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Abstract

Mutations are known to cause perturbations in essential functional features of integral mem-

brane proteins, including ion channels. Even restricted or point mutations can result in sub-

stantially changed properties of ion currents. The additive effect of these alterations for a

specific ion channel can result in significantly changed properties of the action potential

(AP). Both AP shortening and AP prolongation can result from known mutations, and the

consequences can be life-threatening. Here, we present a computational method for identi-

fying new drugs utilizing combinations of existing drugs. Based on the knowledge of theoret-

ical effects of existing drugs on individual ion currents, our aim is to compute optimal

combinations that can ‘repair’ the mutant AP waveforms so that the baseline AP-properties

are restored. More specifically, we compute optimal, combined, drug concentrations such

that the waveforms of the transmembrane potential and the cytosolic calcium concentration

of the mutant cardiomyocytes (CMs) becomes as similar as possible to their wild type coun-

terparts after the drug has been applied. In order to demonstrate the utility of this method,

we address the question of computing an optimal drug for the short QT syndrome type 1

(SQT1). For the SQT1 mutation N588K, there are available data sets that describe the effect

of various drugs on the mutated K+ channel. These published findings are the basis for our

computational analysis which can identify optimal compounds in the sense that the AP of

the mutant CMs resembles essential biomarkers of the wild type CMs. Using recently devel-

oped insights regarding electrophysiological properties among myocytes from different spe-

cies, we compute optimal drug combinations for hiPSC-CMs, rabbit ventricular CMs and

adult human ventricular CMs with the SQT1 mutation. Since the ‘composition’ of ion chan-

nels that form the AP is different for the three types of myocytes under consideration, so is

the composition of the optimal drug.
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Author summary

Poly-pharmacology (using multiple drugs to treat disease) has been proposed for improv-

ing cardiac anti-arrhythmic therapy for at least two decades. However, the specific

arrhythmia contexts in which polytherapy is likely to be both safe and effective have

remained elusive. Type 1 short QT syndrome (SQT1) is a rare form of cardiac arrhythmia

that results from mutations to the human Ether-á-go-go Related Gene (hERG) potassium

channel. Functionally, these mutations are remarkably consistent in that they permit the

channel to open earlier during each heart beat. While hundreds of compounds are known

to inhibit hERG channels, the specific effect of SQT1 mutations that allows for early chan-

nel opening also limits the ability of most of those compounds to correct SQT1 dysfunc-

tion. Here, we have applied a suite of ventricular cardiomyocyte computational models to

ask whether polytherapy may offer a more effective therapeutic strategy in SQT1, and if

so, what the likely characteristics of that strategy are. Our analyses suggest that simulta-

neous induction of late sodium current and partial hERG blockade offers a promising

strategy. While no activators of late sodium current have been clinically approved, several

experimental compounds are available and may provide a basis for interrogating this

strategy. The method presented here can be used to compute optimal drug combinations

provided that the effect of each drug on every relevant ion channel is known.

Introduction

The action potentials of cardiomyocytes are governed by the dynamics of membrane proteins

(ion channels) located at the myocyte membrane. Mutations affecting genes encoding one or

more of the ion channels can significantly change the action potential (AP), see, e.g., [1–3],

and some of these alterations can initiate dangerous arrhythmias [4–6]. The changes in the AP

are often manifested in ECG recordings as prolonged or shortened QT-intervals, referred to as

long-QT (LQT) or short-QT (SQT), respectively, see, e.g., [7–12]. In well diagnosed cases,

treatment is available either in terms of anti-arrhythmic drugs [6, 13, 14] or in terms of an

implantable cardioverter-defibrillator (ICD) [6, 10, 15], but at present both options have disad-

vantages: Many approved anti-arrhythmic drugs have serious side-effects and ICDs may fire

inappropriatley and are difficult to apply for some patients [10, 14, 15]. Furthermore, some of

the mutations that have been characterized are very rare [10, 16] which complicates both clini-

cal identification and the development of new drugs.

Here, we propose a systematic strategy for identification of new drugs or combinations of

drugs, based entirely on the selection of existing drugs. Our method is based on mathematical

models of the AP coupled with models of how drugs influence the underlying ion currents.

Mathematical models of the action potential of ventricular myocytes are well developed, see,

e.g., [17–20]. These models have been extensively used to reveal the effect of changes to the ion

channels, see, e.g., [21–23], and to attempt to understand the effects of various drugs, see, e.g.,

[24–27]. We have chosen to study models of the SQT1-syndrome where the KCHN2 (hERG)

gene is altered, resulting in significant gain of function of the rapid delayed rectifier K+ current

(IKr). The increase of the IKr-current leads to rapid repolarization and a shorter AP that in turn

reduces the length of the QT-interval of the ECG. The reason for studying the SQT1-mutation

is simply that there is data available describing the effect of this mutation on the IKr-current

and extensive data sets that characterize how a group of approved drugs affects the properties

of that K+ current, see [28–30]. In future projects, pending similar data for other mutations,

we can repeat the same steps to find theoretically optimal drugs.
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Our method is based on the following assumptions:

1. The wild type (WT) and mutant (M) action potentials are well characterized by mathemati-

cal models.

2. A family of K existing drugs have been identified and characterized in terms of how each of

these drugs affects the currents in the AP model.

3. Simple IC50/EC50-models (see below) can be applied to represent the effect of the drugs.

4. These models of the action of each drug are multiplicative (see below for an explicit defini-

tion) in the sense that the effect of several drugs can be multiplied in order to model their

combined effect on a specific ion current.

Based on these assumptions, we can identify the best combination of the K different drugs,

and then compare the new, theoretical, combined compound to the properties of the optimal

versions of the existing drugs. For the selected ventricular myocyte target, we show, theoreti-

cally, that the combined compound clearly improves the mutant AP waveform more than any

of the existing drugs utilized alone.

We apply this method to these AP models: human induced pluripotent stem cell-derived

cardiomyocytes (hiPSC-CMs), rabbit ventricular cardiomyocytes, and adult human ventricu-

lar cardiomyocytes. The AP model applied here was developed for computational maturation

[31], applied for identification of side effects of drugs in [32] and computational translation

between species in [33]. In all cases we consider both wild type and mutant myocytes, and the

challenge is to find a drug that, as applied to the mutant AP, becomes as similar to the wild

type AP as possible as judged by a selected set of biomarkers (see the Methods section). We

compute explicit concentrations of the different drugs in the combined compound also for

rabbit or hiPSC-derived CMs in order to facilitate experimental testing using rabbit or hiPSC-

derived cardiomyocytes.

Methods

We consider mathematical models of the action potential written on the form,

dv
dt
¼ �

X

i

Ii; ð1Þ

where v is the membrane potential (in mV), t denotes time (in ms) and Ii denotes membrane

currents (in A/F). Individual ion channel currents can be written on the form

Ii ¼ riJi; ð2Þ

where

ri ¼
Ni

ACm
ð3Þ

and

Ji ¼ gi
0
oiðv � EiÞ: ð4Þ

Here, A is the area of the cell membrane (in μm2), Cm is the specific capacitance of the cell

membrane (in pF/μm2), Ni is the number of channels of type i, gi
0

is the conductance of a single

open channel (in nS), oi is the unitless open probability of the channel, and Ei is the electro-

chemical equilibrium potential of the channel (in mV).
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Splitting Ii into ρi and Ji is convenient because it allows us to split the effect of mutation and

maturation/translation. We assume that only ρi is changed during maturation from

hiPSC-CMs to adult CMs, or by translation from animal CMs to human CMs. Likewise, only

Ji is changed by the mutation. This also holds the other way around; ρi is independent of the

mutation and Ji is independent of the maturation/translation.

