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Leptin, diabetes, and the brain
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A B S T R A C T

Diabetes is a major worldwide problem. Despite some progress in the development of new antidiabetic agents, the ability to maintain 
tight glycemic control in order to prevent renal, retinal, and neuropathic complications of diabetes without adverse complications 
still remains a challenge. Recent evidence suggests, however, that in addition to playing a key role in the regulation of energy 
homeostasis, the adiposity hormone leptin also plays an important role in the control of glucose metabolism via its actions in the 
brain. This review examines the role of leptin action in the central nervous system and the mechanisms whereby leptin mediates 
its effects to regulate glucose metabolism. These fi ndings suggest that defects or dysfunction in leptin signaling may contribute to 
the etiology of diabetes and raise the possibility that either leptin or downstream targets of leptin may have therapeutic potential for 
the treatment of diabetes.
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INTRODUCTION

The incidence and prevalence of  diabetes is increasing 
globally.[1] More than 250 million people have diabetes 
worldwide and this number is expected to exceed 400 million 
by 2030.[2] This is a major health concern given that diabetes 
is associated with increased risk of  cardiovascular disease 
and both macro- and micro-vascular diseases including 
blindness, amputation, and renal disease.[1,2] The burden 
of  diabetes leads to more than a doubling of  individual 
medical expenses, with a total concomitant economic cost 
of  $174 billion in the USA alone.[3] Given its considerable 
health and fi nancial costs, a better understanding of  diabetes 
pathogenesis is needed in order to develop new strategies 
for the safe and effective treatment of  this disease.

Diabetes is a metabolic disease characterized by the chronic 
elevation of  blood sugar levels (i.e. hyperglycemia) resulting 

from defects in insulin secretion, insulin resistance, or both. 
In general, there are two broad categories of  diabetes.[4] 
The fi rst category, type 1 diabetes, accounts for ~5–10% 
of  those with diabetes and is an autoimmune disease that 
results in the destruction of  pancreatic -cells, causing 
an absolute insulin defi ciency. The other, most common 
form is type 2 diabetes which accounts for >90% of  
those with diabetes and is caused by a combination of  
insulin resistance, with a relative, but not absolute insulin 
defi ciency.[4] Thus, insulin secretion is impaired in these 
individuals and is insuffi cient to compensate for the insulin 
resistance in peripheral tissues.[5]

The control and management of  blood glucose levels 
in both forms of  diabetes is important for preventing 
ketoacidosis and diabetes-related complications. Given that 
people with type 1 diabetes produce little or no endogenous 
insulin, administration of  exogenous insulin is necessary 
for survival.[6] However, while insulin therapy improves 
glycemic control and protects against diabetes-related 
complications, it also increases the risk of  hypoglycemia 
and weight gain.[7-9] Unfortunately, the tighter the control 
of  blood glucose levels, the greater the risk and severity 
of  these untoward consequences.[7-9] However, because 
of  the essential role of  insulin for the treatment of  type 
1 diabetes, the only real advances in insulin therapy have 
occurred through modifi cation of  the insulin molecule to 
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change its plasma half-life, absorption into the circulation, 
tissue distribution, and potency, and alternative approaches 
to type 1 diabetes treatment that are insulin independent 
have yet to emerge.[10]

For people with type 2 diabetes, exogenous treatment 
with insulin is generally not required unless lifestyle 
modifi cations including better nutrition and increased 
physical activity or pharmaceutical interventions with oral 
antidiabetic agents are not suffi cient to manage blood 
glucose levels.[11,12] Currently, most strategies for treating 
type 2 diabetes have focused on either increasing insulin 
secretion from pancreatic -cells or improving insulin 
sensitivity in peripheral tissues such as liver, muscle, and 
adipose tissue.[13] However, a growing body of  evidence 
suggests that the central nervous system (CNS) plays a key 
role in the control of  glucose metabolism.[14,15] The goal 
of  this review is to discuss the literature that supports a 
role for the adiposity hormone, leptin, in the regulation 
of  glucose metabolism and examine whether dysfunction 
in this system contributes to the pathogenesis of  diabetes.

