbiome analysis.

Project Gender BMI (SD) Age (SD) Country Platform Type Source Control (n) PD (n)

PRJDB8639 NA NA NA Japan Illumina MiSeq 16S(V3-V4) feces 137 223

PRJEB14674# Female (43.7%) 27.2 (5.56) 67.4 (3.96) United States Illumina MiSeq 16S(V4) feces 135 213

PRJEB22977 NA NA NA Denmark Illumina MiSeq 16S(V1-V3) feces 32 52

PRJEB27564 NA NA NA Finland Illumina MiSeq 16S(V3-V4) feces 65 68

PRJEB30615 Female (40.6%) NA 62.2 (17.9) Germany Illumina MiSeq 16S(V4-V5) feces 25 39

PRJEB4927 Female (50.0%) NA 64.8 (6.21) Finland 454GS 16S(V1-V3) feces 74 74

PRJNA283498 Female (0%) NA 73.0 (12.2) United States Illumina HiSeq2000 RNA-Seq brain 44 29

PRJNA381395 NA NA NA Germany Illumina MiSeq 16S(V4) feces 70 40

PRJNA391524 NA NA NA China Illumina MiSeq 16S(V3-V4) feces, blood 90 90

PRJNA471671 Female (33.3%) NA 78.7 (9.11) Israel NextSeq 500 RNA-Seq brain 29 46

PRJNA510730 NA NA NA Italy Illumina MiSeq 16S(V3-V4) feces 84 118

PRJNA549947 NA NA NA Israel NextSeq 500 RNA-Seq brain 26 43

PRJNA557205* Female (11.1%) NA 75.3 (5.10) Israel NextSeq 500 RNA-Seq brain 12 24

PRJNA563007 Female (37.5%) NA NA Netherlands Illumina HiSeq2000 RNA-Seq brain 8 8

PRJNA601994# Female (46.8%) NA 67.9 (8.94) United States Illumina MiSeq 16S(V4) feces 316 524

NA, not available; BMI, body mass index; SD, standard deviation.
*Four duplications for each sample.
#The samples’ raw sequence data in PRJEB14674 were overlapped with PRJNA601994, and were removed from PRJNA601994 before data analysis.
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FIGURE 2 | The fecal microbiota composition in PD patients and controls. All microbiota composition data here were first filtered with the pan-contaminants list
before further analysis. There were 18 genera with an average relative abundance more than 0.5% across all fecal samples (A). (B) Showed the microbiota
composition among feces, blood, and brain samples of patients with PD and controls at the genus level after removing the contaminants (not pan-contaminants).
The major fecal Phylum were Firmicutes and Bacteroidetes, while the main Phylum in blood and brain were Proteobacteria and Actinobacteria (B). There was
obvious Firmicutes proportion in PD brain, which were almost depleted after filtering the brain genera data using pan-contaminants list (Supplementary Figure 2).
The α-diversity, including Observed, Shannon, Simpson and Chao1 indices, was significantly increased in the feces of PD patients compared to controls (C). There
was an obvious difference in β-diversity between PD patients and controls with Bray–Curtis distance (adonis: R = 0.009, P = 0.001) (D). ****: P value less than
0.0001, ***: P value less than 0.005.
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(PCoA) with Bray–Curtis distance showed that the bacterial
communities in the feces differed significantly between PD
patients and controls (Figure 2D) (p < 0.001, PERMANOVA
by Adonis), but not in the blood and brain (Supplementary
Figures 2C,F).

Predicted Function in PICRUSt2
The results of PICRUSt2 predictions showed that top ten
altered KEGG pathways of Level 2 were mainly associated with
neurodegenerative diseases, infectious diseases, cancer, transport,
and catabolism etc. (Supplementary Figure 3A). Data from the
top ten altered KEGG pathways of Level 3 showed an increased
abundance of betalain biosynthesis, amoebiasis, and hepatitis
C, while decreased in beta-lactam resistance, Ubiquitin system,
isoquinoline alkaloid biosynthesis, beta-alanine metabolism, etc.
(Supplementary Figure 3B). A full list of all the changed
KEGG pathways of both Level 2 and Level 3 were presented in
Supplementary Tables 2, 3, respectively.