Modeling drug effects

We assume that we have a collection of K different drugs and we want to find an optimal com-

bination of these drugs in order to ‘repair’ the effects of a mutation on the AP and the intracel-

lular Ca2+ transient. In order to do this, we need a mathematical model of how each drug can

affect the properties of a mutant ion channel. Since data on how drugs alter channel dynamics

and conductance is limited, we base our analysis on a very simple model of drug effects (IC50/

EC50). However, the same procedure is applicable if data is available to allow more elaborate,

and accurate, representation of drug effects using Markov models.

We assume that both ion channel blockers (antagonists) and openers (agonists) will be

encountered and therefore we need a formalism than can encompass both cases. To this end,

we assume that the effect of a drug on a current I can be written in the form

IðDÞ ¼ 1þ
ðεDÞH

ðεDÞH þ 1
E

 !

Ið0Þ: ð5Þ

Here, D denotes the concentration of the drug, E is the maximum effect of the drug, H is the

Hill coefficient, and EC50 = 1/ε is the concentration that gives half maximum effect of the

drug. The relative change of the current due to the drug is given by

ZðDÞ ¼
IðDÞ � Ið0Þ

Ið0Þ
¼
ðεDÞH

ðεDÞH þ 1
E: ð6Þ

We observe that η(0) = 0, η(1/ε) = E/2 and η(1) = E. In order to use this model, we need to be

able to estimate ε, H and E from data describing how the drug affects the properties of ion cur-

rents of the myocyte carrying the mutation. If the drug is a blocker, it is often convenient to

use E = −1 and then (5) takes the usual form of the IC50 model;

IðDÞ ¼
1

ðεDÞH þ 1
Ið0Þ: ð7Þ

where 1/ε = IC50. Note that in estimating E, there is an obvious lower bound (E = −1), but

there is no obvious upper limit.

Drug effects on the AP model. We assume that we have K different, existing, drugs and

for each drug, k, we have determined Ek
i , ε

k
i and Hk

i for each current i that contribute to the AP,

as discussed above. As a consequence, the model of the AP under the influence of a specific

drug k is given by

dv
dt
¼ �

X

i

IiðDÞ ¼ �
X

i

1þ
ðεki DÞ

Hk
i

ðεki DÞ
Hk
i þ 1

Ek
i

 !

Iið0Þ: ð8Þ
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Multiplicative effect of combined drugs

In principle, we can combine many drugs while searching for an optimal composition, but

practical considerations suggest that only a few drugs (2 or 3) should be combined. By applying

a combination of K drugs to the i-th current in the mutant model, we find that

IiðDÞ ¼ PK
k¼1

1þ
ðεki DkÞ

Hk
i

ðεki DkÞ
Hk
i þ 1

Ek
i

 !

Iið0Þ: ð9Þ

In order to simplify this notation, we let the properties of the k-th drug be denoted by Dk ¼

fEk
i ; ε

k
i ;H

k
i g where i runs over all the transmembrane currents. Furthermore, we let Δ denote

the combination of the K drugs given by fDkg
K
k¼1

. The vector of doses is given by D ¼ fDkg
K
k¼1

.

The AP model after the combination of drugs has been applied now takes the form,

dvD

dt
¼ �

X

i

FiðD;DÞIið0Þ; ð10Þ

where

FiðD;DÞ ¼ PK
k¼1

1þ
ðεki DkÞ

Hk
i

ðεki DkÞ
Hk
i þ 1

Ek
i

 !

: ð11Þ

The rationale and merits of assumption (9) are discussed below, and in the S1 Text.

Identifying the optimal composition of drugs

As mentioned above, we wish to identify a set of optimal doses D ¼ fDkg
K
k¼1

for a set of K dif-

ferent drugs with known properties Dk ¼ fEk
i ; ε

k
i ;H

k
i g so that the AP and Ca2+ transient of the

drug-treated mutant cardiomyocytes very closely approximate the AP and Ca2+ transient of

wild type cardiomyocytes. To this end, we consider an action potential model where the effect

of the mutation is represented such that a mutated and a wild type version of the model are

defined and can be easily compared. Furthermore, we estimate the optimal doses D by mini-

mizing a cost function measuring the difference between the model solutions.

Cost function definition. We utilize the cost function

CðDÞ ¼
X

j

wj

jRM
j ðDÞ � RW

j j

jRW
j j

; ð12Þ

where RW
j represent different biomarkers for the wild type AP model, RM

j ðDÞ represent the cor-

responding biomarkers for the mutant model with the drug doses D applied, and wj are

weights for the different biomarkers. More specifically, we consider the biomarkers RMP (rest-

ing membrane potential), APA (action potential amplitude), dvdt (maximal upstroke velocity

of the action potential), APD10, APD20, . . ., APD90 (action potential duration at 10%,

20%, . . ., 90% repolarization), CaR (resting cytosolic Ca2+ concentration), CaA (cytosolic Ca2+

transient amplitude), dcdt (maximal upstroke velocity of the cytosolic Ca2+ transient), and

CaD30, CaD50, and CaD80 (cytosolic Ca2+ transient duration at 30%, 50% and 80% of the

maximum amplitude). The definition of these biomarkers are illustrated in Fig 1. In the cost

function (12), we use the weight wj = 1 for all terms except that the weights for APD80, APD90

and dvdt are set to 5.

Minimization procedure. The problem of identifying the minimium of (12) clearly grows

in complexity as the number of drugs increases. Here, we use an approach that gradually
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increases the number of drugs and thus assures that we have a reasonably good initial guess for

every minimization problem.

In the case of one drug, finding the optimal dose of that drug is a straightforward minimiza-

tion of the cost function (12) with only one free parameter (the dose of the single drug). Sup-

pose you have found the optimal combination of n drugs (where n< K). Next, you want to see

if you can use one of the remaining K − n drugs to improve the approximation of the wild type

case. The problem is then to solve K − n minimization problems with n + 1 parameters. The

minimization is now started using the best solution for n drugs as an initial guess, and for the

one additional drug, we set the initial dose to be zero. The optimal solution of this n + 1 dimen-

sional problem is solved using the continuation method of [12, 32]. This is repeated for the

K − n remaining drugs, and the best solution is stored as the optimal drug for the case of com-

bining n + 1 drugs. The process is repeated until n = K. Further technical specifications of the

applied minimization procedure are provided in S1 Text.

