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The recent development of massively parallel sequencing technology has allowed the creation of
comprehensive catalogs of genetic variation. However, due to the relatively high sequencing error rate for
short read sequence data, sophisticated analysis methods are required to obtain high-quality variant calls.
Here, we developed a probabilistic multinomial method for the detection of single nucleotide variants
(SNVs) as well as short insertions and deletions (indels) in whole genome sequencing (WGS) and whole
exome sequencing (WES) data for single sample calling. Evaluation with DNA genotyping arrays revealed a
concordance rate of 99.98% for WGS calls and 99.99% for WES calls. Sanger sequencing of the discordant
calls determined the false positive and false negative rates for the WGS (0.0068% and 0.17%) and WES
(0.0036% and 0.0084%) datasets. Furthermore, short indels were identified with high accuracy (WGS:
94.7%, WES: 97.3%). We believe our method can contribute to the greater understanding of human diseases.

S
ince genetic variation plays a key role in human disease and, in particular, rare Mendelian disorders, one of
the most important goals of genetic studies is to identify genetic variants in individuals1,2. Next-generation
sequencing (NGS) technology3–5 has made whole genome sequencing (WGS) possible at an individual level.

WGS has revealed numerous single nucleotide variations (SNVs), de novo mutations6 and somatic mutations in
cancer genomes7–10 that had not been previously reported. Whole exome sequencing (WES), which captures and
sequences only the coding exons of the genome, is also used to identify genetic variations in the coding regions11.
WES is more cost-effective for exonic regions than WGS, and can obtain a deeper depth of coverage in the target
region. WES has been used to successfully identify causal mutations of Mendelian diseases2,12 and driver muta-
tions in tumors13–16.

The data produced by WGS and WES are composed of numerous short read sequences ranging in length from
50–150 bp17. So far, many methods have been developed for short read alignment and variant calling. However,
accurate detection of SNVs and indels is still difficult and a critical issue. For example, even for a false positive rate
of only 0.1%, three million false positive SNVs (3 3 109 (bp) 3 0.001 5 3,000,000) would be identified in the
entire human genome. False negative rate is another critical issue, especially for genetic diagnosis and Mendelian
disease studies. For the future of personalized medicine and genetic diagnosis, highly accurate variant calling is
still one of the most important problems.

Here, we provide a tool package for our previously reported method that detects SNVs and short insertions and
deletions (indels)18, and show evaluation and comparison with other available methods for both WGS and WES of
new test samples generated on the Illumina DNA-sequencing platform. A high concordance rate with the SNP
genotyping arrays was observed for both WGS calls (homozygous concordance rate: 99.99%, heterozygous
concordance rate: 99.83%) and WES calls (heterozygous and homozygous concordance rate: 99.99%).
Compared to other available methods, our method suppressed both false positive and false negative rates
(WGS: 0.0068% and 0.17%, WES: 0.0037% and 0.0084%). Furthermore, we identified short indels with high
accuracy (WGS: 94.7%, WES: 97.3%). We believe our method is a useful tool for understanding human diseases
through WGS and WES analysis. This program, ‘‘Variant Caller with Multinomial probabilistic Model
(VCMM)’’, is publicly available at http://emu.src.riken.jp/VCMM/.
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Results
Sequencing and mapping. WGS and WES data were generated on
the Illumina HiSeq2000 platform with library sizes of 500 bp and
150–200 bp. 101 Gbp and 7 Gbp of short read sequences were
obtained for WGS and WES, respectively. Mapping was performed
using the short read mapping algorithm BWA19; 96.1% of WGS reads
and 98.5% of WES reads were mapped to the human reference
genome. PCR duplications were defined using SAMtools20. The
PCR duplication rates were 3.5% and 5.0% in the WGS and WES
data, respectively. After PCR duplications removal, the remaining
93.4 Gbp of WGS and 6.5 Gbp of WES contributed sufficient
coverage to perform variant calling. A total of 63.7% of the WES
reads were mapped to on-target regions.

Distribution of depth of coverage. In the WGS data, the average
depth was 28.4 and 4.3% of genomic positions were identified to have
low read depth (read depth , 5). The average read depth of on-target
regions was 70.7 in the WES data, with 4.1% of genomic positions
showing low read depth (read depth , 10). We also compared the
distribution of the depth of coverage between WGS and WES. The
shape of the coverage distributions was quite different (Figure 1a).
The distribution for WGS was bell shaped, though approximately 3%
of the genome had zero coverage, likely due to repetitive sequence. In
contrast, the distribution for WES was wider; the peak of the
distribution being lower than the average read depth, and the
proportion of positions covered by at least one uniquely mapped
read was much higher than that for WGS. This comparison
suggests that the skew of the WES distribution is a result of the
capturing process (Figure 1b). Improvement of the exon capture
method would reduce the proportion of low coverage regions.