Different Genera Between Patients With
Parkinson’s Disease and Controls in the
Feces, Blood, and Brain
In the feces, the pooled results of taxonomical classification by
Greengenes showed that 32 genera were significantly different
between PD patients and controls (P < 0.05, Supplementary
Table 4). Nine of the 32 different genera were depleted, while
23 were enriched in PD. Meanwhile, the pooled results of
taxonomical classification by SILVA showed that there were
23 genera significantly altered in PD patients (P < 0.05,
Supplementary Table 5 and Supplementary Data 6), and
15 of them overlapped with the different genera identified
using Greengenes alignment (Supplementary Figure 4). Using
shotgun metagenomics data (PRJNA433459), we found that
377 genera were significantly different between PD patients
and controls (P < 0.05, Supplementary Data 7), with 251
genera depleted and 126 enriched in PD, respectively. In
the blood, the results showed that all four different genera
were significantly decreased in PD patients compared to
controls (P < 0.05, Supplementary Table 6). In the brain,
a total of 13 genera was found to be significantly different
between PD patients and controls (P < 0.05, Supplementary
Table 7), with 8 genera depleted and 5 genera enriched in
PD (Figure 3).

The Halomonas and Finegoldia genus was depleted in the
brain, but enriched in the feces of PD patients (P < 0.05)
(Figure 3). Meanwhile, the Dorea genus was increased in the
blood, but decreased in the feces (P < 0.05). The Bacteroides
genus were depleted in the feces and brain of patients with PD
(P < 0.05) (Figure 3). After comparing the different genera
among feces, blood and brain samples, we found that only
Blautia genus consistently altered (depleted) across all sample
types in PD (P < 0.05) (Figure 3). Further analysis at species
level using gut shotgun metagenomics data showed that Blautia
argi, Blautiacoccoides, Blautia sp. SC05B48, and Blautiahansenii
species were decreased in the feces of patients with PD as
compared to controls (Supplementary Table 8).

Correlation Analysis Between Blautia
Genus and Host Genes in the Brain
To investigate the potential role of Blautia genus in PD, Spearman
correlation analyses between Blautia genus and brain genes were
conducted by integrating the microbiome and host transcriptome
data obtained from the same raw RNA-Seq data. The results
showed that 17,216 genes were associated with Blautia genus
(P < 0.05), with an absolute r value ranging from 0.12 to
0.479. After removing those genes with an absolute r value
less than 0.3, we found 3,583 genes remained associated with
Blautia genus, with 1,775 and 1,808 genes having positive
and negative relationship with Blautia genus (Supplementary
Data 8), respectively. Biotype distribution analysis using the
biomaRt (V.2.46.3) package showed that, besides protein coding
class, there were 78 and 18 genes mapped to lncRNA and miRNA
class, respectively (Supplementary Table 9). The top nine genes
labeled with gene symbol in Figure 4A had an absolute r value
greater than 0.45. Eight of the nine genes belong to protein
encoding gene, while only MALAT1 was a lncRNA.

Enrichment Analysis of Blautia Genus
Correlated Genes
To assess whether host genes associated with Blautia genus
were involved in the pathogenesis of PD, we then implemented
three functional enrichment analyses, including KEGG, GO,
and GSEA. The results of KEGG analysis showed that these
genes were mainly related neurodegenerative diseases, including
PD, AD, Huntington’s disease (HD), and amyotrophic lateral
sclerosis (ALS), and metabolism related diseases, including
diabetic cardiomyopathy (DCM) and non-alcoholic fatty liver
disease (NAFLD) (Figure 4B). Data from GO enrichment
analysis showed that these genes were mainly mapped to proteins
transportation, immune response, energy metabolism, and
mitochondrial function (Supplementary Figure 5). Meanwhile,
the above results were further confirmed by GSEA-based KEGG
and GO enrichment analysis (Supplementary Figures 6A,B).

