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Abstract

Microbial production of secretory proteins constitutes one of the key branches of current industrial biotechnology, earning billion
dollar (USD) revenues each year. That industrial branch strongly relies on fluent operation of the secretory machinery within a
microbial cell. The secretory machinery, directing the nascent polypeptide to its final destination, constitutes a highly complex
system located across the eukaryotic cell. Numerous molecular identities of diverse structure and function not only build the
advanced network assisting folding, maturation and secretion of polypeptides but also serve as sensors and effectors of quality
control points. All these events must be harmoniously orchestrated to enable fluent processing of the protein traffic. Availability
of these elements is considered to be the limiting factor determining capacity of protein traffic, which is of crucial importance
upon biotechnological production of secretory proteins. The main purpose of this work is to review and discuss findings
concerning secretory machinery operating in a non-conventional yeast species, Yarrowia lipolytica, and to highlight peculiarities
of this system prompting its use as the production host. The reviewed literature supports the thesis that secretory machinery in
Y lipolytica is characterized by significantly higher complexity than a canonical yeast protein secretion pathway, making it more
similar to filamentous fungi-like systems in this regard.

Keywords Yarrowia lipolytica - Protein secretion - Protein folding and maturation - Nonconventional expression system -
Secretory pathway - Heterologous protein

Introduction

Proteins, like bulk industrial enzymes, enzymatic preparations
used in research and foods processing, or polypeptides applied
in diagnostics and therapy, are currently mainly produced by
native or genetically engineered microorganisms. Due to tech-
nical limitations, it seems that completely synthetic proteins
generated in a course of a chemical, and not biochemical
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process, are still far from reality, unlike for example synthetic
chromosomes (Annaluru et al. 2014). Initially, proteins ap-
plied in various fields of human activity, like cheese-making
or diabetes treatment, were isolated from their natural origin—
calf stomach or porcine pancreas. However, such methods
impose significant problems, like limited availability of the
source material, or risk of pathogen transfer. Hence, acquisi-
tion of a given protein counterpart from safe microorganisms,
or production of an “original” polypeptide in an engineered
microbial host constitutes a superior and highly attractive al-
ternative. Depending on the microbial host and characteristics
of the targeted polypeptide, the protein product may be secret-
ed outside the cell or remain retained inside its structures. The
former strategy is highly desired as it greatly simplifies
assaying the protein product, its isolation and purification.
Moreover, for acquisition of the final characteristics, many
proteins require a complete maturation process, and hence
they need to traverse across the whole secretory pathway.
For all these reasons, microbial production of secretory
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proteins constitutes one of the key branches of current indus-
trial biotechnology, earning billion dollar (USD) revenues
each year (Graf et al. 2009; Celik and Calik 2011; Liu et al.
2012; Delic et al. 2013). Noteworthy, this industrial branch
strongly relies on fluent operation of the secretory machinery
within a eukaryotic cell.

The secretory pathway directing the nascent polypeptides to
the extracellular space, cell wall, plasma membrane, or organ-
elles constitutes a highly complex system, spanning different
compartments of a eukaryotic cell (Fig. 1). Numerous molecu-
lar identities of diverse structure and function build the ad-
vanced network assisting folding, maturation, and secretion of
polypeptides. Large proportion of the proteins involved in the
secretory pathway serve as sensors and effectors of quality con-
trol points. All these phenomena must be harmoniously orches-
trated to enable fluent processing of protein traffic. Many of the
molecular events taking place during protein maturation and
secretion have stochastic character and thus not only require
considerable amounts of energy, building elements and cofac-
tors, but also sequester specialized proteins and membranes.
Availability of these elements is considered to be the limiting
factor determining capacity of the secretory pathway (Xu and
Robinson 2009; Tyo et al. 2012). Excessive production of a
given secretory protein inevitably leads to overloading the se-
cretion pathway, accumulation of unfolded protein, and physi-
ological stress (Mattanovich et al. 2004; Matsumoto et al. 2005;
Tyo et al. 2012; Hou et al. 2014). As evidenced, unbalanced
overexpression may also trigger instability of the producer cells
(Ogrydziak and Nicaud 2012). The necessity to carefully adjust
the protein production levels to the host cell capacities was
recently exemplified by Dulermo et al. (2017). It was demon-
strated that excessive overproduction of heterologous enzymat-
ic proteins, while leading to higher secretion of the polypep-
tides, caused a decrease in the overall specific activity of the
secreted enzymes. The authors concluded that excessive protein
production could negatively affect protein folding due to defi-
ciency in chaperones and saturation of the secretion machinery
(Dulermo et al. 2017). It has been postulated that folding, mat-
uration, and intracellular transportation constitute the main bot-
tlenecks of the overall process of recombinant protein produc-
tion (Gasser et al. 2007a; de Ruijter and Frey 2015; Puxbaum
et al. 2015; Tang et al. 2015). Depending on the specific prop-
erties of the targeted polypeptide, i.e., primary and secondary
structure, oligomerization, glycosylation, and the ultimate des-
tination, different phenomena may limit the overall efficiency
of the secretory protein synthesis. Correspondingly, specific
characteristics of the host cell may impose bottlenecks or pro-
mote enhanced secretory capacity at different stages of the pro-
tein formation. Consequently, the protein of interest may accu-
mulate at different levels of the polypeptide transit, depending
on the bottleneck’s character (Fig. 2).

Extensive reviews covering research and progress in the
field of heterologous protein production in a non-
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conventional yeast species Yarrowia lipolytica have been al-
ready published (Nicaud et al. 2002; Madzak et al. 2004;
Madzak and Beckerich 2013; Madzak 2015), even very re-
cently (Madzak 2018). For summary on elucidation of useful
genetic elements and development of genetic engineering
tools applied in the secretory protein production, as well as
overview on Y. lipolytica’s fields of exploitation, the reader
should refer to those articles. Current state of knowledge on
the secretory pathways in several different yeast species based
on genomic sequence data mining has been recently compre-
hensively reviewed (Delic et al. 2013). In the present work, we
review and discuss findings concerning the secretory machin-
ery operating in Y. lipolytica. Moreover, we highlight specific
qualities of Y. lipolytica secretory pathway and indicate their
practical consequences for heterologous protein production,
as heterologous protein destined for secretion follows the
same secretion route as native polypeptides (Marsalek et al.
2017). The major purpose of this review was to pinpoint the
value of Y. lipolytica as a heterologous protein producer from a
perspective of its biology.