Evaluation of SNV and indel calls. SNV calls. We performed SNV
and indel calling using our method, VCMM. The algorithm was
originally developed with data from a Japanese male individual
(HapMap NA18943)18. In this study, we evaluated the accuracy of
SNV calling using two independent samples. We compared our
results to array-based genotype calls, using Illumina Human
OmniExpress BeadChip for WGS and Illumina Human Exome
BeadChip for WES. The number of SNPs available for verification
was 644,167 for WGS and 193,280 for WES. Since standard NGS
analysis aligns reads to a reference sequence and identifies non-
reference alleles as variants, we can assume that all non-reported
positions were homozygous for the reference allele. We classified
variants based on the genotype from the genotyping array
(homozygous or heterozygous) and reference allele (homozygous
of reference allele and not homozygous of reference allele). We
then classified the discordant SNPs as either false positive or false
negative candidates (Table 1).

In the WGS analysis, 0.17% (n 5 1,126 in OmniExpress BeadChip)
of the SNPs were not analyzed due to insufficient depth of coverage
(read depth , 5) (Table 1). The total number of false positive and
false negative candidates was 98 and 1,083, respectively (Table 1). We
performed Sanger sequencing verification for the false positive can-
didates. Of the 98 false positive candidates, 42 SNPs could not be
amplified by PCR. Attempts to amplify these with a lower annealing
temperature also failed. Of the amplified 56 false positive candidates,
54 were consistent with our variant calls. The two remaining false
positives were located in tandem repeat regions, suggesting that map-
ping error, rather than sequencing error, was causative. The propor-
tion of false positive and false negative SNPs was 0.0068% (44/
643,041) and 0.17% (1,083/643,041), respectively (Table 1). Note that
the false positive rate is a conservative estimation, because PCR
unamplified SNPs were also counted as false positives.

In the WES analysis, 1.6% (n 5 3,083 in Exome BeadChip) of the
SNPs were not analyzed due to insufficient depth of coverage (read
depth , 10) (Table 1). The total number of false positive and false
negative candidates was 14 and 36, respectively. Sanger sequencing

verification revealed that 7 out of the 14 false positive candidates and
20 out of the 36 false negative candidates were consistent with our
variant calls, though 3 out of the 14 false positive and 9 out of the 36
false negative candidates could not be amplified by PCR. The false
positive and false negative rates were estimated to be 0.0036% (7/
190,197) and 0.0084% (16/190,197), respectively (Table 1). Note that
the reported false positive and the false negative rates are conservat-
ive estimations, PCR unamplified SNPs were counted as false posi-
tives and false negatives. We also conducted the same examination
on additional samples, and equivalent results were obtained (data not
shown).

In both the WGS and WES analysis results, the number of SNVs
using VCMM was similar to that of previous studies21 (Table 2). The
transition/transversion (Ts/Tv) rates were 2.08 in WGS and 2.39 in
WES.

Indel calls. It is difficult to detect indels from short read sequence
data, but which are likely to be functionally important, particularly

Figure 1 | Read depth per nucleotide and GC content. (a) Distribution of

read depth in WGS and WES on-target regions. (b) Distribution of GC

content of WES on-target regions.
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when they cause frameshifts. VCMM identified 763,944 (106,732 in
non-repeat region) and 10,999 indels in the WES and WES data. The
proportions of frameshift indels were 45.8% (221/461) in WGS and
51.1% (260/509) in WES. There was no significant difference
between these proportions (P-value 5 0.33). Since we could not
evaluate all the indels identified, we estimated the concordance rate
using PCR and Sanger sequencing verification for a randomly select-
ing subset of indels. In the WGS analysis, we randomly selected 96
indels from the 461 coding indels detected for validation. Of the 75
successful assays, 71 indels were verified as correct, and 4 were false
positives (5.3%). In the WES analysis, we randomly selected 47 indels
from 509 coding indels detected for validation. Of the 37 successful
assays, 36 indels were verified, and 1 was a false positive (2.7%). In
both the WGS and WES analysis results, the number of indels using
VCMM was similar to that of pervious studies21 (Table 2).
Furthermore, the ratios of indels to SNVs were 0.22 in WGS and
0.14 in WES, similar to that of reported by 1000 Genomes22 (0.19).
Note that we used all indels identified for the calculation in the WGS.

