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• Interaction of the immunization algorithms, epidemic trials and network structure is investigated.
• Immunization algorithms are applied to various real and model networks.
• Degree-based immunization algorithms are more efficient in mitigation of weak epidemics.
• Network largest component size is a vital element in spreading of severe epidemics.
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a b s t r a c t

There has been much recent interest in the prevention and mitigation of epidemics spreading through
contact networks of host populations. Here, we investigate how the severity of epidemics, measured by
its infection rate, influences the efficiency of well-known vaccination strategies. In order to assess the
impact of severity, we simulate the SIR model at different infection rates on various real and model im-
munized networks. An extensive analysis of our simulation results reveals that immunization algorithms,
which efficiently reduce the nodes’ average degree, are more effective in the mitigation of weak and slow
epidemics, whereas vaccination strategies that fragment networks to small components, are more suc-
cessful in suppressing severe epidemics.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

A range of infectious disease outbreaks has been reported in
the last decades. Influenza outbreaks have occurred in large pub-
lic gatherings such as the 2002 winter Olympics in the USA, 2008
Olympics in Beijing, and the 2009 music festivals in Belgium
(Chowell et al., 2012). A large number of Toronto residents got
infected during an outbreak of the severe acute respiratory syn-
drome (SARS) in 2003 (Svoboda et al., 2004). In 2010, measles out-
breaks of various sizes occurred in a majority of European Union
countries (Steffens et al., 2010). Severe outbreaks of infectious dis-
eases do not only have great impacts on social life and healthcare,
but they also affect the economy through productivity degradation
and high cost of treatment (Hadidjojo and Cheong, 2011). Hence,
it is crucial to develop an effective strategy to prevent and control
epidemic spreading through the population.
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Some of the traditional epidemic intervention procedures such
as quarantine involve weakening or cutting the relationships (Ha-
didjojo and Cheong, 2011). Vaccination is another strategy which
not only protects immunized people, but also indirectly protects
their friends by breaking transmission chains and reducing risk of
infection (Cornforth et al., 2011). From an economical perspective,
mass vaccination (i.e. vaccinating the entire population) is not al-
ways feasible because of high cost and limitation of vaccination
units (Chen et al., 2008; Restrepo et al., 2006; Schneider et al.,
2011). Therefore, an efficient immunization policy is required to
minimize immunization costs as well as the number of infected
individuals.

The study of mathematical models for epidemic has a long his-
tory reaching back to 1920s when Kermack and Kendrick estab-
lished the first birth–death model of epidemic spreading (Lewis,
2009). By the end of the twentieth century, a variety of mod-
els had been proposed to more accurately represent epidemics
dynamic. However, the majority neglect population variability in
age, sex, contact rate, individual behavior, spatial patterning, etc.
(Hartvigsen et al., 2007; Lewis, 2009; Miller and Hyman, 2007;
Reluga, 2010; Ventresca and Aleman, 2013). Therefore, a series
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of deterministic and stochastic compartmental models has been
proposed to capture the heterogeneity in contact patterns (Fer-
guson et al., 2003; Keeling et al., 1997; Lefevre and Picard, 1989;
Meyers, 2006; Yorke et al., 1989). Network epidemic is a recent
advancement in epidemiology taking into account heterogeneous
social structures of real population (Cai et al., 2014; Lewis, 2009;
Meyers, 2006; Ventresca and Aleman, 2013).

Network epidemic studies dynamics of epidemic spreading
through contact networks of host populations. A contact network
is an undirected graph where nodes represent individuals and
edges represent the relationship between pairs of individuals
(Salathé and Jones, 2010; Youssef and Scoglio, 2011). Due to
faster dynamics of epidemics than changes in host populations,
a static snapshot of contact networks is commonly considered
in the literature (Christley et al., 2005; Eubank et al., 2004;
Ferrari et al., 2006; Kitchovitch and Liò, 2011; Schneider et al.,
2012; Youssef and Scoglio, 2011). A great deal of research
has been carried out both on network modeling of epidemic
spreading (Eubank et al., 2004) and on finding the relations
between network structure and epidemic parameters (Ames
et al., 2011; Chakrabarti and Faloutsos, 2003; Chakrabarti et al.,
2008; Youssef and Scoglio, 2011). The results have provided
major insights into the development of new immunization
strategies. A large number of immunization algorithms have been
proposed based on immunizing hubs (i.e. the nodes with highest
degree) in networks (Cohen et al., 2003; Dezső and Barabási, 2002;
Gallos et al., 2007; Gao et al., 2011; Gómez-Gardeñes et al., 2006;
Hu and Tang, 2012; Pastor-Satorras and Vespignani, 2002). The
community structure of real networks has made it possible to
immunize intercommunal individuals who play an important role
in infectious propagation among different communities (Hébert-
Dufresne et al., 2013; Masuda, 2009; Salathé and Jones, 2010;
Yamada and Yoshida, 2012; Yoshida and Yamada, 2012). There is
another group of immunization schemes that attempts to raise
the epidemic threshold by reduction of largest eigenvalue of
network adjacency matrix (Chakrabarti and Faloutsos, 2003;
Chakrabarti et al., 2008; Peng et al., 2010). Recently, several other
immunization approaches have been put forward that focus on
reducing the size of the largest connected component (i.e. set of
vertices that are reachable from each other) of the network of
non-immunized nodes in order to reduceworst-case epidemic size
(Schneider et al., 2012, 2011; Shams and Khansari, 2013).