General overview of the canonical protein
secretion pathway in yeast cells

An overview of secretory machineries operating in different
yeast species presented in Delic et al. (2013) demonstrated
that in spite of huge genetic and physiological diversity of
yeast species, some core elements of the secretory pathway
frequently remain conserved. In this work, S. cerevisiae was
used as a benchmark, since most comprehensive experimental
evidence on biology of the secretory pathway has been accu-
mulated for this species. In yeast, as in higher eukaryotes,
synthesis of secretory proteins (including plasma membrane-
and organelles-associated polypeptides) may be initiated on
free cytoplasmic ribosomes or those already associated with
a membrane of ER or a target organelle, through an intrinsic
affinity for translocon complex (George et al. 2002). Secretory
proteins are distinguished from cytosolic polypeptides based
on the structure of their N-terminal element protruding from
the ribosomes. Immediately after the initial N-terminal do-
main of the nascent polypeptide is extruded from the ribo-
some, it is first recognized by NAC (nascent-polypeptide-as-
sociated complex) which is a peripheral component of cyto-
plasmic ribosomes (George et al. 2002). The role of NAC is to
provide a protective environment for short, amino-terminal
nascent chains, either targeted for secretion or not. The na-
scent polypeptides can be directed to the secretory pathway
either co- or post-translationally, depending on the character
of the N-terminal element as well as innate preference of the
host cell (Fig. 1). In the post-translational translocation path-
way (also called SRP-independent; SRP — signal recognition
particle), the polypeptide is translocated through the ER
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Fig. 1 Secretory pathway with known specificities present in Yarrowia
lipolytica. Detailed information about the role of individual elements of
secretory machinery depicted in the figure can be found in the text. All
molecular identities that are depicted in the figure were identified in
Y. lipolytica by either proteomics or comparative genomics approaches
(Swennen and Beckerich 2007; Swennen et al. 2010; Delic et al. 2013).
Any specific traits that differentiate Y. lipolytica from the model yeast are
depicted in dark red (crossing outs—Ilack of a gene encoding a given

membrane after dissociation of the ribosome followed by spe-
cific recognition of protected polypeptide by the components
of the translocation apparatus (Brodsky and Schekman 1993).
The protection of the released polypeptide in extended con-
formation (translocation competent state) is secured by the
action of cytosolic chaperones (Hsc70s; heat-shock-cognate
70-kDa class; Ssas). As discussed in Delic et al. (2013),
post-translational translocation is considered less robust than
the alternative route. The second translocation mechanisms
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Fig. 2 Simplified scheme representing possible bottlenecks of the
secretory pathway. Dark gray nucleus, light gray endoplasmic
reticulum, white Golgi apparatus and membrane transport vesicles (all
types—COPI, COPII, secretory), light blue organellum (vacuole,
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of Lhs1 GEF was indicated by quotation mark. The dominant role of the
co-translational translocation pathway is indicated by thicker, red arrow,
compared to thin gray marking post-translational translocation. Nascent
polypeptide is marked in orange. Lined triangles—N-glycans. Coating
proteins, tethering factors, SNARE, and SM proteins were listed as iden-
tified by proteomics analysis in Swennen and Beckerich (2007)