Comparison with other call methods for SNV. We compared the
VCMM’s SNV calling to that of two popular alternative methods,
GATK23 and SAMtools20 (Figure 2a and c). In the WGS and WES, we
observed a large number of common SNVs identified by all three
methods, and a similar number of uniquely identified SNVs by
VCMM and GATK (Figure 2a and c). The proportion of SNVs
identified by the both VCMM and SAMtools was larger in WGS

than WES (Figure 2a and c). We further compared the genotype
array concordance rate of our method to that of the two alternative
programs. The resulting concordance rates of our analysis were
higher than those of GATK and SAMtools for both WGS and
WES (Table 3). Our method also achieved acceptable levels for
both false positive and false negative rates (false positive rates:
0.015% in WGS and 0.007% in WES, false negative rates: 0.17% in
WGS and 0.02% in WES). These results demonstrate our method
is an efficient framework for detecting SNVs (Table 3). These
comparisons were also performed using three published datasets in
HapMap database for WES and another dataset for WGS, and
similar results were obtained (see Supplementary Table S1 online).

Comparison with other call methods for indel. We also compared
the indel calling results of each of the three methods (Figure 2b and
d). The number of indels identified by GATK was smaller than those
by VCMM and SAMtools in both WGS and WES. SAMtools
identified larger number of indels than other methods. In the
WES, most indels detected by GATK were included these by
VCMM (Figure 2d). These results suggest that GATK is more
conservative than the other methods. To examine the accuracy of
indel calling, we performed Sanger sequencing verification. In the
WGS, we sequenced 22 indels in total, 14 were identified by all three
methods, four by SAMtools only, two by VCMM and SAMtools, one
by GATK only, and one by GATK and SAMtools. For the examined
candidates, one indel identified solely by SAMtools, and one by
GATK and SAMtools were false positives (see Supplementary
Table S2 online). The genotype of the indel identified solely by
SAMtools was discordant to that by Sanger sequencing verifica-
tion. For WES, we verified 24 indels in total, 12 identified by
VCMM and SAMtools, 11 by only SAMtools, and one by only
GATK. For the examined candidates, seven out of eleven indels
identified solely by SAMtools were false positives (see Supple-
mentary Table S2 online). The genotypes of one indel identified by
GATK, four by SAMtools and one by VCMM and SAMtools were
was discordant to those by Sanger sequencing verification.

To compare sensitivity of indel calling, we counted the common
indels between those indentified by each of the three methods and the
Mills Indels22: VCMM: 202/509 (40%), GATK: 185/427 (43%),
SAMtools: 228/1,764 (13%) in WES; VCMM: 55,810/106,732
(52%), GATK: 54,713/101,267 (54%), SAMtools: 59,356/275,112
(22%) in WGS. The sensitivity of GATK and VCMM was similar.
For SAMtools, the number of the common indels was higher than the

Table 1 | Estimation of the accuracy of VCMM using SNP genotyping platforms

WGS WES

Genotyping array{ WGS or WES{

Before Sanger
sequencing
validation

After Sanger
sequencing
validation*

Before Sanger
sequencing
validation

After Sanger
sequencing
validation*

Not analyzed - - 1,126 - 3,083 -
Concordance No-Ref-Ho - 137,786 - 2,893 -

Ref-Ho - 326,125 - 183,411 -
Ht - 177,949 - 3,843 -

Total - 641,860 - 190,147 -
False positive Ref-Ho No-Ref-Ho 5 2 (2) 0 0

Ref-Ho Ht 37 16 (15) 11 6 (3)
No-Ref-Ho Ht 31 17 (16) 1 1 (0)

Ht Ht (Different
genotype)

25 9 (9) 2 0 (0)

Total 98 44 (42) 14 7 (3)
False negative Ht Ho 850 850 23 13 (8)

No-Ref-Ho Ref-Ho 233 233 13 3 (1)
Total 1,083 1,083 36 16 (9)

{: No-Ref-Ho; Non reference homozygous genotype, Ref-Ho; Reference homozygous genotype, Ht; Heterozygous genotype.
*: The numbers in parenthesis represented the number of SNPs that could not be amplified by PCR.

Table 2 | Number of identified SNVs and indels

Number WGS WES

Total SNVs 3,406,875 79,060
Total indels * 763,944 (106,732) 10,999
Total SNVs in splice
sites

105 56

Total SNVs in coding
region

20,314 19,861

Missense 9,502 9,360
Nonsense 109 83
Synonymous 10,703 10,418
Total indels in coding
region

461 509

*: In the WGS, the numbers of indels in all region and non-repeat regions are shown.
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other two methods, but the proportion of the common indels was
much lower, indicating that the false negative rate was lower while
the false positive rate was higher. Appropriate filtering is required for
accurate indel calling with SAMtools.