Enrichment Analysis of Blautia Genus
Associated Differentially Expressed
Genes in Parkinson’s Disease
To identify the DEGs in the brain of PD patients, a meta-
analysis was performed using RNA-Seq and microarray data,
respectively. Using brain RNA-Seq data, we found that 9,563
DEGs were significantly different between PD patients and
controls (Supplementary Data 9), with 4,618 decreased genes
and 4,945 increased genes, respectively. A total of 1,393 DEGs
were significantly associated with Blautia genus (r > 0.3 and
P < 0.05) (Figure 5A), with 569 downregulated genes and 824
upregulated genes (Figure 5B) individually. Among the 1,393
DEGs, 759 DEGs were positively correlated with Blautia genus,
while 634 DEGs were negatively associated with Blautia genus
(Supplementary Data 10).

Using brain microarray data, a total of 3,237 genes were
detected in microarray and over 98% of the genes were
also identified in RNA-Seq (Supplementary Figure 7). Only
67 genes were found exclusively in microarray, but 32,474
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FIGURE 3 | Heatmap showing the different genera among feces, blood, and brain between patients with PD and controls. All microbiota data here were first filtered
with the pan-contaminants list. Most of genera in feces and blood were not shown in the brain. Blautia was the only genus decreased among feces, blood, and brain
samples (labeled in red). Bacteroides genus was also found to be decreased in both feces and brain samples, but not in blood samples. The blank rectangle area in
the heatmap without any annotation means genera not found in corresponding sample type. **: P value less than 0.01, *: P value less than 0.05, ns: no significance.

gene transcripts identified in RNA-Seq were not covered in
microarray (Supplementary Figure 7A). There were 460 DEGs
significantly changed in patients with PD using microarray data
(Supplementary Data 11). Finally, only 36 DEGs correlated to
Blautia genus were found in both RNA-Seq and microarray data
(Figure 5A), and 26 out of the 36 genes were negatively associated
with Blautia genus (Supplementary Figure 8), respectively.

Since 1,357 DEGs associated Blautia genus were exclusively
identified in RNA-Seq data, but not covered in microarray data,
thus, in order to avoid losing potential important information,
we first performed an enrichment analysis based on RNA-Seq
derived DEGs. The results of GO enrichment analysis showed
that the 1,393 DEGs associated Blautia genus were mainly
located in mitochondrial membrane, participating in regulating
energy metabolism and mitochondrial function (Supplementary
Figure 7B and Supplementary Data 12). Data from KEGG
analysis demonstrated that the 1,393 DEGs were mainly mapped
to PD, HD, DCM, and NAFLD (Figure 5C and Supplementary
Data 13), which was further confirmed by GSEA-based KEGG
analysis (Supplementary Figures 9A–D and Supplementary
Data 14). Meanwhile, GSEA-based GO analysis showed that
these DEGs were mainly targeted in inflammatory response
(Figures 6A,B), mitochondrial function (Figure 6C), and miRNA
binding (Figure 6D and Supplementary Data 15).

Moreover, we also conducted a GO analysis using the 36
DEGs overlapping between RNA-Seq data and microarray data.
The result showed that the 36 DEGs were mainly mapped to
pH regulation, protein degradation, and mitochondrial function
(Supplementary Figure 10). Several of the 36 DEGs, including
KCNJ6, ACOX1, USP9X, SMAD2, SLC8A1, PIK3C3, PDK1, have
been previously reported to be implicated in the pathogenesis of
PD (Rott et al., 2011; di Val Cervo et al., 2017; Muñoz et al., 2020).
Disease enrichment analysis performed in Disgenet2 database
showed that the 36 DEGs were mainly associated with nervous
system diseases and digestive system diseases (Supplementary
Figure 11).