The channel block/agonist model is unchanged during maturation or

species translation

As in [33], we assume that the properties fEk
i ; ε

k
i ;H

k
i g of a drug k on a specific ion channel i is

the same for animal and human cells. The methods described in this report could therefore, in

principle, be applied to find optimal drug compounds for adult human CMs based on data

from hiPSC-CMs or an animal (e.g., rabbit). We will explain this in some detail for the case of

using data from hiPSC-CMs to define models of how the drug affects adult CMs. Recall that

the currents in the model are written on the form I = ρJ where the factor ρ changes during mat-

uration, but is unaltered by the mutations; and, vice versa. That is, the function J is unchanged

by maturation but is altered by the mutation. To be explicit, for a given ion current we have

IIM;M ¼ rIMJM; ð13Þ

IA;M ¼ rAJM; ð14Þ

Fig 1. Illustration of the AP and Ca2+ transient biomarkers utilized in the cost function employed to identify

optimal drug concentrations. From the AP, we consider the resting membrane potential (RMP), the AP amplitude

(APA), the maximal upstroke velocity (dvdt) and the AP duration at different percentages of repolarization (APD10,

APD50, . . ., APD90). From the cytosolic Ca2+ transient, we consider the resting Ca2+ concentration (CaR), the Ca2+

transient amplitude (CaA), the maximal upstroke velocity (dcdt) and the calcium transient durations CaD30, CaD50,

and CaD80.

https://doi.org/10.1371/journal.pcbi.1009233.g001
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where IM, A, and M is for immature, adult and mutant, respectively. Recall that for an

ion channel, J = g0o(v − E), and, under the influence of the drug, we have J = J(D) =

F(D)g0o(v − E). Since J is the same for IM and A, the effect of the drug is also same, and thus

we have

IIM;MðDÞ ¼ rIMJMðDÞ; ð15Þ

IA;MðDÞ ¼ rAJMðDÞ: ð16Þ

Therefore, if we estimate ε, H and E in the model (5) from measurements of hiPSC-CMs (e.g.,

using the computational inversion procedure of [32]), these values are also the correct values

in the adult case. Exactly the same argument can be used to translate from rabbit data to ε, H
and E values for adult human CMs. The reason why this is possible rests on the assumption

that the effect of the drug on a specific ion channel is the same regardless of whether it is

expressed in hiPSC-derived myocytes, rabbit myocytes or myocytes from adult humans.

Modeling the SQT1 mutation

The specific action potential model used in our computations is an updated version of the base

model initially published in [32]. More specifically, we use the updated base model formula-

tion described [12]. In that model, the IKr current is fitted to data from measurements of wild

type IKr currents and IKr currents for the SQT1 mutation N588K from [34]. In particular, the

voltage dependence of the steady state value of the inactivation gate, xKr2, of the IKr current is

shifted towards more positive potentials:

xKr2;1 ¼
1

1þ eðvþ70Þ=20:9
; ðfor WTÞ ð17Þ

xKr2;1 ¼
1

1þ eðvþ70� 62Þ=ð20:9�1:85Þ
; ðfor N588KÞ: ð18Þ

In Fig 5 of [12] the IKr model is compared to measurements from [34]. Furthermore, the

hiPSC-CM version of the model has been fitted to data of wild type and SQT1 hiPSC-CMs

from [28], and the adult human ventricular CM version of the model has been validated using

adult human ECG measurements from [35] (see [12]). For the computations in the present

study, we also consider a rabbit version of the AP model. The rabbit parameterization is based

on the rabbit models from [33, 36] and is fitted to published SQT1 and wild type APD90 values

for rabbit from [37]. The parameters of the rabbit version of the model are specified in S1

Text, and the remaining parameter values of the base model are found in [12].

EMI model simulations of a strand of cells

In order to estimate changes in the conduction velocity (CV) of cardiac tissue and the QT

interval of the ECG caused by the short QT mutation and/or by the application of drugs, we

carry out spatial simulations with an in silico strand of connected ventricular myocytes using

the EMI model. This approach represents the extracellular space (E), the cell membrane (M)

and the intracellular space (I), see, e.g., [38–40]. The EMI model equations are solved using an

MFEM [41, 42] finite element implementation of the splitting algorithm introduced in [43,

44]. Technical specifications of the domain geometry and the EMI model solver are provided

in the S1 Text.
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Drug characteristics

In this study, we attempt to identify optimal combinations of drugs for repairing the effect of

the SQT1 mutation, N588K, which alters the function of the potassium current IKr. Specifi-

cally, this mutation markedly increases the size of the IKr current, leading to a shortening of

the AP. In order to ‘repair’ this effect, we have evaluated a number of IKr blockers, attempting

to reduce the IKr current. In addition, we consider two drugs that increase the ICaL or INaL cur-

rents, as alternative approaches for lengthing the action potential duration in the ventricular

myocytes carrying this mutation. The properties of the considered drugs are listed in Table 1.

Here, the properties of the drugs quinidine, ivabradine, ajmaline and mexiletine are taken

from [12], where they were estimated based on measurements of SQT1 hiPSC-CMs from [28,

29]. Furthermore, the effect of the drugs disopyramide, propafenone and amiodarone on

SQT1 IKr currents are taken from [30]. The EC50-values are taken directly from the paper and

the Hill coefficients are estimated from fitting the model (5) to the dose-dependent block

reported in Figs 4 and 5 of [30]. Data describing the effect of these drugs on ICaL, INa and INaL

are taken from the comprehensive drug studies [45, 46]. Finally, parameters describing the

properties of the ICaL and INaL agonists BAY K 8644 and veratridine are relatively rough esti-

mates based on data presented in [47–49].

Results

The main result of this study is to demonstrate that mathematical models of the ventricular

myocyte action potential and calcium handling, coupled with models of how drugs interact

with ion channels, can be used to find optimal drug combinations for anti-arrhythmic therapy.

We show, theoretically, that the effects of the SQT1 mutation N588K can be repaired by

searching for and then applying an optimal combination of existing drugs.

Table 1. Drug characteristics.

Drug SQT1 IKr ICaL INa INaL If

EC50 H E Ref. EC50 H E Ref. EC50 H E Ref. EC50 H E Ref. EC50 H E Ref.

Quinidine 8.14 μM 1 −1 [12,

28]

153 μM 1 −1 [12,

28]

77.7 μM 1 −1 [12,

28]

Ivabradine 12.6 μM 1 −1 [12,

29]

86.3 μM 1 −1 [12,

29]

42 μM 1 −1 [12,

29]

Ajmaline 69.5 μM 1 −1 [12,

29]

46.6 μM 1 −1 [12,

29]

435 μM 1 −1 [12,

29]

Mexiletine 281 μM 1 −1 [12,

29]

963 μM 1 −1 [12,

29]

201 μM 1 −1 [12,

29]

BAY K 8644 0.05 μM 1.7 1.8 [47,

48]

Veratridine 0.426 μM 2 1.8 [49]

Disopyramide 15.77 μM 0.6 −1 [30] 1036.7 μM 1 −0.779 [45] 168.4 μM 1.09 −0.311 [45]

Propafenone 0.95 μM 0.7 −1 [30] 1.55 μM 0.9 −1 [46] 3.886 μM 0.9 −1 [46] 4.036 μM 0.9 −1 [46]

Amiodarone 0.318 μM 0.5 −1 [30] 1.28 μM 0.6 −1 [46] 4.58 μM 0.7 −1 [46] 9.42 μM 0.4 −1 [46]

Characteristics of selected drugs obtained from literature in the form of EC50-values (1/ε), Hill coefficients (H) and maximum effects (E) for the modified IKr current

affected by the SQT1 mutation and for the wild type ICaL, INa, INaL and If currents, see (5).