LEPTIN REGULATION OF GLUCOSE 
HOMEOSTASIS

Leptin is a polypeptide hormone produced and secreted by 
white adipose tissue (WAT)[16] that circulates in proportion 
to body fat mass,[17] enters the CNS in proportion to its 
plasma level,[18] and interacts with its receptor expressed in 
key brain areas that regulate food intake, energy expenditure, 
and autonomic function.[19] A large body of  evidence 
suggests that leptin plays a vital role in the regulation 
of  energy homeostasis as conditions characterized by 
leptin defi ciency promote hyperphagia and weight gain,[16] 
whereas administration of  leptin leads to reduced food 
intake, increased energy expenditure, and weight loss.[20-22] 
However, recent evidence implicates leptin not only in 
the regulation of  energy balance but glucose homeostasis 
as well.[14]

While the effect of  leptin to reduce food intake and body 
adiposity can improve insulin sensitivity in peripheral tissues 
via indirect mechanisms, several observations suggest that 
leptin can directly affect glucose metabolism independent 
of  its effects on energy balance. Early studies suggested that 
the insulin resistance and diabetes phenotype of  genetic 
leptin-defi cient (ob/ob mouse) or leptin receptor-defi cient 
(db/db mouse or fak/fak rat) rodent models could not be fully 
accounted for by their hyperphagia and obesity. Not only 
does caloric restriction fail to improve insulin sensitivity 
or prevent diabetes in models of  either genetic leptin or 
leptin receptor defi ciency,[23,24] but also leptin administration 

lowers blood glucose and plasma insulin levels in ob/ob mice 
even when differences in energy intake are controlled for. [25] 
Leptin defi ciency has also been implicated to play a key 
role in the severe insulin resistance and diabetes phenotype 
of  genetic disorders that impair adipogenesis, such as 
lipodystrophy.[26] Consistent with this, transplantation of  
body fat from wild-type, but not leptin-defi cient, ob/ob 
mice improves glycemia in lipodystrophic mice,[27,28] while 
the diabetes phenotype of  lipodystrophic mice[29,30] and 
humans[31,32] is ameliorated with leptin treatment. These 
data suggest that deficient leptin signaling has severe 
consequences for glucose metabolism, which are remedied 
by leptin replacement in a manner that is independent of, and 
additive to, its effects on energy intake and body fat content.

Another model of  acquired leptin deficiency is that 
which occurs in uncontrolled insulin-defi cient diabetes 
(uDM), a model of  type 1 diabetes.[33] Because insulin 
action on adipocytes is required for both lipogenesis 
and inhibition of  lipolysis, absolute insulin defi ciency 
leads to uncontrolled mobilization of  stored triglyceride 
and depletion of  body fat stores. Progressive loss of  
adipose tissue is accompanied by a pronounced decrease 
of  leptin levels, resulting in a defi ciency of  all known 
adiposity signals.[33] Consequently, uDM is characterized 
by diabetic hyperglycemia and hyperphagia,[34] and marked 
reductions of  both plasma leptin and insulin levels have 
been implicated in these responses.[33,35] Leptin defi ciency 
has also been implicated in the development of  insulin 
resistance in uDM.[36] A physiological replacement 
dose of  leptin administered systemically prevented the 
development of  insulin resistance in a rat model of  uDM 
via a mechanism independent of  changes in food intake 
or body weight.[37] However, while systemic administration 
of  exogenous leptin at doses to maintain physiological 
plasma leptin levels only lowered blood glucose levels 
slightly, it normalized the hyperglucagonemia and 
hypercorticosteronemia characteristic of  uDM. However, 
in contrast to physiological replacement doses of  leptin, 
hyperleptinemia induced by either pharmacological doses 
of  leptin[38,39] or an adenoviral gene therapy approach[40] 
ameliorates hyperglycemia in rodent models of  uDM, 
despite very low insulin levels. Thus, leptin defi ciency plays 
a fundamental role in the pathogenesis of  insulin resistance 
and related endocrine disorders in uDM.