Microbial Classification Models for
Parkinson’s Disease
To further manifest the role of Blautia genus in discriminating
PD from control, we constructed a stratified 5-fold cross-
validation RF model using the microbiota data of feces,
blood, and brain, individually. The top 30 important genera
contributing to the classifier (RF models, over 80% weights)
in the feces were all decrease in PD. The Blautia genus was
one of the important genera in this classifier (Figure 7A),
which was further confirmed in the blood and brain
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FIGURE 4 | The biotype distribution of genes significantly associated with Blautia genus. A Spearman correlation analysis was performed between Blautia genus
with all host genes identified from RNA-Seq using the GREIN (http://www.ilincs.org/apps/grein/?gse=). The relative abundance of microbiota composition data and
log2 transformed genes counts were used to calculate r values with limma (V.3.46.0) package. The absolute r values ranged from 0.12 to 479 with P less than 0.05.
An absolute r value greater than 0.3 and P value less than 0.05 was considered as significant correlation. The biotype of all genes was classified with the biomaRt
(V.2.46.3) package and was described in Manhattan plot (A). The top nine genes (including lncRNA) with an absolute r value greater than 0.45 were labeled with
corresponding gene symbol (A). An UpSet plot showed the KEGG results of Blautia genus correlated genes (|r| > 0.3 and p < 0.05) (B).
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FIGURE 5 | Descriptions of DEGs (RNA-Seq) significantly associated with Blautia genus. A Venn graph showing the intersected DEGs between RNA-Seq and
microarray data, and genes significantly correlated with Blautia genus (|r| > 0.3 and p < 0.05). A total of 1,357 DEGs associated with Blautia genus were only
detectable in RNA-Seq data, but not in microarray data (A). On the other hand, 36 DEGs associated with Blautia genus were found in both RNA-Seq and microarray
data (A). Over 98% genes identified in microarray data were also detectable in RNA-Seq data (Supplementary Figure 7A). A volcano plot showed the distribution
of Blautia genus associated genes identified from RNA-Seq data (B). Red dots indicated increased expression, while green dots indicated decreased expression in
PD. Black dot signified no statistical significance (B). Those DEGs with absolute effect size greater than 0.5 were labeled with corresponding gene symbol. The CNet
plot showed the KEGG results of DEGs significantly associated with Blautia genus (C). The top five enriched KEGG terms mapped by the DEGs were DCM, PD
(labeled with red), HD, NAFLD, and oxidative phosphorylation (C).
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FIGURE 6 | GSEA based GO enrichment analysis of DEGs (RNA-Seq) significantly associated with Blautia genus. The gseGO showed that DEGs associated with
Blautia genus (|r| > 0.3 and p < 0.05) were mainly targeted to inflammatory response and mitochondrial function (A). Blautia genus related DEGs enriched in
inflammation were significantly increased in PD (B). Most of Blautia genus related DEGs involved in mitochondrial function were decreased (C). (D) Showed that the
DEGs associated with mRNA binding were increased.

(Supplementary Figures 12A, 13A). The classifier achieved
an AUC of 0.704 and 0.787 for ROC and PRC in discriminating
PD patients from controls (Figures 7B,C), respectively. The AUC
value of ROC and PRC was 0.777 and 0.768 for the RF model
using microbiota data from blood samples (Supplementary
Figures 12B,C), and the AUC value of ROC and PRC was 0.689
and 0.701 for the RF model using microbiota data from brain
samples (Supplementary Figures 13B,C).