https://doi.org/10.1371/journal.pcbi.1009233.t001
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SQT1 mutation in hiPSC-CMs, rabbit CMs and adult human CMs

In Fig 2, we show the action potentials (APs), Ca2+ transients and IKr currents generated by the

wild type and SQT1 versions of the mathematical models for hiPSC-CMs, rabbit ventricular

CMs and human adult CMs. The upper panel shows that for all these models, the AP is signifi-

cantly shorter in the SQT1 case than in the wild type case. This reduced action potential dura-

tion is consistent with the short duration of the QT interval of the ECG that is characteristic of

short QT syndrome. In addition, the middle panel of Fig 2 shows that the amplitude of the

Ca2+ transient is reduced for the SQT1 situation compared to the wild type case, especially for

rabbit and adult human CMs. Such reduced Ca2+ transient amplitudes have been observed in

earlier computational studies of the N588K SQT1 mutation [50, 51], and this effect is in agree-

ment with speckle-tracking echocardiography and Doppler imaging that have shown

decreased left ventricular contraction in patients with SQT syndrome [52, 53]. The main goal

of this study is to find combinations of drugs that alter the currents in the SQT1 case so that

the AP and Ca2+ transient becomes very similar to the wild type AP and Ca2+ transient.

Fig 2. Action potentials, Ca2+ transients and IKr currents generated using our models for wild type and SQT1

hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs. Each panel in the upper row shows the action

potentials in the wild type and SQT1 cases, and the middle row shows the Ca2+ transients. In the lower row, the IKr current

from each action potential simulation is plotted as a function of the membrane potential during the entire AP waveform.

Here, the filled circles mark the solution at t = 0 and the arrows indicate the direction with time. Data used in this figure can

be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1009233.g002
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The SQT1 mutation affects the function of the IKr current; the only difference between the

wild type and SQT1 versions of the AP models is a difference in the formulation of the IKr cur-

rent, see [12]. In the lower panel of Fig 2, we compare the wild type and SQT1 IKr currents by

plotting these currents from each of the two action potential simulations as functions of the

membrane potential. Note that the IKr current is significantly larger in the SQT1 case than in

the wild type case. We also observe that the voltage dependence is different in the SQT1 case

compared to the wild type case. This indicates that drug effects implemented only in terms of

altered maximum conductance, resulting from a pore block approach, for the IKr current of

the form (5) will likely not completely eliminate the effect of the SQT1 mutation on the IKr cur-

rent. Accordingly, instead of trying to repair the mutated IKr current directly, we instead

attempt to ‘repair’ the effect of the mutation on the full action potential by minimizing the cost

function (12) as detailed in the remainder of this Results section.

Optimal combinations of two drugs

We first applied the computational procedure to search for optimal combinations of two drugs

that may be capable of repairing the AP and Ca2+ transient of SQT1 CMs. Fig 3 illustrates our

findings presented in terms of the minimum cost function value (12) for our procedure

applied to each possible combination of two drugs from the list in Table 1. In addition, the

numbers in the upper left to lower right diagonals report the optimal cost function values

found in searches for the optimal dose of each single drug. Note that some of the combinations

of drugs appear to result in relatively low cost function values, and that the optimal combina-

tions of two drugs appear to result in considerably lower cost function values than the optimal

doses of any single drug. In particular, the combination of veratridine and disopyramide, indi-

cated by pink circles in Fig 3, appears to be the optimal combination of two drugs for both

hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs. Neither of these drugs,

individually, appear to be able to completely repair the effect of the mutation.

Fig 4 shows the AP and Ca2+ transient of the SQT1 models under the influence of the opti-

mal dose combination of these two drugs. We consider the hiPSC-CM case, the rabbit ventric-

ular CM case and the adult human ventricular CM case, and compare AP and Ca2+ transients

for wild type, SQT1 and SQT1 with the drugs applied. We observe that the optimal

Fig 3. Optimal cost function values obtained by applying our computational procedure to combinations of two drugs, selected for their potential to repair

the SQT1 mutation in hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs. The numbers in the upper left to lower right diagonal report the

cost function values found in searches for the optimal dose of a single drug. In addition, the pink circles indicate the lowest cost function value obtained in each

case.

https://doi.org/10.1371/journal.pcbi.1009233.g003
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combination of two drugs appears to repair both the SQT1 AP and Ca2+ transient almost fully;

that is, the solutions of the SQT1 models with the optimal drug combination applied seem to

be very similar to the wild type solutions. For comparison, Fig 5 shows similar plots for the

optimal dose of each of the individual drugs in the adult human ventricular myocyte case. We

observe that some of the drugs appear to repair the SQT1 mutation quite well, but not as well

as the optimal combination of two drugs. Similar plots are provided for hiPSC-CMs and rabbit

CMs in the S1 Text.

The data in Table 2 provides further basis for evaluating the efficacy of the selected two

drug combination. Biomarkers computed for the wild type and SQT1 adult human ventricular

CM cases are listed, as well as for the SQT1 case with the optimal combination of two drugs

and for the optimal dose of each single drug applied. Note that the combination drug approach

repairs all the considered biomarkers in the SQT1 phenotype from deviating up to 35% from

the wild type case, to only deviating up to 3% from the wild type case. In addition, we observe

that for the optimal dose of ivabradine, which seemed to almost completely repair the AP and

Ca2+ transient waveforms of the SQT1 CMs in Fig 5, the maximal upstroke velocity and the

conduction velocity differ considerably from the wild type case, explaining the relatively high

cost function value obtained for this drug. Similar tables for the hiPSC-CM and rabbit CM

cases are provided in the S1 Text.

The optimal doses determined for each drug and for the optimal combination of two drugs

in the adult human case are given in Table 3. This table also reports the associated block or

increase as a percentage for the individual currents. In addition, we provide the effect of the

optimal doses in the form of the percentage of the maximum effect (E, see (5)) of the drug, for

Fig 4. AP and Ca2+ transient for hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs in the wild type case (solid green), in the

SQT1 case (solid red), and in the SQT1 case with the optimal combination of two drugs from Fig 3 applied (dotted yellow). Data used in this figure

can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1009233.g004
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Fig 5. AP and Ca2+ transient for adult human ventricular myocytes in the wild type case, in the SQT1 case, and in the SQT1 case with the optimal dose of

each of the drugs of Table 1 applied. The selected drugs are ordered from the smallest to the highest obtained cost function values. The applied doses are

specified in Table 3. Data used in this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1009233.g005

Table 2. Biomarkers and cost function values.