CENTRAL NERVOUS SYSTEM LEPTIN 
IN THE REGULATION OF GLUCOSE 
HOMEOSTASIS

Since most of  the effects of  leptin on energy homeostasis are 
mediated by the brain, a similar mechanism has been invoked 
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for leptin’s effects on glucose metabolism. Consistent with 
this hypothesis, intracerebroventricular (ICV) administration 
of  low doses of  leptin ameliorates the insulin resistance 
and diabetes phenotype of  both ob/ob and lipodystrophic 
mice[20,41] to the same extent as much higher doses of  leptin 
given systemically. In a similar manner, leptin administration 
directly into the brain normalizes blood glucose levels in 
rodent models of  uDM[42-46] at doses that are ineffective when 
administered systemically. Furthermore, in non-diabetic rats, 
central leptin gene therapy blocks high fat diet-induced weight 
gain, hyperleptinemia, and hyperinsulinemia,[47] while acute 
infusion of  leptin directly into the brain reverses diet-induced 
hepatic insulin resistance in non-diabetic rats exposed to a 
high fat diet for 3 days.[48] Taken together, these data provide 
compelling evidence that the CNS mediates key effects of  
leptin on glucose metabolism.

SITE OF LEPTIN ACTION IN THE CENTRAL 
NERVOUS SYSTEM

While leptin receptors are expressed in several 
hypothalamic[49,50] and extrahypothalamic areas[51,52] involved 
in the control of  energy balance and autonomic function, 
several observations implicate the hypothalamic arcuate 
nucleus (ARC) as an important site for leptin-mediated 
effects on glucose metabolism. Using a combination of  
gene targeting and gene therapy techniques, Coppari 
and colleagues found that unilateral restoration of  leptin 
receptors to the ARC of  leptin receptor-defi cient mice 
only had a modest effect on food intake and body weight, 
but a marked effect to lower plasma insulin and blood 
glucose levels.[53] In a complementary approach, we used 
adenoviral gene therapy to express leptin receptors in 
the ARC of  Koletsky ( fak/fak) rats that develop severe 
hyperphagia, obesity, and insulin resistance due to genetic 
absence of  leptin receptors. Here, selective rescue of  leptin 
receptor signaling to the ARC of  Koletsky rats dramatically 
improved peripheral insulin sensitivity independent of  
changes in food intake and body weight,[54] providing 
further support that the hypothalamic ARC plays a key 
role in mediating leptin’s effects on glucose metabolism.

Growing evidence, however, suggests that brain areas 
outside the ARC are also likely involved in leptin’s effects 
on glucose metabolism. Several lines of  evidence implicate 
a role for the ventromedial nucleus of  the hypothalamus 
(VMH) as neurons in this brain area express the leptin 
receptor,[50] are activated by leptin (as measured by the 
induction of  pSTAT3, a marker of  leptin activation),[55] 
and administration of  leptin to the VMH increases insulin-
independent glucose uptake in muscle, brown adipose 
tissue (BAT), and heart via the sympathetic nervous system 
(SNS).[56,57] In addition, selective inactivation of  suppressor 

of  cytokine signaling (SOCS-3; an inhibitor of  leptin 
signaling) in VMH neurons improves glucose homeostasis 
without affecting body weight,[58] while deletion of  leptin 
receptors from VMH neurons results in an obese, insulin-
resistant phenotype.[59,60] Collectively, these fi ndings support 
a role for both the ARC and VMH in the regulation of  
glucose metabolism. However, leptin receptors are also 
expressed in the paraventricular nucleus (PVN) and the 
dorsomedial nucleus of  the hypothalamus (DMH),[49,50] as 
well as outside the hypothalamus,[51,52] and future studies 
examining the role of  leptin signaling in these brain areas 
on glucose metabolism are warranted.

CENTRAL NERVOUS SYSTEM MECHANISMS 
OF LEPTIN ACTION

One key area of  research has been to understand how leptin 
signaling in the brain improves peripheral insulin sensitivity. 
In short-term high-fat fed rats, ICV infusion of  leptin 
reverses diet-induced insulin resistance via a suppression of  
hepatic glucose production, by reducing both glycogenolysis 
and gluconeogenesis.[48] Moreover, rescue of  leptin receptor 
signaling to the ARC of  leptin receptor-defi cient Koletsky 
rats improved insulin sensitivity via enhanced insulin-induced 
suppression of  hepatic glucose production, rather than an 
increase in glucose uptake.[61] In addition, this effect was 
associated with improved insulin-induced activation of  
the insulin signal transduction pathway selectively in liver, 
relative to muscle and WAT, and was associated with reduced 
hepatic expression of  the gluconeogenic genes, glucose-
6-phosphatase (G6Pase) and phosphoenolpyruvate kinase 
(Pepck).[61] Thus, leptin action in the ARC improves peripheral 
insulin sensitivity primarily through an action in the liver.