DISCUSSION

Growing attention have been paid to evaluate the role of gut
microbiota in PD, however, various alteration of microbiota

composition has been reported without consistent conclusion
(Hill-Burns et al., 2017; Heintz-Buschart et al., 2018; Lin et al.,
2018). Recent studies have suggested that several bacteria could
also be amplified in the blood and brain of PD patients
and healthy controls (Qian et al., 2018a; Klann et al., 2020;
Pisa et al., 2020), but little is known about the microbiota
profile in PD patients’ blood and brain. In this study, we
integrated the microbiota composition data from feces, blood,
and brain samples using publicly available sequencing data. Our
results first described the difference in microbiota composition
among feces, blood, and brain samples. Furthermore, we
found that Blautia was the unique genus commonly altered
(depletion) among three sample types. In addition, Blautia
genus was correlated with host brain genes involved in energy
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FIGURE 7 | Interpretation and evaluation plot of the RF model in feces for detecting PD. An overview of the top 30 important features (genera) contributing to the
predictive power of the random forest (RF) model for detecting PD were presented (A). It showed that Blautia genus was the 2nd important feature for the RF model
in discriminating PD patients from controls, and was also decreased in the feces of PD patients, which was same to results found in the brain and blood samples
(Supplementary Figures 12, 13). The receiver operating characteristic curve (ROC) was plotted and AUC value from five folds cross-validation (CV = 5) was 0.704
(B). The precision-recall Curve (PRC) and AUC value (0.787) was presented in (C). The cases and controls in the RF were not evenly distributed, and the AUC value
in PRC was higher than that in ROC.
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metabolism, protein degradation, and mitochondrial function,
which were tightly implicated in the pathophysiology of PD.
Finally, machine learning model (RF) on all three sample
types also consistently showed that Blautia genus was one
of the vital genera for the classifier to discriminate PD
patients from controls.

In order to reduce the impact of environmental bacterial
contamination, we removed all genera previously reported as
potential contaminant or widely distributed in the tubes and
agents before data analysis (Supplementary Data 1) (Salter
et al., 2014; Davis et al., 2018; Eisenhofer et al., 2019). Our
data showed that the ratio of F/B was increased in the feces
of PD patients. It is reported that greater F/B ratio was
associated with several diseases, including type 1 or type 2
diabetes mellitus (Larsen et al., 2010; Murri et al., 2013),
obesity, and motor neuron disease (Turnbaugh et al., 2006;
Ismail et al., 2011; Ngo et al., 2020). Indeed, a previous
study showed that the F/B ratio in human fecal microbiota
decreased with aging, which increased in adults while decreased
in elderly individuals (Mariat et al., 2009), indicating that
lower F/B ratio during aging might be a compensatory
response in PD.

The overall results showed that the gut microbial α-diversity
was increased in patients with PD at the genus level, which
was consistent to the result reported in a latest published
meta-analysis (Romano et al., 2021). It is generally considered
that higher gut microbiota α-diversity is related to better gut
function (Menni et al., 2020; Ortiz-Alvarez et al., 2020). The
potential reason for the increased α-diversity in PD might
derive from a decreased abundance of dominant species and
an increased ratio of in rare/low abundant ones (Romano
et al., 2021). The microbial β-diversity in the feces, but not in
the blood and brain, was different between PD patients and
controls, suggesting an obvious alteration of gut microbiota
composition in PD.

Our results revealed that Blautia was the unique genus that
significantly decreased across the feces, blood, and brain samples
of PD patients. Due to the very low levels of microbiota in the
blood and brain, it is worthy to note that only 14% blood samples
and 68% brain samples had positive reads for Blautia genus,
especially negative in patients with PD. To verify the stability
of our results, we also applied zero-inflated regression model to
re-calculate the data using pscl (V.1.5.5) package (Zeileis et al.,
2008), and the results showed that PD patients were prone to
having a lower abundance of Blautia genus than controls in
blood (Count Estimate = −0.474, P = 0.0008; Zero-inflation
Estimate = 1.801, P = 0.026) and brain (Count Estimate = −1.016,
P < 2e-16; Zero-inflation Estimate = 0.497, P = 0.065). These
data suggested that our results on Blautia genus distribution in
PD patients and controls had a relatively good stability.