Cost function APD50 APD90 dvdtmax CV QT

ms % from WT ms % from WT mV/ms % from WT cm/s % from WT ms % from WT

WT (no drug) 0 223 272 215 54 283

SQT1 (no drug) 9.3 146 −35% 189 −31% 216 +1% 54 +0% 203 −28%

Combination drug 0.2 224 +1% 276 +1% 214 −0% 53 −1% 274 −3%

Veratridine 2.7 200 −10% 248 −9% 215 +0% 53 −1% 244 −14%

BAY K 8644 3.3 167 −25% 207 −24% 214 −0% 53 −0% 208 −27%

Ivabradine 3.3 223 −0% 270 −1% 133 −38% 44 −18% 278 −2%

Disopyramide 3.9 209 −7% 259 −5% 191 −11% 51 −5% 264 −7%

Quinidine 5.2 206 −8% 255 −6% 167 −22% 48 −10% 261 −8%

Amiodarone 8.9 154 −31% 199 −27% 211 −2% 53 −1% 214 −25%

Propafenone 9.0 151 −32% 196 −28% 212 −1% 53 −1% 203 −28%

Mexiletine 9.2 157 −30% 201 −26% 172 −20% 49 −9% 215 −24%

Ajmaline 9.3 146 −35% 189 −31% 216 +1% 54 +0% 203 −28%

Cost function and biomarker values of the adult human ventricular CM models for wild type and SQT1 with no drugs present, as well as for the SQT1 model with the

optimal combination of two drugs or the optimal dose of the individual drugs applied. The cost function value (see (12)), the action potential durations (APD50 and

APD90), the maximal upstroke velocity of the action potential (dvdtmax,) the conduction velocity (CV), and the QT interval are listed. In the SQT1 cases, we also report

the percent difference from the wild type case.

https://doi.org/10.1371/journal.pcbi.1009233.t002
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the current most prominently affected by the drug. Similar tables are given in the S1 Text for

the rabbit and hiPSC-CM cases.

Optimal combinations of drugs, when emphasizing relatively low drug

doses

Based on the optimal doses found for each single drug, and also for a combination of two

drugs in Table 3, we recognize that the identified doses are quite high. For instance, the opti-

mal dose of veratridine (1.86 μM) is more than four times higher than the EC50-value of verat-

ridine. This results in an enhancement of the INaL current that is 95% of the maximum effect of

veratridine. In fact, INaL is increased by a factor of 2.8 (see Table 1). This is the maximal dose

allowed in these applications of the computational procedure (see the S1 Text). In order to

avoid potential side effects of high drug doses, it is generally beneficial to avoid such large

doses. Therefore, we also wish to apply the computational procedure to find optimal drug

combinations with lower drug doses. In Fig 6, we report the optimal cost function values

found in the search for optimal drug combinations for an increasing number of drugs, com-

bined with a strict limit on the maximal allowed drug doses. More specifically, we consider the

restrictions D�min(EC50)/2 and D�min(EC50). We observe that for the restriction D�
min(EC50)/2, the cost function value is drastically decreased when only one or two drugs are

applied, and then gradually decreased until 5–6 drugs are included. Furthermore, for the less

strict condition D�min(EC50), fewer drugs are needed to reduce the cost function value. In

the hiPSC-CM case, it seems like 2 drugs are sufficient to achieve an optimal solution. For the

rabbit and adult human cases, 4 drugs seem to provide an effective ‘repair’ of the AP and Ca2+

waveforms.

The AP and Ca2+ transient for the optimal combinations of 5 drugs with the restriction

D�min(EC50)/2 are plotted in Fig 7. In addition, biomarkers of the solutions and the optimal

drug doses are summarized in Tables 4 and 5 for the adult human case and in the S1 Text for

the hiPSC-CM and rabbit cases. We observe that the combination of 5 drugs with the restric-

tion D�min(EC50)/2 on the doses seem to be able to repair the AP and Ca2+ transient of the

SQT1 CMs quite well.

Table 3. Optimal doses and effect on the ion currents.

Drug Optimal dose (max % of E) % change of currents

IKr ICaL INa INaL If

Combination of two drugs 1.86 μM

3.03 μM

(95%)

(27%)

veratridine

disopyramide

−27.1% −0.2% −0.4% +171.0% +0.0%

Veratridine 1.86 μM (95%) +0.0% +0.0% +0.0% +171.0% +0.0%

BAY K 8644 0.0475 μM (48%) +0.0% +86.2% +0.0% +0.0% +0.0%

Ivabradine 67.7 μM (84%) −84.3% +0.0% −44.0% +0.0% −61.7%

Disopyramide 142 μM (79%) −78.9% −9.4% −14.1% +0.0% +0.0%

Quinidine 29.3 μM (78%) −78.2% −16.1% −27.4% +0.0% +0.0%

Amiodarone 0.0338 μM (25%) −24.6% −10.2% −3.1% −9.5% +0.0%

Propafenone 0.0752 μM (14%) −14.5% −6.2% −2.8% −2.7% +0.0%

Mexiletine 65.3 μM (25%) −18.9% −6.3% −24.5% +0.0% +0.0%

Ajmaline 0.00204 μM (0.0044%) −0.0% −0.0% −0.0% +0.0% +0.0%

Optimal doses of a single drug, or a combination of two drugs that can repair the SQT1 mutation in adult human ventricular CMs. In addition, we report the effect of

the optimal dose of each drug in the form of the percentage of the maximum effect of the drug on the current that is most strongly affected by the drug (max % of E).

The percent change of each of the currents resulting from the optimal doses is also presented.

https://doi.org/10.1371/journal.pcbi.1009233.t003
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Discussion

There is an unmet need for developing new anti-arrhythmic drugs (see, e.g., [6, 10, 54]) for a

whole series of cardiac related conditions. The scientific and regulatory path required for

approval of a new compound are, however, both long and extremely costly [55, 56]. These

challenges motivate the search for alternatives, and one plausible approach is to search for

combinations of existing drugs. Although this sounds like a simple, and straightforward

Fig 6. Optimal cost function values obtained when our computational procedure is applied to combinations of an increasing number of drugs applied

simultaneously with the goal of repairing the SQT1 mutation in hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs. These computations

were done applying the restrictions D�min(EC50)/2 (pink) and D�min(EC50) (red) for the drug doses. Data used in this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1009233.g006

Fig 7. AP and Ca2+ transient waveforms for hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs in the wild type case (solid

green), in the SQT1 case (solid red), and in the SQT1 case with the optimal combination of five drugs with the restriction D�min(EC50)/2 from

Fig 6 applied (dotted yellow). Data used in this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1009233.g007
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concept to test in a laboratory, the combination of a large group of different drugs applying a

range of different drug concentrations quickly becomes a challenging endeavour. In addition,

even if such lab experiments were conducted, the end result would be the right ‘mixed’ com-

pound for the animal cells or hiPSC-CMs under consideration, and not actually a combination

therapy suited for adult humans. Using mathematical models, this changes. In principle we are

in position to use mathematical models to identify a precise mixed compound for normalizing

the AP waveform and thus stabilizing adult human CMs. Since we can also compute the ideal

compounds for hiPSC-CMs and rabbit CMs, the suggested combination therapy can be tested

in order to gain insight into its applicability.

Our main aim in this study is to use mathematical models of the effects of well characterized

existing drugs to find optimal combinations of these drugs that repair the effect of a given

mutation. Specifically, we need information about how the drugs affect the ion currents gov-

erning the AP waveform and Ca2+ transients of the wild type and mutant cells. Here, we have

provided an example of how a small collection of known drugs can be combined to ‘define’ a

mixed compound that, in simulations, almost completely repairs the AP properties of the

mutant myocytes. Our results are based on measured properties of the drugs under consider-

ation, but our computational endpoints are purely theoretical in the sense that the resulting

combination therapy has not been tested in the lab. However, the results are specified in a way

that enables laboratory testing. In this section, we will summarize the method, point to possible

applications and discuss limitations and possible weaknesses.