In spite of these efforts, a comprehensive analysis on perfor-
mance of immunization algorithms has never been reported to our
knowledge. Although several experiments have been conducted
in order to evaluate immunization algorithms (see Table 1), they
have significant shortcomings. Firstly, only a small number of ef-
ficient immunization algorithms are included (Schneider et al.,
2012, 2011). Secondly, experiments are conducted based on a sin-
gle network (Eames et al., 2009; Miller and Hyman, 2007; Ven-
tresca and Aleman, 2013) or network structure (Hartvigsen et al.,
2007). Thirdly, only structural properties are considered (Masuda,
2009; Schneider et al., 2012; Shams and Khansari, 2014; Ventresca
and Aleman, 2013). And fourthly, none of these studies has consid-
ered the impact of epidemic severity on immunization algorithms
(Hartvigsen et al., 2007; Ma et al., 2013; Salathé and Jones, 2010;
Shams and Khansari, 2014; Ventresca and Aleman, 2013).

In this paper, we aim to address the question of how immuniza-
tion algorithms reduce the number of infected individuals with re-
gard to the severity of disease and the structure of the network. In
this paper, we express the epidemic severity in terms of its infec-
tion rate. To overcome the challenge, we simulate the SIR model
with different infection rates on various real and model networks
which are immunized by well-known vaccination strategies.
2. Immunization strategies

In the last decade, a number of immunization algorithms have
been developed. Here, we explore six immunization strategies
including degree immunization, effective degree immunization,
betweenness immunization, eigenvector immunization, PageRank
immunization, and stochastic hill-climbing immunization which
are regarded as themost efficient strategies according to literature
(Chen et al., 2008; Gallos et al., 2007; Hartvigsen et al., 2007; Hu
and Tang, 2012; Masuda, 2009; Miller and Hyman, 2007; Restrepo
et al., 2006; Salathé and Jones, 2010; Schneider et al., 2012, 2011;
Ventresca and Aleman, 2013; Vidondo et al., 2012). In addition to
these popular approaches, we exploit random immunization as a
control means of performance evaluation.

2.1. Degree immunization

Degree immunization (DI) algorithm immunizes nodes who
have the highest number of interactions in the population (Dezső
and Barabási, 2002; Hu and Tang, 2012; Pastor-Satorras and
Vespignani, 2002). Since the nodes with higher degree are more
likely to spread disease due to their higher connections, vaccinat-
ing them reduces the contagion propagation through the popula-
tion (Ventresca andAleman, 2013). Furthermore, immunizinghubs
quickly reduces network density, which is an important factor in
the growth rate of the epidemic (Hadidjojo and Cheong, 2011).

2.2. Effective degree immunization

Effective degree immunization (EDI) is a modification of
degree immunization which recalculates degree of vertices after
immunization (i.e. removal) of highest degree node (Chen et al.,
2008; Hu and Tang, 2012; Miller and Hyman, 2007; Schneider
et al., 2012). The idea behind this algorithm is that immunization
of a node reduces the degree of its neighbors. So, vaccination
of nodes based on their degree in initial network is not always
the most efficient algorithm. Therefore, it is recommended to
immunize nodes based on their effective degree which is their
degree in the current network of non-immunized nodes during
the immunization procedure (Hu and Tang, 2012). This algorithm
is also known as highest degree adaptive immunization in the
literature (Chen et al., 2008; Schneider et al., 2012, 2011).

2.3. Betweenness immunization

Betweenness immunization (BI) prioritizes nodes for vaccina-
tion regarding their betweenness centrality which is the propor-
tion of time a node lies on the shortest path between other nodes
(Freeman, 1978). Nodes with high betweenness centrality, so-
called bridge nodes, connect different communities of networks
(Hébert-Dufresne et al., 2013; Salathé and Jones, 2010). Therefore,
their removal via vaccination breaks lots of transmission chains an
infection that starts in a quota cannot easily propagate to other
parts of the population.