Blautia genus, belonging to the Firmicutes phylum, is a
common gut microbial genus producing butyric acid and
acetic acid (Liu X. et al., 2021). Previous studies have shown
that the level of butyric acid and acetic acid was decreased
in PD patients’ feces and blood (Unger et al., 2016; Aho
et al., 2021; Wu et al., 2022). Recent studies showed that
Blautia genus products could inhibit insulin signaling and fat

accumulation in adipocytes by regulating G-protein coupled
receptors (Benítez-Páez et al., 2020). It is reported that depletion
of gut Blautia genus is tightly associated with the intestinal
inflammation and worsening metabolic phenotype in children
with obesity (Kimura et al., 2013; Benítez-Páez et al., 2020). In
addition, Blautia genus could also alleviate the inflammatory
diseases of eyes and exert probiotic activity against specific
microorganisms. In the light of the above evidence, Blautia
genus is considered to be a potential “probiotic bacterium”
and play a beneficial role in human health. Thus, deletion of
Blautia genus among gut, blood, and brain may be implicated
in the pathogenesis of PD via regulating neuroinflammation
and metabolism. A recent shotgun metagenome analysis of gut
microbiome also showed that Blautia genus was significantly
decreased in PD (Qian et al., 2020). At species level, our
analysis using the above shotgun metagenome data showed
that Blautia argi, Blautia coccoides, Blautia sp. SC05B48,
and Blautia hansenii species were decreased in patients with
PD (Supplementary Table 5). Further studies in animals
and humans are required to deeply validate whether Blautia
genus and species plays a role in the development and
progression of PD.

In order to preliminarily explore the relationship between
Blautia genus and PD, we performed a correlation analysis
between host brain genes and Blautia genus identified from the
same RNA-Seq data. There were nine genes (MALAT1, MAP1B,
TULP4, ZNF221, TAOK1, RPS5, BCLAF3, GOLGB1, and TAF8)
correlated to Blautia genus with an absolute r value greater than
0.45. Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is the only lncRNA negatively correlated with Blautia
genus abundance (r = −0.479). Recent studies demonstrated that
MALAT1 could induce cell death and inflammation through
regulating miR-124 function and suppressing nuclear factor
erythroid 2-related factor 2 (NRF2) in PD (Liu et al., 2017; Cai
et al., 2020; Lu et al., 2020), respectively. Microtubule associated
protein 1B (MAP1B) is also negatively correlated with Blautia
genus (r = −0.453). MAP1B is a critical part of the cytoskeleton,
which plays a vital role in maintaining neuronal function (Teng
et al., 2001). MAP1B has been reported to alleviate leucine-
rich repeat kinase 2 (LRRK2) mutant-mediated neuronal damage
in PD (Chan et al., 2014). Indeed, MAP1B dysfunction is also
widely reported to be involved in the pathogenesis of AD
(Gevorkian et al., 2008; Mitsuyama et al., 2018), which shared
many common pathological changes with PD. However, the role
of other seven top genes associated with Blautia genus in PD
remains unclear.

We further performed a functional enrichment analysis
individually using three different Blautia-correlated host gene
sets, including whole host genes (n = 3583), DEGs (n = 1393)
from RNA-Seq data, and overlapping DEGs (n = 36) between
RNA-Seq and microarray data. The results showed that host
genes significantly correlated with Blautia genus abundance were
mainly targeted to pathways involved in mitochondrial terms,
energy metabolism, and inflammatory response, which have been
reported to be associated with the pathogenesis of PD (Rocha
et al., 2018). Mitochondrial impairment is a vital pathological
feature in PD (Rocha et al., 2018), suggesting mitochondrial
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alterations might mediate the association between Blautia genus
and PD. GSEA-based KEGG analysis showed that Blautia-
correlated host genes were mainly mapped to PD and other
neurodegenerative diseases (NDDs), including AD, HD, ALS, and
prion disease, which was further confirmed by the functional
prediction data in PICRUSt2. However, the distribution and
role of Blautia genus in other NDDs is still largely unknown.
Interestingly, we found Blautia-correlated host genes were also
targeted to metabolic diseases, such as DCM and NAFLD.
Indeed, previous studies have demonstrated that the gut Blautia
genus was strongly associated with obesity and diabetes milletus
(Tong et al., 2018; Ozato et al., 2019), which was consistent
to the results of our study. Although studies have pointed out
a role of gut microbiota in NAFLD (Safari and Gérard, 2019;
Aron-Wisnewsky et al., 2020), however, whether Blautia genus
is involved in the energy metabolism impairment of NAFLD
is still elusive.