One mechanism to explain how the brain communicates to 
the liver is via autonomic outfl ow through the vagus nerve. 
Recent studies suggest that the effect of  intrahypothalamic 
infusion of  insulin[62] or free fatty acids[63] to improve 
hepatic insulin sensitivity requires intact vagal input to 
the liver. Consistent with the hypothesis that a similar 
mechanism mediates the effect of  leptin in the brain to 
suppress hepatic glucose production, the effect of  restored 
hypothalamic leptin signaling to improve hepatic insulin 
sensitivity in obese Koletsky rats was blocked by selective 
hepatic vagotomy.[61] These data support a model whereby 
leptin activates a neural signal between the brain and the 
liver, which regulates hepatic insulin action.

In addition to regulating hepatic glucose production, leptin 
also has the capacity to enhance glucose uptake in peripheral 
tissues through insulin-independent mechanisms.[64] Leptin 
stimulation of  glucose utilization involves the CNS, as 
either ICV or intrahypothalamic administration of  leptin 
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increases non-insulin–mediated glucose uptake in skeletal 
muscle, BAT, and heart (but not in WAT) via a mechanism 
involving the SNS.[56,57] Moreover, leptin-induced increases 
in glucose uptake in muscle and heart are mediated via 
the VMH, while leptin signaling in both the ARC and 
VMH regulates glucose uptake in BAT.[65] Based on these 
observations, we examined the mechanism whereby leptin 
action in the brain normalizes diabetic hyperglycemia in 
uDM. This glucose-lowering effect of  leptin occurs via a 
mechanism that is independent of  reduced food intake, 
increased urinary glucose loss, or recovery of  pancreatic 
-cells. Instead, using tracer dilution techniques, leptin 
was demonstrated to activate a previously unrecognized, 
insulin-independent mechanism for potently inhibiting 
hepatic glucose production, while increasing tissue 
glucose utilization, a combination that fully normalizes 
blood glucose levels in diabetic animals[43] [Figure 1]. 
These data establish that the brain has the previously 
unrecognized ability to normalize diabetic hyperglycemia, 
and we emphasize that this effect is distinct from the 
previously reported action of  leptin to improve hepatic 
insulin sensitivity.

Besides its actions on liver and peripheral tissues, leptin 
is also suggested to regulate glucose homeostasis via 
the islet. One mechanism that has been hypothesized to 
contribute to the antidiabetic effects of  leptin in uDM is 
the normalization of  increased plasma glucagon secretion 
from pancreatic -cells.[40] Hyperglucagonemia is thought 
to contribute to diabetic hyperglycemia in uDM, in part, by 
activating expression of  the gluconeogenic genes, G6Pase 

and Pepck in the liver.[66,67] Consistent with this hypothesis, the 
glucose-lowering effect of  leptin in uDM was accompanied 
by a normalization of  hyperglucagonemia.[39,40] The CNS 
is implicated in this effect as the glucose-lowering effects 
of  leptin in uDM are mediated via a direct action of  leptin 
in the brain and are accompanied by a normalization of  
increased plasma glucagon levels.[43,68] Consistent with this, 
key brain areas including the VMH participate in the control 
of  glucagon secretion[69] via activation of  the autonomic 
nervous system[69,70] during hypoglycemia.[71,72]

Leptin receptors are also expressed on pancreatic -cells[73] 
and systemic administration of  leptin has been shown 
to decrease glucose-stimulated insulin secretion in a 
dose-dependent manner in vivo.[74] Subsequent studies, 
however, demonstrated that the acute effects of  leptin 
on insulin secretion are mediated through its actions in 
the CNS via the melanocortin pathway.[75] Consistent with 
these observations, long-term infusion of  ICV leptin 
decreases glucose-stimulated insulin secretion, an effect 
that is overcome by an improvement in insulin sensitivity 
in both normal and diabetic rats (90% pancreatectomy).[76] 
Moreover, this leptin-induced reduction in insulin secretion 
is independent of  changes in either pancreatic -cell area 
or mass and is mediated mainly through the SNS.[77] In 
addition, CNS leptin-transgene expression suppressed 
plasma insulin levels and improved insulin sensitivity in 
ob/ ob mice fed either chow or a high-fat diet.[78] Collectively, 
these data suggest that intact CNS leptin signaling to the 
islet may also play an important role in preventing both 
type 1 and type 2 diabetes.[79]