2.4. Eigenvector immunization

Eigenvector centrality of a node, the principal eigenvector of
the adjacency matrix of network, provides a measure of nodal
infectious risk according to the risk level of its neighbors (Bonacich,
1987; Borgatti, 2005). Additionally, it has been proved that
eigenvector centrality determines the impact of node removal on
decreasing the largest eigenvalue of network adjacency matrix
(Masuda, 2009; Restrepo et al., 2006) which is the inverse of
epidemic threshold (Chakrabarti and Faloutsos, 2003; Chakrabarti
et al., 2008; Masuda, 2009; Peng et al., 2010; Restrepo et al.,
2006; Youssef and Scoglio, 2011). Network epidemic threshold is
a quantity which determines whether an infection dies out over
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Table 1
Evaluation of immunization algorithms.

Literature Immunization algorithms Networks Evaluation
measuresa

Simulation
parameterb

Real Model

Miller and Hyman
(2007)

Effective degree immunization (EDI)

Episims – FES

Degree immunization (DI) SIR
PageRank immunization (PI) T = 1;

0 < α < 1
Neighbor-degree immunization
Random immunization
Acquaintance immunization

Hartvigsen et al. (2007)

Degree immunization (DI)

– Small-world FES

SIR
Lowest clustering coefficient R0 = 2
Highest clustering coefficient T = 3
Random immunization

Chen et al. (2008)

Equal graph partitioning (LCC-based)

HEP, AS, Workplace,
AS, Metabolic

Scale-free
Random-regular,
Erdös–Renyi

LCC, I-Thr, FES

SIR
Effective degree immunization (EDI) α = 0.2
Degree immunization (DI) β = 0.05
Betweenness immunization (BI)
Effective betweenness immunization

Masuda (2009)

Degree Immunization (DI) HEP

Erdös–Renyi LCC –
Effective degree immunization (EDI) PGP
Eigenvector immunization (EI) WWW
Effective betweenness immunization Email-based

Mod

Eames et al. (2009)

Degree immunization (DI)

Synthesis network – FES SIRDaily degree immunization
Total weight immunization

Secondary case immunization

Schneider et al. (2011) Betweenness immunization (BI) Friendship, Internet,
Airplane Scale-free Erdös–Renyi LCC, Robustness,

FES
SIR
α = 0.2
β = 0.05

Improved betweenness immunization

Schneider et al. (2012)

Effective degree immunization (EDI)

HEP, AS Scale-free Erdös–Renyi
Random-regular LCC, Robustness –Degree immunization (DI)

Betweenness immunization (BI)

Inverse targeting (LCC-based)

Ventresca and Aleman
(2013)

Degree immunization (DI)

Toronto social
networks – LCC, DD, CC –

PageRank immunization (PI)
Total weight
Random immunization

Acquaintance immunization

Ma et al. (2013)

Degree immunization (DI)

– Small-world, Scale-free,
random, meta random FES

SIR
R0 = 1.5
β = 0.2

Random immunization
Follow-link immunization

Contact switching immunization

Shams and Khansari
(2014)

Degree immunization (DI)

Small-world Scale-free
Erdös–Renyi

LCC, SSP, λ,
Robustness, I-Thr –

PageRank immunization (PI) HEP, AS
Betweenness immunization (BI)
Eigenvector immunization (EI) FBL
Closeness immunization

a Evaluationmetrics (LCC: Largest connected component of network, SSP: Sum of Square Partition, DD: Degree distribution, CC: Clustering coefficient, I-Thr: immunization
threshold, λ: Largest eigenvalue of network adjacency matrix, FES: Final epidemic Size).

b Simulation parameters (α: infectious rate, β: recovery rate, R0: reproduction number, T : infectivity Time).
time or becomes an epidemic (Chakrabarti and Faloutsos, 2003;
Chakrabarti et al., 2008). Therefore, eigenvector immunizations
(EI) that vaccinates nodeswith high eigenvector centrality, reduces
the probability of a contagious outbreak via increasing the network
epidemic threshold.

2.5. PageRank immunization

The PageRank immunization (PI), selects individuals based
on their Google PageRank, which determines the probability of
visiting a node in a random walk (Page et al., 1999; Ventresca and
Aleman, 2013). PageRank immunization is proposed based on the
idea that nodes with high PageRank centrality are more likely to
be infected or infect others along many paths. Additionally, since
nodes with high PageRank centrality have many neighbors with
low degree, PageRank immunization vaccinates influential nodes
whose immunization strongly protects their neighbors (Miller and
Hyman, 2007).

2.6. Stochastic hill-climbing immunization

Recently, a group of immunization strategies has been intro-
duced that aims to reduce worst-case expected epidemic size by
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Table 2
Experiential settings.