Computational performance. VCMM takes a pileup file, as
generated by SAMtools, as input. Using one CPU core (2.67 GHz
Intel Xeon Processor) on a computational cluster, the variant and
indel calling for the largest contig (NT_032977.9: 2 GB pileup
formatted file) took approximately one and half hours for GATK
and 3 minutes for pileup file generation by SAMtools and variant
calling by VCMM for WES. VCMM is written in the C programming

language. The supporting programs, BWA19 and SAMtools20, are also
required.

Discussion
In the human genome, SNVs and indels are the most abundant type
of genetic variation. Accurate identification of SNVs and indels is one
of the most important problems in genome analysis. Several variant
calling methods and programs have been developed and used for
both WGS and WES analysis20,23. However, reducing the false pos-
itive and false negative rate is still one of the most important chal-
lenges in sequencing analysis.

Figure 2 | Common indels identified by VCMM, GATK and SAMtools. (a) SNV in WGS. SNVs in repeat regions and unknown contigs were not used

for the comparison. (b) Indel in WGS. Indels in repeat regions and unknown contigs were not used for the comparison. (c) SNV in WES. (d) Coding indel

in WES.

Table 3 | Comparison of VCMM with other methods using SNP genotyping platforms

Number Proportion (%)

Chip VCMM GATK SAMtools VCMM GATK SAMtools

WGS OmniExpress
BeadChip

Concordant 641,860 641,538 639,112 99.816 99.766 99.389
FN 1,083 1,366 3,832 0.168 0.212 0.595
FP 98 137 97 0.015 0.021 0.015

WES Exome BeadChip Concordant 190,147 190,137 189,825 99.974 99.968 99.804
FN 36 46 361 0.019 0.024 0.190
FP 14 14 11 0.007 0.007 0.006
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In this study, we introduce a SNV and indel calling method. Our
method is based on a multinomial probabilistic model as previously
described18. Since base quality score (the probability that the called
base in the read is the true sequenced base) reflects sequencing error
rate as shown in a previous study24–26, a multinomial probabilistic
model with quality score can be applied to identifying SNVs with
high accuracy. Additionally, we applied a strand bias filter (see the
Materials and Methods)27.

The two false positive SNV calls in the WGS analysis were sus-
pected to be caused by mapping error, indicating that improvement
in short read alignment methods should decrease false positives.
Most false negative calls were identified in regions of low read cov-
erage, and thus could be corrected by increasing the total coverage
depth. This is also evident in the lower false negative rate observed in
WES analysis as compared to WGS analysis.

We compared the performance of VCMM to that of existing
methods, GATK and SAMtools, for SNV and indel calling. For
SNV calling, the results from SAMtools had a larger number of false
negatives than VCMM and GATK, suggesting that the variant calling
of SAMtools is conservative. Although the false positive and false
negative rates of VCMM were lower than these of GATK, the differ-
ence was not significant and we consider VCMM and GATK to be
comparable in SNV calling. For indel calling, the proportion of com-
monly identified indels by the three methods was smaller than SNVs,
suggesting greater difficulty in indel calling over SNV calling. Sanger
sequencing verification revealed that coding indels that were
detected by all three methods, or only VCMM and SAMtools, were
higher quality than other indels. Indel verification also suggested that
indel calls by GATK is more conservative than that of VCMM and
SAMtools. Furthermore, although the false positive rate for indels
detected only by SAMtools was higher than that of other methods,
the false negative rate was lower, suggesting that further filtering is
necessary for indel calling.

Although our method showed high concordance with DNA gen-
otyping arrays, most of the SNPs present on the DNA genotyping
array are located in uniquely mappable regions. It is unknown
whether the observed false positive and false negative rates are
applicable to all genomic regions. For variant calling, filtering with
Hardy-Weinberg equilibrium, discarding variants in tandem repeat
regions and a local realignment around multiple indels should be
necessary for accurate variant detection18,28.

Our method incorporates a probabilistic error model, base quality
filtering, and strand bias. Although our method can improve geno-
typing accuracy, it is still difficult to identify several types of variants,
such as long insertions and deletions, as well as variations in highly
repetitive regions. Continued advancement in sequencing techno-
logy, such as longer sequence reads and improvements in sequencing
accuracy and mapping algorithms can be expected, by which the false
positive and false negative rates of our method would further be
improved. Additionally, while the target of the current version was
deep sequenced single samples, we believe that our likelihood func-
tion can be expanded to multi-sample calling by considering popu-
lation frequency as the prior probability.