(SRP-dependent) require SRP and occurs simultaneously with
the translation process. As mentioned above, immediately af-
ter the initial N-terminal domain of the nascent polypeptide is
extruded from the ribosome, it is first recognized by NAC. It
has been demonstrated that depletion of NAC from ribosomes
carrying nascent polypeptides allows the SRP to crosslink to
polypeptides irrespective of whether or not they contain signal
peptides, leading to mistranslocation into the ER (Wiedmann
et al. 1994). In this sense, NAC enables specific binding of
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SRP with signal peptides and not any nascent polypeptide.
SRP is a soluble IIS ribonucleoprotein complex composed
of a 7SL RNA (300 nt long) and six to seven polypeptides,
which functions as an adapter between the translational ma-
chinery in the cytoplasm and the translocational machinery in
the ER membrane (Blobel et al. 1979; Hortsch et al. 1986;
Brodsky 1998). Binding of SRP to the nascent polypeptide
leads to a pause in the protein elongation, and the whole
ribosome-polypeptide-SRP complex is targeted to an SRP re-
ceptor located on the surface of ER membrane, where the
ribosome interacts with the translocation channel elements
by tight junction (Sec61p complex). This interaction results
in release of SRP, further arrest in the protein elongation, and
finally translocation of the N-terminal polypeptide into the ER
lumen. The translocation pore in the yeast cells is a multicom-
ponent complex that forms an aqueous pore through the ER
membrane. Indeed, during the traverse through the whole se-
cretory pathway, the ER membrane crossing is the sole
membrane-crossing event that the polypeptide is subjected
to. Sec61 and Sshl are the two translocon pore complexes
known to operate in S. cerevisiae (Delic et al. 2013). Both
translocons have partially overlapping scope of client poly-
peptides, but Sec61 is known to be less stringent in selection
and accepts a wide spectrum signal peptides. The translocon
Sec61 is composed of heterotrimers Sec61 Py (Sec6l1p,
Sbhlp, Ssslp in S. cerevisiae), the heteromer Sec62p/
Sec63p, and some other specific proteins like Sec71p/
Sec72p, which all oligomerize to form the channel
(Feldheim et al. 1992). Ssslp is the sole shared element be-
tween the two translocons in S. cerevisiae (Delic et al. 2013).
On the lumenal side of the ER membrane, a key multifunc-
tional Hsp70 chaperone—Kar2 and its Hsp40 cochaperone
(Sec63p, bearing J domain)—“pulls” the polypeptide inside
this compartment (Panzner et al. 1995). Sec63p is known to
play several different roles upon polypeptide translocation: (i)
binding Sec62p subunit, which is exclusive for post-
translational translocon, (ii) gating the translocation pore in
cooperation with Kar2, and (iii) stabilizing the pores in both
co- and post-translational translocation pathways. The multi-
functional Kar2 chaperone binds to exposed hydrophobic do-
mains of unfolded polypetides and acts as molecular ratchet
during translocation (Matlack et al. 1999). Kar2 is known to
bear ATPase activity, which is modulated by the action of
NEF (nucleotide exchange factor), facilitating exchange of
ADP with ATP. Two NEFs are known in S. cerevisiae:
Lhslp and Sillp, with the former having a dominant role in
this yeast species (Steel et al. 2004). Upon translocation of the
N-terminal domain of the polypeptide, its cleavage by a spe-
cific signal peptidase (SPase) and core glycosylation by
oligosaccharyl transferase (OST) is executed by the ER resi-
dent proteins. The translocated polypeptide is then subjected
to a series of manipulations in the ER, leading to acquisition of
correct folding and mature structure, including disulfide bonds
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formation. Proteolytic cleavage by specific proteases or gly-
cosylation by specific glycosidases is mainly executed in the
Golgi compartment. The process of disulfide bond formation
is mediated by Pdilp and Erolp (protein disulfide isomerase
and Pdilp oxidase, respectively) and relies on stochastic
oxidation-reduction of cysteine side chains, which consumes
considerable amounts of oxidating and reducing agents (02
and GSH, respectively). If unbalanced, this process may lead
to excessive formation of reactive oxygen species and heavy
oxidative stress, and hence is considered to be particularly
sensitive upon heterologous protein overexpression, even
those not bearing any disulfide bridges in their secondary
structures (Hou et al. 2012b; Tyo et al. 2012; Guerrero-
Gomez et al. 2018). As discussed in Guerrero-Goémez et al.
(2018), neither thioredoxin nor glutathione redox systems rep-
resentatives were found in the ER, and the identity of the
enzymatic systems providing reducing equivalents to ER-
resident PDIs remained elusive for long time. The current
model implies that cytoplasmic thioredoxin shuttles electrons
into the ER to reduce oxidized PDIs (Poet et al. 2017), while
GSH is actively transported from cytoplasm by specific trans-
porters (Ponsero etal. 2017). Along the protein traverse across
the secretory pathway, it is subjected to further specific mod-
ifications, multiple quality-control points, and sorting to final-
ly reach the destination site. Upon exit from the ER, the se-
cretory polypeptides undergo sorting events. If properly
folded, they are directly or indirectly recognized by the coat
proteins of budding vesicles for anterograde transport, while
unfolded or misfolded proteins are retained in the ER by a
quality control mechanism. The quality-control systems dis-
able incorrectly folded or modified proteins to continue their
route through the secretory pathway. The polypeptides which
could not be correctly processed are degraded by the cytoplas-
mic ubiquitin-proteasome system via ER-associated degrada-
tion (ERAD), which protects the cell from the UPR-related
stress or cellular dysfunction (Stein et al. 2014; Preston et al.
2018; Berner et al. 2018). Correctly folded proteins traverse
from ER to Golgi compartment and to any further destination
via vesicular transportation (McNew et al. 1998; Gasser et al.
2007b; Gasser et al. 2007a; Johansen et al. 2012; Hou et al.
2012a; Puxbaum et al. 2016; Marsalek et al. 2017). Correct
sorting and targeting of the polypeptides require concerted
action of an extensive panel of molecular identities, i.e., ves-
icle coat proteins, tethering factors, membrane recycling fac-
tors, Ypt/Rab GTPases, SNARE complexes (soluble NSF(N-
ethylmaleimide-sensitive factor) attachment protein receptor),
expansins, and exocytosis promoting kinases (Gasser et al.
2007b; Swennen and Beckerich 2007; Idiris et al. 2010a;
Liu et al. 2014; Puxbaum et al. 2015). This extensive net of
vesicle transportation and sorting is initiated by promoting ER
membrane curvature by the action of Sarlp GTPase by gua-
nine exchange factor Secl2p, being ER-specific membrane-
bound protein (Nakano and Muramatsu 1989; D’Enfert et al.
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1991). Activated Sarlp-GTP recruits the heterodimer Sec23p-
Sec24p and Secl13p-Sec31p (COPII coating proteins), stabi-
lizing the whole pre-budding complex (dysfunction in this
process may result in situation presented in Fig. 2c).
Retrograde vesicle transportation from cis-Golgi to ER and
between Golgi compartments is assisted by COPI coatomer,
consisting of large protein subcomplexes, including Sec21p,
Sec26p/27p/28p, Ret2/3p, Coplp, and Arflp. Finally, ER-to-
Golgi, intra-Golgi, and post-Golgi vesicular transportation is
assisted by Rab GTPases, SNARE complexes, and tethering
factors, like AP proteins (adaptor proteins), Seclp—Golgi to
plasma membrane, or Sly1-ER to Golgi, specifying the ulti-
mate fate of the cargo proteins (Idiris et al. 2010a; Hong and
Lev 2014). The process of protein sorting to the destination
membrane is crucial to the organization and functioning of
yeast cells and if impaired, leads to multitude dysfunctions
(Fig. 2d, e, 1). Individual traffic steps and specificity of vesic-
ular fusion at the destination membrane at the traffic cross-
roads are subjected to stringent control by numerous intracel-
lular membrane proteins (Idiris et al. 2010a). Nevertheless,
several studies conducted on Schizosaccharomyces pombe
(Idiris et al. 2010b), S. cerevisiae (Kitagawa et al. 2011;
Wang et al. 2013), Hansenula polymorpha (Agaphonov
et al. 2005), or Pichia pastoris (Komagataella spp)
(Marsalek et al. 2017) demonstrate significant contribution
of mis-sorting events to the overall secretory efficiency of
the yeast cell, which could be overcome to some extent by
specific genetic manipulations presented in those works. In
reference to the scope of this review, occurrence of mis-
sorting events has not been studied in Y. lipolytica, so far. It
would be of great interest to see if Y. /ipolytica strains impaired
in vacuolar sorting could be used for more efficient production
of heterologous proteins, as it was shown for the
abovementioned yeast species.