Factor Value Abbreviation

Dataset

Real networks Hyper energy physics network HEP
Autonomous systems AS
Facebook-like network FBL

Model networks Erdös–Renyi network ER
Scale-Free network SF
Small-world network SW

Vaccination strategies

Degree immunization DI
Effective-degree immunization EDI
Betweenness immunization BI
Eigenvector immunization EI
PageRank immunization PI
Stochastic hill-climbing immunization SHCI
Random immunization RI

Infection rate Low (α = 0.2, T = 3), Medium (α = 0.5, T = 3), High (α = 0.8, T = 3) –
fragmenting networks such that the size of largest connected com-
ponent is minimized (Chen et al., 2008; Schneider et al., 2012,
2011; Shams and Khansari, 2013). The basic assumption of these
strategies is that an infected node can maximally infect nodes that
are in its containing component. In other words, in the case of a
single source of infection, epidemic spreading is suppressedwithin
the connected component containing initial seeds of infection and
is not transmitted to another component. Hence, the worst-case
epidemic size is equal to the size of the largest connected compo-
nent of the network.

Stochastic hill-climbing immunization (SHCI) is the newest
immunization strategy in this category which is designed to
immunize networks with a certain amount of vaccination units
(Shams andKhansari, 2013). This algorithmemploys the Stochastic
hill-climbing method to find the specified size subset of nodes
whose removal minimizes largest connected component (LCC) of
the network.

2.7. Random immunization

Random immunization (RI) is a simple vaccination strategy se-
lecting a random subset of nodes for removal (Ferrari et al., 2006).
Random immunization does not require any information about
the structure of the population. Additionally, it shows the advan-
tage of minimum time complexity among all immunization algo-
rithms. Therefore, it is important to study random immunization as
a means of control to assess the relative performance of different
immunization algorithms (Eames et al., 2009; Ferrari et al., 2006;
Hartvigsen et al., 2007; House and Keeling, 2011).

3. Methods

The paper aims to investigate the impact of severity of
epidemic diseases on the performance of immunization algorithms
in networks with different structures. To achieve this goal, we
simulate the SIRmodel with different transmission rates in various
real and model immunized networks (see Table 2) and measure
the number of infected individuals. The settings of SIR model and
datasets are elaborated in the following subsections.

3.1. Epidemic spreading model

To investigate the impact of immunization algorithms on
epidemic dynamic, we first need to implement immunization
strategies to select our target nodes for immunization. In case
of equal priority for immunization, the next node is selected at
random. Then, selected nodes are removed from the network since
immunized nodes do not play any role in infection propagation.
Now, epidemic simulation can start.
Table 3
Parameter setting for SIR simulation. (The abbreviations are listed in Table 2.)

Infection rate α T R0

HEP AS FBL SW SF ER

Low 0.2 3 15.4 2.2 7.0 1.6 1.0 1.6
Medium 0.5 3 23.3 3.3 12.7 3.4 3.0 3.2
High 0.8 3 31.0 4.9 14.9 4.0 3.6 3.9

Here, we consider the SIR epidemic model which is commonly
used to model the infectious propagation (Chen et al., 2008;
Christley et al., 2005; House and Keeling, 2011; Ma et al., 2013;
Schneider et al., 2011; Youssef and Scoglio, 2011). In this model,
each node is in one of three states: Susceptible, Infected, or
Recovered. Initially all nodes are susceptible. Then, a random node
is infected to initiate epidemic. At each time step, each infected
node might infect their susceptible neighbors with probability
α. It has been shown that a susceptible node can be infected
with probability of 1 − (1 − α)Ni where Ni is the number of
infected neighbor nodes. Incidentally, an infected node recovers
after T time steps where T is the infectivity time of the disease
in which an infected individual can infect others. It should be
noted that recovered nodes are immune to subsequent infection.
The epidemic ends when there are no more infected nodes in the
network (Christley et al., 2005).

To test the efficiency of immunization algorithm based on
severity of disease, we simulate our SIR model at various infection
rates (α = {0.2, 0.5, 0.8}) indicating different severity levels. The
infection time (T ) is set to 3 which is suggested in Badham and
Stocker (2010). The parameter settings of SIR simulation are shown
in Table 3. We calculate the epidemic reproductive number, R0,
indicating the average number of secondary cases generated by a
primary infectious individual in a wholly susceptible population
(Ames et al., 2011; Chowell et al., 2012; House and Keeling, 2011;
Saramäki and Kaski, 2005). To estimate R0, we run a series of 300
SIR simulation and average the number of individuals infected
by the single primary infection seed. Note that the initial seed of
infection is chosen randomly in each run.

3.2. Dataset

Various real and model networks are included in the experi-
ments to evaluate the efficiency of immunization algorithms with
regards to network structure and infection rate. HEP, AS, and
Facebook-like (FBL) networks are used as real networks, whereas
scale-free (SF), Erdös–Renyi (ER) and small-world (SW) networks
are the model networks. The structural properties of networks are
shown in Table 4.

It is worth mentioning that HEP (Gehrke et al., 2003; Leskovec
et al., 2005), Facebook-like (Opsahl and Panzarasa, 2009), and AS
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Table 4
Structural properties of model and real networks. (The abbreviations are listed in Table 2.)