Besides mitochondrial function, it is worth noting that
the 36 Blautia-correlated DEGs (overlapping between RNA-
Seq and microchip) were also enriched in pH regulation and
protein degradation. Disorders of lysosomal acidification (pH
increase) have been reported to impair the ability of lysosome in
degradation of misfolded proteins (Bourdenx et al., 2016). Since
abnormal alpha-synuclein aggregation induced by impaired
proteasomal and lysosomal function is a vital pathological
feature in PD (Chu et al., 2009; Hoffmann et al., 2019),
further studies are warranted to test whether impairment of
protein degradation pathway mediates the association between
Blautia genus and alpha-synuclein clearance in PD. Moreover,
as NDDs share several common pathogenetic mechanisms
including misfolded proteins/peptides aggregation and chronic
inflammation (Currais et al., 2017; Butnaru and Chapman, 2019),
it inspires us to speculate that Blautia genus may probably exert
a common effect in NDDs, which deserves to be investigated
in future studies.

In summary, to the best of our knowledge, our study here
first describes the microbiota landscape across the feces, blood,
and brain samples of patients with PD and controls. Our
key finding is that Blautia is the unique genus having the
same downward trend in PD patients’ feces, blood, and brain.
Moreover, Blautia genus is tightly correlated to host genes
involved in energy metabolism, inflammatory response, and
mitochondrial function, impairment of which are the critical
pathophysiological features in PD. Our results reconfirm the
microbiota dysbiosis in PD, and suggest that alterations of
mitochondrial function and immune response may mediate the
link between depletion of Blautia genus and PD pathogenesis.
Further studies are greatly encouraged to evaluate the role of
Blautia genus in PD and other neurodegenerative diseases.

Limitations of the Study
Some limitations in our study should be addressed here. First,
this is the first study using the Kraken2 to extract microbiota
reads in the brain RNA-Seq data. Although Kraken2 has
been applied to identify microbiota reads in tumor RNA-
Seq data with high sensitivity and specificity (Poore et al.,
2020), it is still hard to rule out the possibility of a false

positive result owing to bacterial contamination. We have
tried our best to remove the potential contamination genera
to minimize the impact of bacterial contamination on the
final results. Second, it is worthy to note there is obvious
heterogeneity among the collected microbiome datasets across
studies. As no optimal way is currently available to correct
batch effects, only genus-level data was used in this study for
microbiome analysis to alleviate heterogeneity (Wang et al.,
2020). This leads to a loss of many OTUs, which may affect
the results of diversity analysis. Third, microbiota identified
in the blood and brain might originate from the bacterial
debris, whose DNA/RNA can also transport in the blood
and brain. However, there is no effective method now to
distinguish them from live bacteria. Forth, the transcriptome
and microbiota data obtained in this study were based on the
same RNA-Seq data and the correlation threshold (r > 0.3)
was relatively low, which may contribute to an over-estimation
of the correlation and enrichment analysis. Fifth, since we
use “pan-contaminants” to remove bacteria not found in the
feces, these may result in the loss of a lot of information and
introduce potential bias to the final results. Sixth, only one
study was included for microbiota analysis in blood samples.
Taken together, our results in this study need to be interpreted
very cautiously.
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