Peculiarities of Yarrowia lipolytica secretory
machinery

Y lipolytica is a dimorphic yeast, characterized by several
unique metabolic properties, when compared to the other
yeasts (Barth and Gaillardin 1997; Nicaud 2012). In the fol-
lowing paragraphs, we review and discuss findings on biology
of the secretory pathway in this yeast species, as well as other
qualities, possibly contributing to enhanced secretory capacity
in comparison to the canonical yeast secretory pathway.

First of all, it is thought that dimorphic nature of this spe-
cies, expressed as the ability to grow in either yeast-like or
filamentous forms, is of high relevance for enhanced capacity
for protein secretion. This general trait, founded by multitude
of specific molecular identities, goes along with a high pro-
pensity towards remodeling of cellular membranes and cell
wall structures, as well as potent vesicular transportation,

altogether directly influencing secretory capacity of this spe-
cies. In spite of detailed studies on dimorphism-involved
genes and phenomena driving dimorphic transition (Szabo
and Stofanikova 2002; Morin et al. 2007; Morales-Vargas
et al. 2012), no studies adopting this knowledge to engineer
Y lipolytica in order to enhance heterologous protein secretion
have been published, to date.

In terms of organization of 18S rRNA genes as well as the
secretory pathway, Y. lipolytica appears to be more closely
related to the filamentous fungi than to the other yeast genera
(Dujon et al. 2004; Swennen and Beckerich 2007; Swennen
et al. 2010). It has been clearly demonstrated by comparative
genomics and proteomics approaches that the secretory ma-
chinery in Y. lipolytica is characterized by significantly higher
complexity than the one operating in a typical yeast cell
(Swennen and Beckerich 2007; Swennen et al. 2010; Delic
et al. 2013). Precisely, the predicted secretome size is twofold
higher in Y. lipolytica than in the model yeast, S. cerevisiae
(156 vs 299; number of proteins predicted to have a secretion
signal peptide with a subcellular localization predicted as ex-
tracellular, but not having a transmembrane domain or an ER
targeting signal; curated manually by the Authors) (Delic et al.
2013). Moreover, as revealed by (Swennen and Beckerich
2007), due to several characteristics, like higher representation
of Rab GTPase protein families, which is typical for filamen-
tous fungi, multiplied genes encoding membrane ubiquitin
ligases that tag the proteins for degradation via ERAD, or
increased number of the plasma membrane SNARE com-
plexes (Sso proteins), Y. lipolytica is thought to represent a
more advanced type of secretory pathway than the non-
dimorphic yeast cells. Upon quantitative comparison of se-
quence similarity of the proteins involved in secretory path-
way between S. cerevisiae, Y. lipolytica, and mammalian ho-
mologs, Y. lipolytica’s secretory machinery was in 40% more
similar to mammalian than to budding yeast’s counterpart
(Swennen and Beckerich 2007). Such molecular qualities
are considered to underlie the extraordinary capacity of
Y. lipolytica for production of secretory proteins, which has
been long exploited in industrial scale production of heterol-
ogous proteins (e.g., prochymosin; European Patent Office
application 0220864, European Patent Bulletin 1987/19)
(Davidow et al. 1987).

Starting from the beginning of the nascent polypeptide
targeting to the secretory pathway, the first fundamental dif-
ference between S. cerevisiae’s and Y. lipolytica’s secretory
pathways is visible. As demonstrated by detailed studies, the
latter system shows high preference towards co-translational
translocation (SRP-dependent) of the nascent polypeptide to
the ER lumen, as approximately 75% (vs 30% in S. cerevisiae)
of the translocation pores (marked by Sec61p) were co-
fractionated with ribosomes and Sls1p-Kar2 complexes (ER
resident proteins) (Boisramé et al. 1998). In S. cerevisiae, an
SRP-independent translocation pathway is dominant and
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essential (Hann and Walter 1991; Rapoport et al. 1999).
Moreover, the components of the SRP-dependent targeting
were shown to be not essential for S. cerevisiae cell survival,
as lack of any elements of SRP ribonucleoprotein (either of the
six proteins or Scrl gene encoding 7SL RNA) resulted in
slower growth and impairment in protein translocation (as in
Fig. 2b), but the cells remained viable (Stirling and Hewitt
1992). In contrast, in Y. lipolytica, disruption of the genes
encoding the RNA element of SRP is lethal for the cells,
demonstrating the crucial role of the SRP-dependent translo-
cation pathway (He et al. 1992). It was discussed that SRP
may condition Y. lipolytica cell survival, as one or more of the
essential proteins involved in the secretory pathway uses co-
translational translocation pathway solely, and is not able to
follow post-translational translocation route as an alternative
(Delic et al. 2013). Noteworthy, Y. lipolytica has two function-
al genes encoding 7SL RNA component of SRP—Scrl and
Scr2 (He et al. 1992; Yaver et al. 1992)—which is typical for
higher eukaryotes. On the other hand, only a single gene for
Scrl was identified in S. cerevisiae, which also corroborates
the statement about higher complexity of Y. lipolytica’s secre-
tory pathway. Complementary function and functionality of
both Scrl and Scr2 genes were proved upon individual dele-
tion of either gene, which had no obvious effect on growth or
secretion, but double deletions were lethal (He et al. 1992).
Moreover, SRP 7SL. RNA from Y. lipolytica demonstrates
higher eukaryotic-like structure than the S. cerevisiae homo-
log in terms of size (270 nt, 300 nt vs 519 nt for Y. lipolytica,
H. sapiens, and S. cerevisiae, respectively) and predicted sec-
ondary structure (Sanchez et al. 1997). Furthermore, as stud-
ied by Sanchez et al. (1997), deletion of Sec65p, encoding a
19 kDa protein of the SRP complex, is lethal in Y. lipolytica, in
contrast to deletion of its homolog in S. cerevisiae, which
results in slowly growing strains, defective in the processing
of pre-secretory proteins. Indeed, disruption of any of the SRP
components and SRP receptor subunits was shown to be not
essential in S. cerevisiae, resulting in similar growth reduction,
demonstrating secondary importance of this translocation
pathway (Hann and Walter 1991; Ogg et al. 1992; Hann
et al. 1992; Stirling and Hewitt 1992; Brown et al. 1994;
Miller et al. 1995). In contrast to Sec65p, another SRP protein,
Srp54, as well as Srp101, an SRP receptor o-subunit (SRoep),
was shown to be important but not essential for Y. lipolytica
growth (Lee and Ogrydziak 1997; Kim and Ogrydziak 2000).