Network Na Mb
⟨k⟩c Std (d)d CCe (Barrat et al., 2004) λf

HEP 27,770 352,285 25.37 45.23 0.12 111.25
AS 25,367 75,004 5.91 48.03 0.01 103.36
FBL 1899 13,838 14.57 24.46 0.06 48.14
SF 10,000 20,000 4 4.40 0.00 9.91
ER 10,000 20,000 4 1.99 0.00 5.22
SW 10,000 20,000 4 0.28 0.47 4.08
a N: Number of vertices.
b M: Number of edges.
c

⟨k⟩: Average degree.
d Std(d) = Standard deviation of degree.
e CC: Clustering coefficient.
f λ: Largest eigenvalue of network adjacency matrix.
(Shavitt and Shir, 2005) networks are popular in immunization
literature (Chen et al., 2008; Gao et al., 2011; Hu and Tang,
2012; Masuda, 2009; Mirzasoleiman et al., 2012; Niu et al., 2009;
Schneider et al., 2012). HEP network represents citations among
27,770 papers on high energy physics theory derived from e-
print Arxiv. Regardless of direction, HEP network contains 352,285
links. This network has been used in immunization literature as
a relatively dense network (Chen et al., 2008; Masuda, 2009;
Mirzasoleiman et al., 2012; Schneider et al., 2012). Facebook-like
network represents an online student community at the University
of California, Irvine. It includes information of 13,838 messages
on an online community of 1899 students at the University
of California, Irvine (Opsahl and Panzarasa, 2009). AS network
contains 25,367 nodes and 75,004 edges captures information of
internet network at autonomous systems level on June 2012. The
network is an important dataset to study virus spreading models
through computer networks (Chen et al., 2008; Schneider et al.,
2012).

Most of real networks involving social, biological, and techno-
logical networks can be represented as scale-free, Erdös–Renyi and
small-world networks (Hu and Tang, 2012). Erdös–Renyi is the first
model network with the properties of emergence of a giant com-
ponent and low clustering coefficient (Erdös and Renyi, 1959). We
use the Erdös–Renyi algorithm to generate Erdös–Renyi network
containing 10,000 nodes and 20,000 edges. Scale-free networks are
the symbols of real networks following a power-law degree distri-
bution p(k) = k−γ (Barabási, 1999). The scale-free network (SF) is
generated by the algorithm disclosed in Cho et al. (2009), Chung
and Lu (2002) and Goh et al. (2001) with the setting of 10,000
nodes, 20,000 edges and γ = 2.5. Small-World networks (SW) re-
flect high clustering coefficient and short average path length of
real networks (Watts and Strogatz, 1998). In this paper, we con-
struct a Small-World network by exploiting the Watts–Strogatz
algorithm (Watts and Strogatz, 1998) such that network size is
10,000, mean degree is 4 and switching probability is 0.01. The
model networks are generated using the parameters of Ref. Chen
et al. (2008).

4. Results

To investigate the impact of epidemic severity on network
immunization algorithms, we simulate the SIR model at various
infection rates. Then, we measure the average number of infected
individuals over 50 SIR trials on networks for deterministic
immunization algorithms. For stochastic algorithms (SHCI and RI),
we consider 50 SIR trials on five different immunized networks.
Note that only simulations with a significant final epidemic size
(i.e. least 2% of the population) are included in the calculation of
the average (Salathé and Jones, 2010). As shown in Figs. 1–3, the
variance of epidemic size is mostly less than 1% in each network-
immunization-disease interaction. The maximum variance is 6%,
which occurs in the case of high infection rate in small-world
network (see Fig. 3(f)).

We plot the average fraction of infected individuals with α =

0.2, S, versus vaccination coverage, q, in Fig. 1. The performance
results vary according to the network topology. Betweenness
immunization exhibits the best performance in the Erdös–Renyi
network, while, Effective degree immunization (EDI) and degree
immunization (DI) are the most effective ones in scale-free net-
works. However, degree-based immunization algorithms are gen-
erally more effective than other algorithms, and are therefore
among top-3 algorithms in all networks. On the other hand, other
algorithms such as SHCI, which ignore network degree, fail to stop
spreading of this type of epidemic. The result highlights the im-
portance of network average degree in the suppression of low in-
fection rate epidemics. The above conclusion is also confirmed by
similar trends of algorithms in controlling weak epidemics and
lowering the average degree (see Figs. 1 and A.1). Another surpris-
ing result of aweak epidemic simulation (i.e.α = 0.2) is that it dies
out in small-world networks (see Fig. 1(f)) although its basic repro-
duction number is greater than one (i.e. R0 > 1). The result can be
explained through special characteristic of small-world networks
(i.e. high modularity and clustering coefficient) where R0 cannot
solely determine epidemic dynamics (Saramäki and Kaski, 2005).
In other words, an epidemic with a low infection rate is commonly
confined in the local community of the primary infectious individ-
ual (Badham and Stocker, 2010; Saramäki and Kaski, 2005). Finally,
it should be noted that all immunization algorithms obviously out-
perform random immunization in AS and scale-free networkswith
a low-power degree distribution. For instance, Effective-Degree
immunization is up to 68%more effective than random immuniza-
tion in AS network.