Pharmaceutical considerations

As shown in Table 1 and Fig 4, one of the key insights from our computational approach for

‘correcting’ the dramatically shortened APD and depressed intracellular Ca2+ transient that

Table 4. Biomarkers for WT, SQT1 and SQT1 with drug.

C APD50 APD90 dvdtmax CV QT

ms % from WT ms % from WT mV/ms % from WT cm/s % from WT ms % from WT

WT (no drug) 0 223 272 215 54 283

SQT1 (no drug) 9.3 146 −35% 189 −31% 216 +1% 54 +0% 203 −28%

Combination drug 0.7 217 −3% 267 −2% 197 −8% 52 −4% 278 −2%

Cost function and biomarker values for the SQT1 human ventricular CM model based on an optimal combination of five drugs with the restriction D �min(EC50)/2

applied. The table follows the structure of Table 2.

https://doi.org/10.1371/journal.pcbi.1009233.t004

Table 5. Optimal doses of five drug combinations.

Drug Optimal dose (max % of E) % change of currents

IKr ICaL INa INaL If

Combination of five drugs 7.77 μM (40%) disopyramide −69.4% +5.7% −10.2% +35.6% −9.3%

3.84 μM (32%) quinidine

4.32 μM (26%) ivabradine

0.211 μM (20%) veratridine

0.00883 μM (5%) BAY K 8644

Optimal doses of a combination of five drugs with the restriction D�min(EC50)/2 found for repairing the SQT1 mutation in adult human ventricular CMs. This table

follows the format of Table 3.

https://doi.org/10.1371/journal.pcbi.1009233.t005
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are both hallmark features of the SQT1 syndrome is that a combination of two different

approved cardiac drugs can be very effective. The electrophysiological principles that underpin

this finding are worth reviewing. Veratridine, one of the compounds or drugs, that we have

identified as being essential for restoring the APD waveform acts mainly by increasing the

amplitude of one particular transmembrane current: the slowly inactivating or late Na+ cur-

rent, INaL [57]. This small inward current can produce very significant changes in the plateau

of the action potential for a number of different reasons. First, although INaL is small the mem-

brane resistance at the plateau of the AP is relatively high (approximately three times larger

than at the resting membrane potential). Second, INaL shows very little voltage-dependent

inactivation and therefore provides an almost constant depolarizing influence over a broad

range of membrane potentials [58]. In essence, therefore, INaL functions very similarly to the

effects of the relatively long applied stimulus currents that were used by Wood, Heppner and

Weidmann [59] in their original classical demonstration of the effects of plateau height and

duration of the action potential waveform on ventricular contractility.

Our quite broadly based survey and related analyses of approved drugs that may be effective

in restoring the dramatically shortened action potential which is characteristic of the SQT1

syndrome, and is caused by a mutation-induced, very marked enhancement of the K+ current,

IKr, has identified disopyramide as an effective antidote; and a potent component of a drug

combination that can restore the ventricular AP waveform. Once again, this finding has an

established functional basis. Perhaps the primary reason for the effectiveness of disopyramide

(at the concentrations identified as being effective by our computational analysis) is that this

drug potently blocks IKr (Table 1). In addition, since the initiation of repolarization of the

mammalian ventricular action potential is known to be regenerative (that is it exhibits all-or-

none behaviour), the dynamics of the size of IKr as well as its average amplitude are critical for

initiating the final repolarization phase of the action potential (cf. [60]). Specifically, the block-

ing actions of disopyramide can significantly reduce the transient increase in the outward

component of IKr that is produced during the final phase of repolarization due to the intrinsic

inwardly rectifying property of this particular time- and voltage-dependent K+ conductance.

In summary, interacting effects of enhancement of INaL and separate synergistic block of IKr

can dramatically lengthen APD and restore the intracellular Ca2+ transient to very near its con-

trol or baseline contour [61]. It is also well known that even small changes in the rates of repo-

larization of the action potential can significantly alter the intracellular Ca2+ transient and

associated ventricular contractility [62, 63].

Method for finding optimal, combined compounds

We have used the method outlined above to find candidate combinations of known drugs that

are effective in repairing the effect of the SQT1 mutation in three cases: hiPSC-CMs, rabbit

CMs and adult human CMs. Note, however, that the procedure introduced here can similarly

be applied to other mutations. Suppose a mutation changes the dynamics of one (or several)

currents. The aim is then to find an optimal combination of a collection of K existing drugs

that can ‘repair’ the effect of the mutation. The information needed to apply the method

described above is how all K drugs affect the ion currents of the mutant myocytes. Here, we

have used simple IC50/EC50 models to represent the effect of the drugs on the individual ion

currents. In addition, an accurate AP model of each type of mutant myocyte is needed. With

this information, we can run simulations to identify an optimal drug that can repair the AP of

the mutant myocyte, as judged by alignment with the quantitative biomarkers for the AP

waveform and the Ca2+ transient of a wild type myocyte. A feature of our method is that both
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the set of known drugs, the set of biomarkers, and the model of the effect of the drug, can read-

ily be changed to address additional goals.

Extension to other mutations: The requirement for adequate data sets

In this paper, we have focused on applying the computational method for finding optimal

drug combinations to myocytes affected by one type of SQT1 mutation, N588K. The main rea-

son for this is the availability of data on how drugs affect the mutated IKr current; see [28–30].

Our method also requires information on how the drugs affect all the ion currents of the

mutant myocyte that is unaffected by the mutation, but this type of data is more generally

available; see, e.g., [45, 46, 64–68]. In order to apply the computational method to identify

drug combinations capable of repairing the effects of other mutations, information concerning

how different drugs alter channels targeted by the mutation would preferably have to be

obtained. Otherwise, only characterized drugs that act on channels not affected by the muta-

tion could be included in the search. In the best case, we would apply data directly describing

the effects of drugs on mutated channels collected from voltage-clamp measurements, particu-

larly with full dose-response relationships (as in, e.g., [30]). An alternative is to generate

hiPSC-CMs from a patient with the mutation (as in, e.g., [28, 29]) and use a computational

procedure to indirectly predict the effect of the drugs on individual channels (including those

affected by the mutation) based on measurements of the hiPSC-CM AP for different drug

doses (see, e.g., [12, 32]). In future work, assuming access to data on how a collection of drugs

of interest act on other mutations, it would be possible to repeat the steps we have taken here

to devise optimal, theoretical, drugs for repairing the AP properties of the mutant cells.

The optimal drug combination: Few drugs with high doses or many drugs

with low doses?

As shown in Fig 3 and illustrated in Fig 4, our analysis reveals that the combination of two

drugs can almost completely repair the effect of the SQT1 mutation on the AP waveform.

However, this comes with a ‘price’ of needing relatively high doses, which are generally not

clinically applicable due to off-target interactions and their resulting side effects. From Fig 6

we see that the doses can be significantly reduced if we include several (more than two) drugs

in the combination. In fact, by requiring that all drugs have a concentration below 50% of their

lowest EC50, we can completely repair the effect of the mutation using a combination of five

drugs; see Fig 7.