According to genomic sequence analysis conducted by
(Delic et al. 2013), Y. lipolytica shares similarity with
S. cerevisiae by bearing two translocon pores, Sec61 and
Sshl. However, it was shown that apart from shared Sec61y
(Sss1p) subunit, Y. lipolytica also has a single gene for Sec613
subunit, namely Sbh1/2, which is also shared between the two
translocones. As mentioned earlier in this review, Sss1p is the
sole common element for both translocation pores in
S. cerevisiae. Furthermore, with respect to Sshl-encoding
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gene from Y. lipolytica, it was shown that based on sequence
similarity, it is more alike Sec61p rather than members of Ssh1
cluster from the other yeast species studied there (Delic et al.
2013). It is, however, unclear at this moment, how these dis-
similarities could influence secretory capacity of Y. lipolytica
cells. As in the case of S. cerevisiae, Kar2 and Sec63 proteins
are known to initiate “pulling” the nascent polypeptide in the
ER, assist initial folding and gating the pore in Y. lipolytica
(Kabani et al. 2000). In S. cerevisiae, interaction of these two
crucial proteins is mediated by NEF proteins, Lhs1 and Sill,
with the leading role attributed to the former, while the role of
the latter remained unclear (Steel et al. 2004). In contrast, in
Y. lipolytica, a homolog of the latter NEF (Sls1) was shown to
be directly involved in co-translational translocation
(Boisramé et al. 1996, 1998; Kabani et al. 2000). Its deletion
Asill, while having no effect on translocation in S. cerevisiae,
had strong impact on translocation of nascent secretory pro-
teins in Y. lipolytica (depicted as Fig. 2b) (Boisramé et al.
1998). Due to known interaction with another partner protein,
Irel, Sls1 is thought to be involved in sensing and activating
unfolded protein response UPR (Boisramé et al. 1996, 1998;
Kabani et al. 2000; Babour et al. 2008). These data imply that
in Y. lipolytica, Slsl is the dominant NEF, in contrast to a
minor role of its homolog Sill in S. cerevisiae.

Y. lipolytica’s secretory machinery exhibits several further
dissimilarities when compared to the model yeast’s system
with respect to ER-resident proteins. One of the key features
concerns protein disulfide isomerase family, PDIs. As report-
ed earlier (Delic et al. 2013), PDI family is represented by five
members in S. cerevisiae, out of which, only three share ho-
mology with Y. lipolytica counterparts (essential Pdil, Mdpl,
and Epsl). Strikingly, genome of Y. lipolytica codes for a PDI
family member, ERp38, which is well conserved in filamen-
tous fungi and some hemiascomycete yeast, but is missing in
S. cerevisiae’s and its closely related species. While still not
much is known about its specific functions, in Neurospora
crassa, ERp38 was shown to interact with Pdil and with
Kar2 (Tremmel et al. 2007). There is increasing evidence that
chaperones and folding catalysts in the ER act together by
forming complexes to fold nascent proteins (Tremmel
et al. 2007). Based on such an interaction between Mdpl
(having oxidative folding activity) and calnexin (Cnel;
involved in glycosylation) (Kimura et al. 2005), the for-
mer was postulated to play a role in disulfide bond forma-
tion of glycoproteins.

Another distinguishing trait of Y. lipolytica’s secretory
pathway is the presence of an operable calnexin cycle in the
ER lumen which was not identified in S. cerevisiae (Boisrame
etal. 2002; Babour et al. 2004; Swennen and Beckerich 2007;
Swennen et al. 2010; Delic et al. 2013) (compare Fig. 1). In
fact, the gene encoding calnexin (Cnel) is present in
S. cerevisiae genome. However, for full operation, the cycle
requires UDP-glucose:glycoprotein glucosyltransferase
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(UGGT), and this activity is not encoded in its genome
(Babour et al. 2004). UGGT acts as a folding sensor and en-
ables re-binding of calnexin to the partially misfolded poly-
peptide, which extends the time of a given protein residence in
the ER to fold correctly (Delic et al. 2013). Thus, the calnexin
cycle is thought to serve as a decision branch point between
ERAD, longer residence in the ER, or further transportation of
glycosylated proteins. Glycosylation of proteins secreted out-
side the cell or associated with cell wall or plasma membrane
endows them with novel traits, like increased solubility and
stability, which further affects stability of cell wall,
osmotolerance, and budding (Delic et al. 2013). The calnexin
(Cnxlp) itself is an ER-resident, membrane-bound chaperone
displaying a large N-terminal lumenal domain, playing a role
in folding of glycoproteins. In Y. lipolytica, Cnxlp is well
conserved when compared to other calnexin sequences and
displays 45% identity to human calnexin (Boisrame et al.
2002). By screening two-hybrid library for interaction part-
ners, the lumenal domain of calnexin was shown to interact
with a Sec613 (Sbhl) translocon subunit (Boisrame et al.
2002). It was stated that in Y. lipolytica, and in the other sys-
tems bearing the calnexin chaperone, the role of Sec61(3 in the
quality control of secretory proteins could consist of maintain-
ing the chaperone calnexin in the vicinity of the translocation
pore, and by this, linking the translocon with folding and/or
quality control of secretory proteins. Such a proximity allows
calnexin to interact with some nascent polypeptide chains as
soon as they emerge in the ER lumen. Deletion of ASec613in
Y. lipolytica (the absence of the docking protein) would there-
fore lead to uncoupling of translocation and quality control,
and misfolded polypeptides would no longer be retained in the
ER compartment; nevertheless, no secretory defects were ob-
served experimentally in ASec613 genotype background
(Boisrame et al. 2002), possibly suggesting existence of com-
plementary mechanisms. As extensively discussed in De
Pourcq et al. (2012) and Delic et al. (2013), the initial ER-
resident glycosylation functions (OST and Pmt complexes)
are rather conserved, while the following glycosylation events
in the Golgi compartment are highly variable between differ-
ent yeasts, and thus, it seems difficult to identify specific qual-
ities of a single species. However, Y. lipolytica is frequently
claimed to bear the glycosylation pattern closer to human than
S. cerevisiae (Madzak et al. 2004; Nicaud 2012). Indeed, as
reported by Delic et al. (2013), the genomic sequence of
Y. lipolytica lacks MNNI («x-1,3 mannosyltransferase) family
representatives and bears only limited number of KTRs (x-1,2
mannosyltransferase), whose activity leads to
overmannosylation of secreted polypeptides in yeast (De
Pourcq et al. 2012).