We run SIR simulation at infection rate α = 0.5 as a repre-
sentative of moderate epidemics. As depicted in Fig. 2, Eigenvector
immunization (EI) offers the worst immunization algorithm in all
networks with a performance 60% worse than that of random im-
munization in Small-World networkwhen immunization coverage
is equal to 20%. Unlike the low-infection rate epidemics, theirmod-
erate counterparts arewidely propagated throughnon-immunized
small-world network (see Fig. 2(f)) such that the whole popula-
tion becomes infected. However, the majority of immunization al-
gorithms can suppress epidemics by immunizing only 5% of the
population. Betweenness immunization is still the most effective
approach in the Erdös–Renyi network outperforming the next best
algorithm (i.e. SHCI) by up to 11%. Comparing the performance of
SHCI in the cases of lowandmedium infection rates indicates that it
is more effective in suppressing themoderate one. For instance, Ef-
fective degree immunization (EDI) is highly superior to this scheme
in the control of weak epidemics in scale-free network (Fig. 1(e)),
while, SHCI exhibits a similar performance concerningmedium in-
fection rate (Fig. 2(e)). This increasing in relative performance of
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(a) HEP network.

(b) AS network.

(c) Facebook-like network.

(d) Erdös–Renyi network.

(e) Scale-free network.

(f) Small-world network.

Fig. 1. Fraction of infected individuals under low infection rate (α = 0. 2), S, versus q, fraction of immunized nodes for various vaccination strategies. Each of the points
represents the average of maximally 50 simulation runs for targeted immunization algorithms and 50 runs on 5 different immunized networks for SHCI and random
immunizations, (note that only simulations with a final size of at least 2% of the population were included in the calculation of averages). Fraction of infected individuals is
measured considering the whole population (i.e. including immunized and non-immunized nodes).
SHCI must rely on the fact that as infection rate increases, the con-
tagion is more likely to infect all reachable nodes in the compo-
nent of initial seed. Therefore, the number of infected individuals
becomes equal to the size of the largest connected component of
the network when the most severe epidemic occurs.

Fig. 3 depicts the results of SIR simulations of high infection rate
epidemics (α = 0.8). Our experimental results confirm the hy-
pothesis of superiority of SHCI in the prevention and mitigation of
severe epidemics in comparison to other algorithms. SHCI outper-
forms all strategies over all networks except Erdös–Renyi network
where it is up to 14% less effective than betweenness immuniza-
tion (Fig. 3(d)). SHCI algorithmdisplays amaximal improvement of
8% in Facebook-like and AS network, 4% in Small-world network,
40% in HEP, and 22% in Scale-Free, compared to the next best al-
gorithm. The desired performance of SHCI justifies the claim that
the size of the largest connected component of network is themost
important factor in spreading of severe epidemics. This assumption
is confirmed by trends of other algorithms. For instance, PageRank
immunization offers the second best performance in modular and
homogeneous networks such as Small-World since it is highly effi-
cient in fragmenting small-world networks into small components
by immunization of nodes connecting different clusters (Fig. A.2).
Moreover, Degree-based immunization algorithms are quite
optimum over heterogeneous networks such as Scale-Free and AS
networks, as it easily breaks them down via hub immunization.

5. Discussion

This paper investigates the interactive effects of network
structure, epidemiological traits, and vaccination strategies. The
investigationmust dealwith the following three aspects: Impact of
epidemic severity on immunization algorithms, Impact of network
structure on epidemic spreading, and, Impact of network structure
on immunization algorithms, respectively.

Our investigation on the epidemic severity signified the
effectiveness of degree-based immunization algorithm for weak
epidemics against high performance of stochastic hill-climbing
under severe epidemic condition. Despite the superiority of
degree-based immunization algorithms over most centrality-
based schemes has been previously investigated (Hartvigsen et al.,
2007), the impact of epidemic severity was not pondered in
previous literature. The experimental results indicated that the
hypothesis (i.e. The superiority of degree-based immunization
algorithms over most centrality-based schemes) is plausible only
in the case ofweak epidemics. From theoretical points, an epidemic
with a low infection rate is not propagated to those nodes far
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(a) HEP network.

(b) AS network.

(c) Facebook-like network.

(d) Erdös–Renyi network.

(e) Scale-free network.

(f) Small-world network.