Modeling the effect of a drug

Modeling the effects of various drugs in the setting of cardiac arrhythmia has received consid-

erable attention and a general introduction is provided in [69]. The two most common

approaches to modeling the effect of drugs on ion currents of CMs are based on Markov mod-

els and IC50-models. Markov models (see, e.g., [21, 27, 70–72]) are much more detailed and, at

least in some cases, closely tied to the molecular composition and biophysical properties of the

channel. The disadvantage is that these models require very detailed data sets on every individ-

ual current and this is often not available. Ideally, in order to parameterize a Markov model

properly, data from single channel measurements should be used (see, e.g., [73–76]), and such

data are not commonly available. In contrast, the IC50-type modeling that we have used (see,

e.g., [77–79]) is more straightforward and can be estimated based on few biomarkers (see, e.g.,

[33]). In the S1 Text, we give an example where we compare an IC50-model with a comprehen-

sive Markov model from [80]. We have used this specific case because the Markov model from

[80] is completely specified with all necessary parameters. In this Supplementary section, we
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show that these two ion channel model alternatives give similar results. Nevertheless, we

would have preferred to use accurate models based on Markov models, but the necessary data

is not presently available. If such data become available in the future, the approach described

in the present paper could straightforwardly be extended to represent drug effects in terms of

changes in specified states in Markov models instead of by the simple IC50/EC50 models used

in this report.

As mentioned above, we assume that the effect of two drugs can be approximated by multi-

plying the individual effects of the two drugs. The justification of this approximation is as fol-

lows: Suppose the open probability of a certain ion channel is given by o. If we apply a blocker

referred to as A to this channel, we assume that a certain fraction, μA� 1, of the channels will

be blocked (see (7)). After the application of this drug, the open probability of the channel is

μAo. Next, we assume that we have another drug, denoted by B. This drug is also a blocker and

it blocks a fraction μB� 1 of the open channels. By first applying the drug A, the open proba-

bility is μAo, and then, by applying the drug B the open probability becomes μBμAo. Thus, we

have assumed that the binding of the two blockers is non-interactive (strictly independent),

i.e., they neither compete nor allosterically facilitate each others binding. In the S1 Text, we

further discuss the question concerning the multiplicative effect of drug compounds. Using

recent measurements from [81] we indicate that the effect of two blockers can be approxi-

mated by multiplying the effect of the two drugs. We have been unable to find more data on

combined drug effects and therefore the assumption that we can multiply the effect remains

an assumption that needs further consideration in future work.

It should also be noted the IC50-values reported in the literature can vary significantly. In

[82, 83] it is argued that the reason for these differences may be the lack of uniformly accepted

comprehensive protocols for measuring IC50-values.

The assumption of functional invariance of ion channels

The approach for identifying optimal drug combinations for repairing the effect of mutations

described in this paper relies on using pre-identified characteristics of how a number of drugs

affect individual ion channels. We have applied the assumption that the function of an individ-

ual ion channel is the same for different species and for different levels of maturity. Based on

this, we can use information about how drugs affect ion channels in expression systems or in

hiPSC-CMs [28–30, 45, 46], and assume that the drug effect on the individual channels would

be the same for adult human or rabbit cells, even though the drug effects on the action poten-

tial waveform may be different because of differences in the density of the various ion channels

in the respective membranes.

The assumption of functional invariance of ion channels has previously been used to trans-

late drug effects on the action potential waveform from one species to another and between

hiPSC-CMs and adult ventricular CMs [12, 31–33]. This type of mapping of AP biomarkers is

also possible without using the assumption that the function of an ion channel is identical for

different species and maturity levels by using a regression-based translation approach [84].

This was, to our knowledge, the first proposed computational approach for translating

between species or between hiPSC-CMs and adult human CMs, and relies on constructing a

regression model by relating features of the source type of cell (e.g., hiPSC-CMs) to features of

the target type of cell (e.g., adult ventricular CMs) under the same conditions.

Variation of ion channel densities between individuals

In our computations, we consider models of hiPSC-CMs, rabbit ventricular CMs and adult

human ventricular CMs representing the dynamics underlying typical wild type and SQT1
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APs and Ca2+ transients. However, in a population of individuals, the density of different types

of ion channels is expected to vary between individuals [85–87], and the representative models

considered here might not be sufficient to represent the dynamics underlying the APs and

Ca2+ transients of each of these individuals. More specifically, the optimal drug doses found

for an individual represented by the default model might not be suitable for an individual with

a different density of ion channels. In the S1 Text, we investigate how well the optimal drug

doses found for the default adult human model are able to repair the APs and Ca2+ transients

in a few cases with perturbed ion channel densities. The results indicate that the optimal drug

doses are able to repair the AP and Ca2+ transient of the perturbed models reasonably well, but

not as well as for the default model considered in the optimization method. Thus, a potential

extension of the computational procedure outlined in this paper could be to consider multiple

variations of ion channel densities in the optimization procedure and search for optimal com-

binations of drugs that are robust with respect to variations in these ion channel densities.

Previous attempts to utilize anti-arrhythmic drug combinations

The concept of combining two drugs in clinical cardiac electrophysiology in order to achieve

advantageous (anti-arrhythmic) outcomes has been evaluated in both animal studies and clini-

cal settings; see, e.g., [88–90]. However, this approach seems to have received relatively little

attention during the past 15 years. The earlier papers on combined drug actions usually

express the effect in terms of clinical characteristics that are difficult to use in order to evaluate

our hypothesis of multiplicative blocks (see (9)). In [89] the APDs are measured, but the drugs

applied are chosen in order to modulate different targets. Therefore, these results cannot be

used in order to understand multiplicativity of drug effects in terms of block of only one

channel.

Conclusion

We have used computational methods to identify drug combinations that can ‘repair’ the

effects of a mutation in mammalian ventricular myocytes. This method is based on informa-

tion of how a collection of drugs affects the relevant ion channels. For the SQT1 mutation

N588K and the resulting increase of the IKr current, we were able to identify a theoretical com-

bination therapy that completely repairs the effect of this mutation as judged by a set of bio-

markers. If relatively high drug doses can be utilized, the effect of the mutation can be repaired

using only two drugs. If low doses are required, more individual drugs need to be applied in

order to completely repair the effect of the mutation.
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64. Orvos P, Kohajda Z, Szlovák J, Gazdag P, Árpádffy-Lovas T, Tóth D, et al. Evaluation of Possible

Proarrhythmic Potency: Comparison of the Effect of Dofetilide, Cisapride, Sotalol, Terfenadine, and

Verapamil on hERG and Native IKr Currents and on Cardiac Action Potential. Toxicological Sciences.

2019; 168(2):365–380. https://doi.org/10.1093/toxsci/kfy299 PMID: 30561737

65. Qu Y, Vargas H. Proarrhythmia risk assessment in human induced pluripotent stem cell-derived cardio-

myocytes using the maestro MEA platform. Toxicological Sciences. 2015; 147(1):286–295. https://doi.

org/10.1093/toxsci/kfv128 PMID: 26117837

66. Katayama Y, Tsuzaki T, Abe K, Tomizawa S, Izumi T, Tsurubuchi Y. The inter-cell-line reproducibility of

hERG assay using the whole-cell patch-clamping. Journal of Pharmacological Sciences. 2005; 97.

67. Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, et al. High purity human-induced pluripotent

stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic cur-

rents. American Journal of Physiology-Heart and Circulatory Physiology. 2011; 301(5):H2006–H2017.

https://doi.org/10.1152/ajpheart.00694.2011 PMID: 21890694

68. Gibson J, Yue Y, Bronson J, Palmer C, Numann R. Human stem cell-derived cardiomyocytes detect

drug-mediated changes in action potentials and ion currents. Journal of Pharmacological and Toxico-

logical Methods. 2014; 70(3):255–267. https://doi.org/10.1016/j.vascn.2014.09.005 PMID: 25219538

69. Macheras P, Iliadis A. Modeling in biopharmaceutics, pharmacokinetics and pharmacodynamics:

homogeneous and heterogeneous approaches. vol. 30. Springer; 2016.

70. Clancy C, Zhu Z, Rudy Y. Pharmacogenetics and anti-arrhythmic drug therapy: A theoretical investiga-

tion. American Journal of Physiology-Heart and Circulatory Physiology. 2007; 292(1):H66–H75. https://

doi.org/10.1152/ajpheart.00312.2006 PMID: 16997895

71. Tveito A, Maleckar M, Lines G. Computing optimal properties of drugs using mathematical models of

single channel dynamics. Computational and Mathematical Biophysics. 2018; 6(1):41–64. https://doi.

org/10.1515/cmb-2018-0004

72. Yarov-Yarovoy V, Allen TW, Clancy CE. Computational models for predictive cardiac ion channel phar-

macology. Drug Discovery Today: Disease Models. 2014; 14:3–10. https://doi.org/10.1016/j.ddmod.

2014.04.001 PMID: 26635886

73. Qin F, Auerbach A, Sachs F. Estimating Single-Channel Kinetic Parameters from Idealized Patch-

Clamp Data Containing Missed Events. Biophysical Journal. 1996; 70:264–280. https://doi.org/10.

1016/S0006-3495(96)79568-1 PMID: 8770203

74. Qin F, Auerbach A, Sachs F. A Direct Optimization Approach to Hidden Markov Modeling for Single

Channel Kinetics. Biophysical Journal. 2000; 79:1915–1927. https://doi.org/10.1016/S0006-3495(00)

76441-1 PMID: 11023897

PLOS COMPUTATIONAL BIOLOGY Computational method for finding optimal combinations of drugs to repair SQT1 CMs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009233 August 12, 2021 23 / 24

https://doi.org/10.1038/nrd3078
http://www.ncbi.nlm.nih.gov/pubmed/20168317
https://doi.org/10.1113/jphysiol.2014.279554
https://doi.org/10.1113/jphysiol.2014.279554
http://www.ncbi.nlm.nih.gov/pubmed/25545172
https://doi.org/10.1016/j.yjmcc.2016.08.011
https://doi.org/10.1016/j.yjmcc.2016.08.011
http://www.ncbi.nlm.nih.gov/pubmed/27545042
http://www.ncbi.nlm.nih.gov/pubmed/5766519
https://doi.org/10.1113/JP273651
http://www.ncbi.nlm.nih.gov/pubmed/28815597
https://doi.org/10.1161/CIRCULATIONAHA.110.000661
http://www.ncbi.nlm.nih.gov/pubmed/21482963
https://doi.org/10.1161/01.RES.76.5.790
http://www.ncbi.nlm.nih.gov/pubmed/7728996
https://doi.org/10.1161/hh0202.103315
http://www.ncbi.nlm.nih.gov/pubmed/11834709
https://doi.org/10.1093/toxsci/kfy299
http://www.ncbi.nlm.nih.gov/pubmed/30561737
https://doi.org/10.1093/toxsci/kfv128
https://doi.org/10.1093/toxsci/kfv128
http://www.ncbi.nlm.nih.gov/pubmed/26117837
https://doi.org/10.1152/ajpheart.00694.2011
http://www.ncbi.nlm.nih.gov/pubmed/21890694
https://doi.org/10.1016/j.vascn.2014.09.005
http://www.ncbi.nlm.nih.gov/pubmed/25219538
https://doi.org/10.1152/ajpheart.00312.2006
https://doi.org/10.1152/ajpheart.00312.2006
http://www.ncbi.nlm.nih.gov/pubmed/16997895
https://doi.org/10.1515/cmb-2018-0004
https://doi.org/10.1515/cmb-2018-0004
https://doi.org/10.1016/j.ddmod.2014.04.001
https://doi.org/10.1016/j.ddmod.2014.04.001
http://www.ncbi.nlm.nih.gov/pubmed/26635886
https://doi.org/10.1016/S0006-3495(96)79568-1
https://doi.org/10.1016/S0006-3495(96)79568-1
http://www.ncbi.nlm.nih.gov/pubmed/8770203
https://doi.org/10.1016/S0006-3495(00)76441-1
https://doi.org/10.1016/S0006-3495(00)76441-1
http://www.ncbi.nlm.nih.gov/pubmed/11023897
https://doi.org/10.1371/journal.pcbi.1009233


75. Siekmann I, Wagner LE II, Yule D, Fox C, Bryant D, Crampin EJ, et al. MCMC Estimation of Markov

Models for Ion Channels. Biophysical Journal. 2011; 100(8):1919–1929. https://doi.org/10.1016/j.bpj.

2011.02.059 PMID: 21504728

76. Tveito A, Lines GT, Edwards AG, McCulloch A. Computing rates of Markov models of voltage-gated ion

channels by inverting partial differential equations governing the probability density functions of the con-

ducting and non-conducting states. Mathematical Biosciences. 2016; 277:126–135. https://doi.org/10.

1016/j.mbs.2016.04.011 PMID: 27154008

77. Brennan T, Fink M, Rodriguez B. Multiscale modelling of drug-induced effects on cardiac electrophysio-

logical activity. European Journal of Pharmaceutical Sciences. 2009; 36(1):62–77. https://doi.org/10.

1016/j.ejps.2008.09.013 PMID: 19061955

78. Davies MR, Mistry HB, Hussein L, Pollard CE, Valentin JP, Swinton J, et al. An in silico canine cardiac

midmyocardial action potential duration model as a tool for early drug safety assessment. American

Journal of Physiology-Heart and Circulatory Physiology. 2012; 302(7):H1466–H1480. https://doi.org/

10.1152/ajpheart.00808.2011 PMID: 22198175

79. Zemzemi N, Bernabeu MO, Saiz J, Cooper J, Pathmanathan P, Mirams GR, et al. Computational

assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface poten-

tials. British Journal of Pharmacology. 2013; 168(3):718–733. https://doi.org/10.1111/j.1476-5381.

2012.02200.x PMID: 22946617

80. Almquist J, Wallman M, Jacobson I, Jirstrand M. Modeling the effect of Kv1. 5 block on the canine action

potential. Biophysical Journal. 2010; 99(9):2726–2736. https://doi.org/10.1016/j.bpj.2010.08.062 PMID:

21044569

81. Wang G, Tian X, Lu CJ, Flores H, Maj P, Zhang K, et al. Mechanistic insights into ventricular arrhythmo-

genesis of hydroxychloroquine and azithromycin for the treatment of COVID-19. bioRxiv. 2020. https://

doi.org/10.1101/2020.05.21.108605

82. Lee W, Windley MJ, Perry MD, Vandenberg JI, Hill AP. Protocol-Dependent Differences in IC50 Values
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