Correctly folded proteins are concentrated at transitional
ER sites (ERES) where COPII elements assemble. Prior to
being packed into COPII vesicle, secretory proteins are recog-
nized by either COPII pre-budding complex subunits or

specific cargo receptors and anchors. The initial steps of
routing cargo proteins from ER are well conserved, with
minor differences observed for Y. lipolytica, like lack of
Yosl, a Rab-type GTPase, or Cogl and Cog7, tethering
complexes (Delic et al. 2013). No specific details on struc-
tural organization of ER and Golgi compartment are
known for Y. lipolytica. It would be interesting to see
whether it exhibits greater similarity to S. cerevisiae (dis-
persed tER sites and scattered Golgi cisternae) or Pichia
pastoris (discrete number of tER sites and Golgi stacks)
(Delic et al. 2013) in this regard.

Unique qualities of the Y. lipolytica’s protein managing
system were identified also amongst events occurring in the
cytosol, expressed for example in specificities of cytosolic
chaperones. Cytosolic Hsp70s and their Hsp40s co-
chaperones play essential roles in protein folding, transporta-
tion, or degradation, and constitute major players of cellular
quality control processes. Based on genomic sequence analy-
sis, it was stated that S. cerevisiae bear doubled set of Sse and
Ssb chaperones—one stress-induced and the other constitu-
tive isoform, which is not the case in Y. lipolytica (Delic
et al. 2013). The number of Ssa cytosolic chaperones was
the same for both species. Nevertheless, systematic, compar-
ative studies on eight cytosolic chaperones, Ssa, from
S. cerevisiae (Ssal-4p) and Y. lipolytica (Ssa5-8p) demonstrat-
ed that despite a high degree of sequence homology, individ-
ual representatives of Ssa family possess redundant yet clearly
distinct functional properties, and some degree of species-
specificity (Sharma et al. 2009). Noteworthy, even though
sequence similarity was more pronounced amongst the four
Ssa orthologs from Y. lipolytica, the ability to support growth
in deletion/overexpression strains was more variable between
different variants than in S. cerevisiae, indicating higher func-
tional specialization of Ssas in this species (Sharma et al.
2009). To further stress the uniqueness of Y. lipolytica’s secre-
tory machinery spanning also cytosolic events, it is worth
mentioning that Y. lipolytica is the only so far identified
hemiascomycete bearing of a Hsc70-interacting protein
(CHIP) (Kabani and Martineau 2008). CHIP orthologs are
found in many filamentous fungi, but they are generally ab-
sent from yeast systems. CHIP is a multifunctional protein
playing an important role in quality control of protein folding
by providing a link between the protein folding pathway and
the UPR (unfolded protein response). It was also demonstrat-
ed that Y1.Chnlp is non-essential unless Y. lipolytica is severe-
ly stressed (Martineau et al. 2012) indicating operation of
complementary pathways securing survival of the cells. It
was demonstrated that YL.Chnlp interacts with Ssalp (cyto-
solic Hsp70 molecular chaperone), and this interaction is
Feslp-dependent (a nucleotide exchange factor of Ssalp). In
terms of Y1.Chnlp function, it was concluded that it can act as
a “holdase” to prevent the aggregation of a heat-denatured
proteins (Martineau et al. 2012).
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Engineering secretory capacity of Yarrowia
lipolytica

Although in many studies, Y. lipolytica has been proved to be
a competitive protein secretor when compared to the conven-
tional yeast host—S. cerevisiae (Barth and Gaillardin 1996;
Steinborn et al. 2005; Ogrydziak and Nicaud 2012; Madzak
2018), some individual studies demonstrate that this field still
leaves some potential for improvement. Enhanced production
of the targeted, secretory protein may be achieved by several
different strategies, including (i) engineering the DNA coding
sequence itself, (ii) modification of a genetic construct struc-
ture, (iii) optimization of culturing conditions, and (iv) engi-
neering molecular mechanisms of protein synthesis and secre-
tion pathway (Graf et al. 2009; Liu et al. 2012). Within each of
the proposed strategies, various solutions have been proposed,
and some of them were conducted in Y. lipolytica, like (i)
optimization of codon usage within the coding sequence
(Celinska et al. 2015; Celinska 2015; Dulermo et al. 2017),
(ii) amplification of the gene copy number, manipulation with
regulatory elements contained in the genetic construction,
mainly promoter (Le Dall et al. 1994; Gasmi et al. 2011b;
Gasmi et al. 2011a; Gasmi et al. 2012; Dulermo et al. 2017;
Larroude et al. 2018), (iii) bioprocess engineering, optimiza-
tion of cultivation conditions (Chang et al. 1998; Kim et al.
2000; Nicaud et al. 2002; Celinska et al. 2017a), and (iv) co-
synthesis of chaperones, manipulation with protein folding,
and maturation mechanisms, engineering secretory tags (De
Pourcq et al. 2012; Celinska et al. 2018). Nevertheless, the
vast majority of studies on enhanced production of secretory
proteins in Y. lipolytica was focused on strategies from (i) to
(iii), while the approaches directing secretory pathway were
largely neglected. On the other hand, the amount of knowl-
edge concerning molecular details of the secretory pathway in
this species seems to be sufficient to facilitate further engineer-
ing strategies. The key reports are summarized and discussed
below.