Fig. 2. Fraction of infected individuals under medium infection rate (α = 0.5), S, versus q, fraction of immunized nodes q for various vaccination strategies. Each of the
points represents the average of maximally 50 simulation runs for targeted immunization algorithms and 50 runs on 5 different immunized network for SHCI and random
immunizations, note that only simulations with a final size of at least 2% of the population were included in the calculation of averages. The fraction of infected individuals
is measured considering the whole population (i.e. including immunized and non-immunized nodes).
from initial seed since the infection probability at far nodes
converges to zero. Therefore, degree-based strategies, reducing
local connectivity, are more efficient in cases of low infection rate
epidemics. On the opposite side, when infection rate increases,
the infection probability will converge to one for all nodes except
immunized ones. Consequently, the contagion is propagated
through the components unless it meets immunized nodes that
isolate the infected component. The result is somewhat consistent
with the previous finding in Chen et al. (2008), Schneider et al.
(2012, 2011) and Shams and Khansari (2013) where network
fragmentation was considered to be the answer to inoculation
challenge. But, the point is that they had evaluated immunization
algorithms based on severe epidemics and extended their result
to all types of epidemics, whereas, it could not be an accurate
assumption in the case of low-infection rate epidemic which are
not widespread in the whole component.

The investigation into the interaction of network structure and
epidemic spreading reveals that the former has a great impact on
the latter. For instance, a low infection rate epidemic dies out in
small-world networks, while, it readily disseminates through the
whole population inAS andHEPnetworks. This can be explained by
the term of epidemic threshold defined by Chakrabarti and Falout-
sos (2003) and Chakrabarti et al. (2008). The epidemic threshold or
the inverse of largest eigenvalue of the adjacency matrix, indicates
whether an infection dies out over time or becomes an epidemic.
Comparison of epidemic threshold of small-world networkwith AS
and HEP network clearly indicates why weak epidemics die out in
small-world network. Additionally, the higher number of infected
individuals in a scale-free network is also justified by its power-law
distributionwhich leads to fast propagation of a contagion through
the whole network (Chakrabarti et al., 2008; Dezső and Barabási,
2002; Pastor-Satorras and Vespignani, 2002).

Finally, evaluation of immunization algorithms over various
networks has found that degree-based immunization algorithms
aremore effective in power-law degree distribution networks. The
effectiveness of degree-based immunization algorithms over het-
erogeneous networks relies on the fact that hub immunization
easily fragments heterogeneous networks (Dezső and Barabási,
2002). On the other hand, stochastic hill-climbing algorithm can
be efficiently exploited to stop an epidemic in modular networks.
Modular networks are networks that contain a number of com-
munities with a high connectivity among the nodes within the
same community, but low connectivity between nodes in dif-
ferent modules (Clauset et al., 2004). In these networks, an in-
fection is quickly propagated through the community of initial
infection seeds. Then, the border nodes of the community trans-
mit epidemic through the whole networks (Yamada and Yoshida,
2012). Hence, immunization algorithms are required to iso-
late different communities such that an infection that starts in
one community is not permitted to propagate through another
one. That is the reason why immunization algorithms, immu-
nizing intercommunal (i.e. border) nodes, are more desirable
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(a) HEP network.

(b) AS network.

(c) Facebook-like network.

(d) Erdös–Renyi network.

(e) Scale-free network.

(f) Small-world network.

Fig. 3. Fraction of infected individuals under high infection rate (α = 0.8) , S, versus q, fraction of immunized nodes q for various vaccination strategies. Each of the
points represents the average of maximally 50 simulation runs for targeted immunization algorithms and 50 runs on 5 different immunized networks for SHCI and random
immunizations, (note that only simulations with a final size of at least 2% of the population were included in the calculation of averages). The fraction of infected individuals
is measured considering the whole population (i.e. including immunized and non-immunized nodes).
Table 5
Ranking of immunization algorithm in networks regarding epidemic disease. (The abbreviations are listed in Table 2.)

Infection
rate/Network

Rank of immunization
algorithms

HEP FBL AS ER SF SW

Low

1 SHCI EDI EDI Betweenness
EDI betweenness degree
PageRank EDI PageRank,

Degree SHCI,
Betweenness,
Eigenvector Random

2 EDI PageRank,
Degree

PageRank,
Betweenness
Degree

EDI
3 PageRank Degree,

PageRank4 Degree,
Betweenness

SHCI,
Betweenness,
Eigenvector

5 SHCI Eigenvector Eigenvector, SHCI6 Eigenvector Eigenvector SHCI
7 Random Random Random Random Random

Medium

1 SHCI SHCI SHCI Betweenness EDI SHCI SHCI
2 EDI EDI EDI Degree

PageRank

SHCI PageRank Degree3 PageRank,
Betweenness

PageRank,
Degree
Betweenness

EDI PageRank Degree4 PageRank
Degree

EDI
5 Degree Betweenness Betweenness Betweenness
6 Eigenvector,

Random
Eigenvector Eigenvector Eigenvector Eigenvector Random

7 Random Random Random Random Eigenvector

High

1 SHCI SHCI SHCI Betweenness SHCI SHCI PageRank2 EDI EDI EDI
DegreePageRank

SHCI EDI
3 PageRank,

Betweenness
PageRank,
Degree
Betweenness

EDI PageRank Degree Degree Betweenness4 PageRank
Degree5 Degree Betweenness Betweenness EDI

6 Eigenvector,
Random

Eigenvector Eigenvector Eigenvector,
Random

Eigenvector Random
7 Random Random Random Eigenvector
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(a) HEP network.