Figure 1: Leptin normalization of blood glucose levels in uDM. (a) Type 1 diabetes is characterized by diabetic hyperglycemia and both insulin and leptin 
defi ciency due to the loss of pancreatic -cells and the depletion of adipose tissue stores, respectively. This diabetic hyperglycemia is due to both reduced 
glucose uptake in peripheral tissues and increased rates of hepatic glucose production, in part due to increased glucagon secretion from pancreatic -cells. 
(b) Leptin administration directly into the brain normalizes diabetic hyperglycemia in uDM by both potently suppressing hepatic glucose production, as well 
as increasing glucose uptake despite persistent severe insulin defi ciency, an effect associated with normalization of elevated plasma glucagon levels.[79]
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THE HYPOTHALAMIC ARCUATE NUCLEUS

Identifying the hypothalamic neurons that transduce leptin 
signal into changes of  energy homeostasis and glucose 
metabolism has been the focus of  much research. Two well-
characterized leptin-sensitive neuronal populations implicated 
in the control of  both energy- and glucose-homeostasis are 
expressed in the hypothalamic ARC. One of  these neuronal 
subsets expresses pro-opiomelanocortin (POMC) and these 
cells are stimulated by leptin[80,81] to release alpha-melanocyte 
stimulating hormone (-MSH), a peptide that acts on 
melanocortin receptors (Mc3r/Mc4r) to promote weight 
loss[82] and improve insulin sensitivity.[83] Adjacent to these 
cells is a neuronal subset that expresses neuropeptide Y (NPY) 
and a melanocortin receptor blocker, agouti-related peptide 
(AgRP).[84] Both NPY and AgRP promote weight gain[85,86] and 
insulin resistance[87,88] and, in contrast to POMC neurons, these 
NPY/AgRP neurons are inhibited by leptin.[25] Therefore, 
in conditions of  reduced leptin signaling such as in ob/ob 
mice or in uDM, NPY/AgRP neurons are activated whereas 
POMC neurons are inhibited, a combination of  responses that 
promote weight gain and insulin resistance.[19] Moreover, NPY/
AgRP neurons inhibit POMC neurons through release of  the 
inhibitory neurotransmitter, -aminobutyric acid (GABA). [89] 
Thus, in addition to activating POMC neurons directly, leptin 
also hyperpolarizes NPY/AgRP neurons, thereby reducing the 
release of  GABA onto POMC neurons, therefore disinhibiting 
POMC neurons[89,90] [Figure 2].

Both pharmacological and mouse genetic strategies have 
been employed to determine the role of  leptin signaling in 
each of  these ARC neuronal populations. Using a Cre-loxP 
approach, deletion of  leptin receptors from both NPY/
AgRP and POMC neurons results in hyperinsulinemia and 
an obesity phenotype that is nearly additive with respect to 
the increase of  body weight following deletion of  leptin 
receptors from individual neurons.[91] In contrast, reactivation 
of  leptin signaling in all POMC neurons[92] or selectively in 
POMC neurons that express the leptin receptor[93] in mice 
that otherwise lack leptin receptors normalizes blood glucose 
levels and ameliorates hepatic insulin resistance independent 
of  changes in energy homeostasis.[92,93] Conversely, deletion 
of  leptin receptors from just POMC neurons results in a 
mild-obesity phenotype and only a small effect on glucose 
homeostasis.[94] Taken together, these data suggest that leptin 
action on POMC neurons in the ARC has important effects 
in the control of  glucose metabolism.