Considerable effort was devoted to elucidation of mecha-
nisms driving translocation, maturation, and secretion of one
of the two major secretory proteins in Y. lipolytica
secretome—alkaline extracellular protease (AEP, encoded by
XPR2 gene), which became a model protein within this re-
search area (Matoba et al. 1988; Matoba and Ogrydziak 1989;
Fabre etal. 1991; Fabre et al. 1992; He et al. 1992; Yaver et al.
1992; Le Dall et al. 1994; Matoba et al. 1997; Matoba and
Ogrydziak 1998; Ogrydziak and Nicaud 2012). As such, most
of initial modifications of Y. lipolytica secretory pathway were
realized using this model protein. It was for example revealed,
that AEP follows co-translational translocation pathway and is
efficiently translocated and rapidly (several minutes) excreted
outside the cell (Matoba et al. 1988; Matoba and Ogrydziak
1989; Yaver et al. 1992); AEP undergoes maturation via three
consecutive intracellular precursors—the products of catalytic
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activity of signal peptidase and oligosaccharyl transferase in
the ER (55 kDa) (Matoba et al. 1988), dipeptidyl aminopep-
tidase in the late Golgi (52 kDa) (Matoba and Ogrydziak
1989), and Kex2-like protease XPR6 in the late Golgi as well
(32 kDa) (Matoba et al. 1988). Those and also the other stud-
ies (Fabre et al. 1991; Fabre et al. 1992; Yaver et al. 1992) lead
to the elucidation and understanding of the crucial N-terminal
domain structure and function of its individual elements. It
was demonstrated that the AEP protein is initially synthesized
as prepro-polypeptide, and the identified intracellular precur-
sors are intermediates devoid of either pre- or pro-domains.
The architecture of the prepro-domain in AEP corresponds to
the typical structure of a yeast leader sequence (Yang et al.
2006; Yarimizu et al. 2015), covering an N-domain bearing at
least one positively charged amino acid residue, followed by a
hydrophobic H-domain composed of a tract hydrophobic ami-
no acid residues forming an alpha-helix, which is essential for
translocation of the polypeptide through the membrane, termi-
nated with a C-domain containing an alpha-helix-breaking or
polar residue, facilitating digestion through a specific signal
peptidase, ended with a consensus sequence AX-A (X-any
residue), which is recognized by the ER-localized signal pep-
tidase. Detailed studies on pre- and pro-domains separately
allowed to dissect their specific functions in processing of
AEP in the secretory pathway and founded a background to
be applied in engineering strategies aiming at enhanced pro-
duction of secretory proteins.

The pre-sequence is an interaction partner of SRP and
hence is responsible for directing the polypeptide for translo-
cation into the ER lumen. It was elegantly demonstrated that
specific properties of the pre-domain governed by its primary
structure significantly influence the rate of secretion and can
specify the translocation pathway followed by the nascent
polypeptide (Yaver et al. 1992; Matoba and Ogrydziak
1998). It was inferred that conformation/orientation of the
pre-domain and its hydrophobicity are the key parameters
affecting its interaction with SRP and consequently the desig-
nated pathway for translocation in Y. lipolytica (Matoba and
Ogrydziak 1998). It was shown that P17M mutation (loss of
kinked secondary structure) disallows pre-domain-SRP inter-
action and leads to post-translational translocation of the AEP,
which was kinetically less efficient, but nevertheless allowed
secretion of the protein via its “non-native” translocation path-
way (Yaver et al. 1992). While such data are not available for
Y. lipolytica, it was calculated that in S. cerevisiae, more hy-
drophobic pre-domains (HB12 value > 3.0) are preferentially
translocated via the SRP-dependent pathway, while less hy-
drophobic leaders (HB12 <2.0) are processed via the post-
translational translocation pathway (Ng et al. 1996).
However, as demonstrated in Y. lipolytica, based on analyses
of a panel of mutated pre-domains of AEP comprising leaders
differing in hydrophobicity and secondary structure, it was
inferred that a model involving only average hydrophobicity
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and kinkiness does not accurately explain the observed vari-
ability in the experimental data (Matoba and Ogrydziak 1998),
indicating influence of some other, unknown factors.

The pro-domain in AEP’s N-terminus, bearing N-
glycosylation sites, assists folding and maturation of the poly-
peptide, before it is packed in the vesicles for exocytosis. It
was demonstrated that deletion of the glycosylation site within
the pro-domain yields unglycosylated AEP precursors which
were matured and secreted correctly at 18 °C but remained
trapped in the secretory pathway as unprocessed forms at
28 °C (Fabre et al. 1991). The trapped precursors could not
be processed by the dipeptidyl aminopeptidase and the Kex2-
like XPR6 endoprotease and thus were not secreted (Fabre
et al. 1991). Interestingly, secretion of such AEP polypeptides
(modified in the pro-domain) could be rescued when the pro-
domain was supplied in trans as an independent peptide
(Fabre et al. 1992). From that study, it was inferred that the
pro-domain acts as molecular chaperone by direct interaction
with the mature region of AEP and participates in acquisition
of a catalytically active conformation until late into the secre-
tory pathway (Fabre et al. 1992). Nevertheless, it was proved
that the pro-domain of AEP is not obligatory needed for se-
cretion of heterologous proteins, and in some cases may be
even deleterious for such a process (Nicaud et al. 1989; Fabre
et al. 1991; Park et al. 1997, 2000; Boisramé and Gaillardin
2009; Hong et al. 2012).