(b) AS network.

(c) Facebook-like network.

(d) Erdös–Renyi network.

(e) Scale-free network.

(f) Small-world network.

Fig. A.1. Average degree of network ⟨k⟩ for non-immunized nodes, versus q, fraction of immunized nodes q for various vaccination strategies.
inmodular networks (Hébert-Dufresne et al., 2013;Masuda, 2009;
Salathé and Jones, 2010; Yoshida and Yamada, 2012). As a final
point, it should be noted that degree-based immunization algo-
rithms are not able to effectively diminish epidemics in homoge-
neous networks. The reason is that degree-based immunization
algorithms cannot differentiate the nodes’ importance in these
networks, and therefore, they behave similar to a random strat-
egy. In homogeneous networks, the most effective strategy varies
depending on the structural properties of network and epidemic
severity. For instance, betweenness immunization is the favorite
over the Erdös–Renyi network due to the importance of distance
reduction. On the other hand, SHCI outperforms all other algo-
rithms in small-world network because of its high modularity. Ta-
ble 5 tabulates the ranking of immunization algorithms based on
the network structure and epidemic severity.

6. Conclusion

In this paper, we explored how the severity of diseases influ-
ences performance of several immunization algorithms over net-
works with dissimilar structures. The evaluation focused on seven
popular vaccination strategies, including degree immunization,
betweenness immunization, eigenvector immunization, PageR-
ank immunization, effective degree immunization, stochastic hill-
climbing immunization (SHCI) and random immunization (RI),
which were applied to mitigate the number of infected individuals
in low,medium, and high infection rate epidemics. Our experiment
verified that epidemic severity affects performance of the algo-
rithms and that, in general, depends on the ability of algorithms to
fragment networks or reduce their density. In other words, any in-
crease in infection rate fades the worth of lowering density, while,
it weighs the importance of network fragmentation. Conversely,
lowering density is muchmore essential than network fragmenta-
tion in preventing weak epidemics. To put it briefly, degree-based
immunization algorithms are the favorite in the case of weak epi-
demics, whereas, SHCI ismore superior in the case of high infection
rate epidemics.

The experimental results encourage the hypothesis that the
scope of the epidemic spreading is a function of network properties
such as density and largest connected component size as well
as epidemic parameters (e.g. infection rate). Thus, this calls for
new research whereby a combination of the above parameters
can be exploited as a new metric to mathematically estimate the
efficiency of vaccination strategies. Accordingly, new vaccination
strategies can be developed to optimize the new metric. It should
also be noted that we conducted our analysis based on the SIR
modelwhich is not extended to all epidemics. Hence, it is beneficial
to examine the impact of severity of epidemics on immunization
algorithms in controlling other epidemic model such as SIS in
which infected nodes become susceptible again (i.e. are not
immune to subsequent infection) and SEIR where there is a new
state called exposed (E) to show infected individuals cannot
infect others. Finally, it is worth investigating the performance
of immunization algorithms regarding other epidemic parameters
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(a) HEP network.

(b) AS network.

(c) Facebook-like network.

(d) Erdös–Renyi network.

(e) Scale-free network.

(f) Small-world network.

Fig. A.2. Fraction of largest connected component (L), versus q, fraction of immunized nodes q for various vaccination strategies.
such as epidemic duration, extinction probability, timing and
number of infected individuals at the peak of the epidemic.

Appendix

It has been proved that network structural properties are ef-
fective tools for assessing mitigation strategies. The most impor-
tant among them are network density, path length, and connected
component (Ames et al., 2011; Chen et al., 2008; Gallos et al., 2007;
Hadidjojo and Cheong, 2011; Schneider et al., 2012, 2011; Ven-
tresca and Aleman, 2013).We investigate the importance of reduc-
ing network degree and largest connected component in order to
gauge the response of algorithms with respect to severity of dis-
eases. Path length is not considered here because of its high time
complexity (Ventresca and Aleman, 2013).

A.1. Results for network average degree

In this section, we present experimental results for network
average degree after applying immunization algorithms. (Fig. A.1).
As described in Section 4, network density and subsequently
average degree play important roles in controlling epidemics
(Ames et al., 2011; Hadidjojo and Cheong, 2011; Ventresca
and Aleman, 2013) especially weak and slow diseases such as
influenza.
A.2. Results for network largest connected component

Here the results for the fraction of the largest connected
component size are plotted for vaccination strategies (Fig. A.2). The
largest connected component is an influential deciding factor in the
estimationworst-case epidemic size (Chen et al., 2008;Gallos et al.,
2007; Schneider et al., 2012, 2011; Ventresca and Aleman, 2013).
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