Pharmacological studies have also supported a role for the 
melanocortin pathway in mediating leptin’s effects on glucose 
metabolism. In non-diabetic animals, the effects of  ICV 
leptin to stimulate hepatic gluconeogenesis are blocked by 

central administration of  the Mc3/4r antagonist, SHU9119, 
while leptin-induced suppression of  glycogenolysis remains 
intact, suggesting that leptin stimulation of  gluconeogenesis is 
mediated via a melanocortin-dependent pathway while leptin-
inhibition of  glycogenolysis is melanocortin independent.[95] 
In addition, the effect of  leptin administration to the VMH to 
stimulate glucose uptake is blocked by the Mc3/4r antagonist, 
SHU9119, suggesting that this leptin effect is also dependent 
on activation of  melanocortin receptors.[65] Moreover, the 
antidiabetic effects of  leptin in uDM require melanocortin 
signaling as co-infusion of  the Mc3/4r antagonist, SHU9119, 
directly into the brain blocked the glucose-lowering effect of  
ICV leptin in uDM.[96] However, this effect of  the Mc3/4r 
antagonist could block leptin action in either two ways – by 
blocking the increased release of  -MSH from POMC 
neurons or by mimicking the effect of  increased release of  
the endogenous Mc3/4r antagonist, AgRP, from NPY/AgRP 
neurons, or both. In contrast, activation of  the Mc3/4r alone 
was not suffi cient to mimic the glucose-lowering effects 
of  leptin in uDM. [96] These data suggest that stimulation 
of  POMC neurons alone cannot fully explain the actions 

Figure 2: Model of CNS leptin regulation of glucose metabolism. Leptin 
is secreted by adipocytes, enters the CNS, and acts on its receptor 
expressed in key brain areas that regulate metabolism. Leptin inhibits 
neuropeptide and agouti-related peptide (NPY/AgRP) neurons and 
stimulates pro-opiomelanocortin (POMC) neurons in the ARC, responses 
that promote glucose uptake in peripheral tissues and the suppression 
of glucose production from the liver. In addition, leptin action in the VMH 
stimulates glucose uptake in peripheral tissues and this brain area is also 
implicated in the regulation of glucagon secretion. ARC, arcuate nucleus; 
VMH, ventromedial hypothalamus; PVN, paraventricular nucleus; Mc4r; 
melanocortin-4 receptor; LepRb, leptin receptor; BAT, brown adipose 
tissue.[104]
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of  leptin in uDM, implying an important role for leptin 
inhibition of  NPY/AgRP neurons as well.

THERAPEUTIC IMPLICATIONS

The therapeutic potential of  leptin for the treatment 
of  obesity has been dampened thus far by its reduced 
effectiveness to induce weight loss in obese individuals. [97] 
Except for rare cases, obesity is not caused by leptin 
defi ciency as most obese humans and rodents have elevated 
levels of  circulating plasma leptin levels.[17] Moreover, 
in rodent models of  diet-induced obesity, the ability of  
leptin to suppress food intake and induce weight loss and 
to activate its signal transduction pathway (pSTAT3) in 
the CNS is impaired.[55,98] This phenomenon is commonly 
referred to as “leptin resistance” and is thought to be due to 
impaired leptin receptor signaling in the hypothalamus, the 
impaired ability of  leptin to cross the blood–brain barrier, 
or both.[99,100] Identifying the mechanisms contributing to 
the development of  leptin resistance is an active line of  
research and recently reviewed elsewhere.[99,100] Experiments 
investigating whether leptin administration improves glucose 
metabolism in type 2 diabetic individuals seem warranted 
given evidence from rodent studies suggesting that leptin 
has benefi cial effects on glucose metabolism at doses that 
are ineffective at reducing food intake and body weight. A 
benefi cial role for leptin in the treatment of  type 2 diabetes 
is further supported by a recent study demonstrating that 
systemic administration of  leptin improves insulin sensitivity 
and normalizes fasting plasma glucose levels in University 
of  California, Davis, type 2 diabetes mellitus (UCD-T2DM) 
rats, independent of  energy intake.[101] Given that rodent 
models of  type 1 diabetes treated with leptin are much more 
sensitive to the effects of  insulin,[37,39,102] it also raises the 
therapeutic possibility that supplementing insulin treatment 
with leptin may be a useful adjunct in the management of  
type 1 diabetes.

CONCLUSIONS

In conclusion, in addition to its well-known effects on 
energy homeostasis, leptin is a hormone that also directly 
regulates glucose metabolism through its actions via the 
CNS. Identification of  the specific neuronal subsets 
downstream of  leptin action, which link communication 
between the brain and peripheral tissues to control both 
hepatic glucose production and glucose uptake, will help 
facilitate the development of  new approaches to diabetes 
treatment. While there are several hurdles to overcome for 
targeting the CNS,[103] it nonetheless has untapped potential 
for the treatment of  diabetes.
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