All those detailed studies founded a background for rational
design of production processes for heterologous secretory pro-
teins in Y. lipolytica. Up to date, most of heterologous secre-
tory proteins have been directed to the secretory pathway via
AEP-derived or LIP2-derived pre-sequences (the two major
secretory proteins), or their corresponding hybrids (Madzak
and Beckerich 2013; Madzak 2015; Madzak 2018). As men-
tioned earlier, a sole AEP pre-leader was proved to efficiently
target the polypeptide to the secretory pathway, without the
need for a pro-leader. Native Lip2 prepro domains (Pignede
et al. 2000), its hybrid with AEP pre-sequence (Nicaud et al.
2002), or synthetic leader sequences issued from the LIP2 pre-
domain (Gasmi et al. 2011¢; Gasmi et al. 2012; Ledesma-
Amaro et al. 2015) were all proved to operate with high effi-
ciency in Y. lipolytica’s secretory pathway with different het-
erologous polypeptides. In several studies, it was reported that
heterologous pre-domains can efficiently operate in
Y. lipolytica secretory pathway, including fungal and yeast
leaders (Miiller et al. 1998; Hong et al. 2012), plant secretory
elements (Park et al. 1997), or even such domains originating
from phylogenetically distant insects (Celinska et al. 2015,
2016a). In our efforts towards optimization of heterologous
production of insect-derived, raw starch digesting alpha-
amylase (SOAMY; Sitophilus oryzae (Celinska et al. 2016b))
in Y. lipolytica system, we tested different N-terminal fusions
with secretory tags, comprising pre-AEP, pre-LIP2, native pre-
domain of SOAMY, as well as hybrid fusion pre-AEP-native

pre-domain (Celinska et al. 2016a, 2017b). We observed high
efficiency of secretion upon transcriptional fusion of the ma-
ture SOAMY polypeptide with pre-AEP, and unsuitability of
native pre-LIP2 in this regard. In our recent study (Celinska
et al. 2018), we analyzed the potential of ten different pre-
domains towards targeting of two model polypeptides to the
secretory pathway. The pre-sequences under study covered
those well-known, like pre-LIP2 or pre-AEP, some previously
described, like the hybrid pre-LIP2 or the insect-derived pre-
SoAMY, but most importantly novel pre-sequences, previous-
ly undescribed in the context of recombinant protein secretion
in Y. lipolytica. The novel secretory tags were identified
through genomic DNA data mining and hence constituted
homologous elements for Y. lipolytica secretome, comprising
YALIOB03564p (putative product: 1,3-beta-glucosidase pre-
cursor), YALIOD20680p (cell wall protein with similarity to
glucanases), YALIOE22374p (YPS3, GPI-anchored aspartyl
protease 3), YALIOD06039p (PHR1, alkaline cell surface gly-
cosidase), and YALIOD06149p (sterol binding protein in-
volved in the export of acetylated sterols). Based on the ob-
tained experimental data, it could be inferred that four out of
five novel secretory tags compare favorably in terms of
targeting of both reporter proteins to the secretory pathway,
when compared to the conventional elements pre-LIP2 and
pre-AEP. Since the secretory elements under study worked
with corresponding efficiency for both proteins, it was con-
cluded that the observed results may potentially reflect general
potency of the pre-domains itself in driving secretion of poly-
peptides in Y. lipolytica systems and that the analyzed pre-
domains, and not the following mature polypeptide, had the
dominant influence on the observed variation in efficiency of
the proteins secretion. Although in a single case, we could
clearly see dependence of the type of the following reporter
protein on such efficiency (heterologous pre-domain from fun-
gi—Thermomyces lanuginosus); such observation has been
previously made upon S. cerevisiae’s Suc2 invertase produc-
tion in Y. lipolytica (Hong et al. 2012). Since it was earlier
reported that hydrophobicity and secondary structure are the
key factors determining efficiency of the pre-sequence in driv-
ing the nascent polypeptide translocation and specifying the
translocation mode (Yaver et al. 1992; Matoba and Ogrydziak
1998), we used a panel of computational tools to study these
parameters in the analyzed secretory elements. However, we
could not see any straightforward correlation between the av-
erage hydrophobicity and the final extracellular abundance of
the reporters (Celinska et al. 2018). Correspondingly, neither
calculated D-score values (reflecting probability of being rec-
ognized and processed by signal peptidase) nor predicted
secondary structure could provide the key or support the
rules governing the observed results. Similar conclusions
were inferred from results on AEP secretion equipped with
mutated versions of its own pre-domain (Matoba and
Ogrydziak 1998).
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Trends and future prospects

Y. lipolytica has already gained established position as an in-
dustrial workhorse and highly efficient platform for heterolo-
gous protein production (Madzak 2018). Nevertheless, many
strategies of improving secretory capacity that were executed
for the other yeast species, like S. cerevisiae (Idiris et al.
2010a) or P. pastoris (Zahrl et al. 2017), remained largely
neglected in Y. lipolytica. Such a situation leaves a wide array
of approaches to be tested in this system. Having the knowl-
edge and background provided by the aforementioned de-
tailed studies, this field is now open to enter with new strate-
gies. For this moment, it is hard to foresee, which strategy may
turn out to be superior for Y. lipolytica. Manipulation with
vesicular traffic (Swennen and Beckerich 2007; Idiris et al.
2010b; Puxbaum et al. 2015; Marsalek et al. 2017) or relief
of stress imposed by production of heterologous protein
(Mattanovich et al. 2004; Gasser et al. 2007a) seems to be
particularly attractive approaches. It might be also useful to
refer to the corresponding research conducted with filamen-
tous fungi, like (Ohno et al. 2011; Liu et al. 2014), due to high
similarities in the secretory pathways of Y. lipolytica and fila-
mentous fungi, as elaborated on in this review.
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