Methods
DNA sample. Samples, RK001 (WES) and RK130 (WGS), were obtained with
consent and institutional ethics approval from RIKEN. High molecular weight
genomic DNA was extracted from a human blood sample. All groups participating in
this study approved this work. WES data of three samples were downloaded from
NCBI FTP site (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/) and used for the
comparison.

Whole exome and whole genome sequencing. Exome capture was performed by the
Agilient SureSelect Human All Exon V4 according to the manufacturer’s instructions.
This kit captures genomic DNA by in-solution hybridization with RNA
oligonucleotides, enabling specific targeting regions of approximately 51 Mb of the
human genome, contained in 185,636 capture regions, as large target regions were
composed of several capture regions. The captured DNA was sequenced using the

Illumina HiSeq2000 platform with paired-end reads of 101 bp for insert libraries of
150–200 bp according to the manufacture’s instructions.

For the whole genome sequencing, we prepared 500 bp insert library. The sample
was sequenced using the Illumina HiSeq2000 platform with paired-end reads of
101 bp according to the manufacture’s instructions.

Read mapping. Read sequences were mapped by the Burrows-Wheeler Aligner
(BWA: version 0.6.1)19 to the human reference genome (GRCh37.p5). Paired reads
were mapped by considering not only the mapping distance between the paired reads
within average 63 s.d, but also the mapping uniqueness and the orientation. The
removal of the possible PCR duplicate reads and the conversion of the mapping
results into pileup-formatted files were conducted using SAMtools (v.0.1.8)20. Note
that the pileup-formatted files were generated by ‘pileup’ command of SAMtools
(v.0.1.8), because several parameters required for SNV and indel calls with VCMM
were removed by the ‘mpileup’ command in SAMtools (v0.1.17 (r973) and later).

SNV and indel calls. We performed SNV calling with respect to each nucleotide site
using reads with a BWA mapping quality score $ 20 and a depth of 5 or more in WGS
and 10 or more in WES. Both of the major and minor alleles were required to have at
least one read with a base quality score $ 30, as calculated by the Illumina pipeline
software. The SNV calls were distinguished by the ratio of the probabilities that the
minor allele at a nucleotide site is an error Perror and a major allele Pallele as described
previously18. The two probabilities were calculated as follows.

Perror~
n!

P
i

Mi!mi!
P

i
(1{PEi )

Mi (PEi )
mi

where PEi ~10{ i
10 is the probability that minor allele is an error, and Mi and mi are the

number of major and minor alleles with a base quality score i, and n is the total read
depth (n 5 Mi 1 mi).

Pallele~
n!

P
i

Mi!mi!
P

i

1
2

� �Mizmi

If Pallele=Perror
wC, where C is the cut-off value, we detected a SNV at that nucleotide

site. C was set into 5,000. We also considered a strand bias. If a minor allele described
by over 30 reads in only one orientation, that minor allele was treated as an error. For
WGS analysis, we discarded SNVs located within 5 bp of indels and included in short
repeat regions (segmental duplications, simple repeat regions detected by tandem
repeat finder and microsatellites), and regions where more than three SNVs occurred
within 10 bp, as described18. This probabilistic model was applied to only SNV calling
and not applied to indel calling.

Short indels (,50 bp) were identified on the basis of the gaps within read
sequences from BWA. We performed indel calls at nucleotide sites, where more than
0.15 of total read sequences were mapped as indels after removing reads with map-
ping quality less than 20. The identified indels by the frequency was filtered by the
following criteria; (1) average base quality of the base preceding the indel , 10, and
(2) SAMtools consensus quality , 60 or SAMtools SNP quality , 60, if three or less
reads support the indel. These parameter sets were determined by Sanger sequencing
of indels, which was independent from verification in this study. For WGS, we dis-
carded all indels and SNVs in simple repeat regions as defined by tandem repeat
finder29.

Accuracy evaluation. In order to evaluate accuracy of our call method, we compared
our SNV calls results with the concordant genotypes from SNP typing platforms:
Illumina Human OmniExpress BeadChip and Illumina Human Exome BeadChip.
We estimated concordance of genotype calls separately for homozygous and
heterozygous SNPs. In total, 644,167 autosomal SNPs on the Illumina Human
OmniExpress BeadChip for WGS and 193,280 autosomal SNPs on the Illumina
Human Exome BeadChip on target regions were used for the estimation of the
concordance rate in WGS and WES. The accuracy of our indel calls was estimated by
the randomly selection of 96 indels and 47 indels in WGS and WES, respectively, and
subsequent validation using Sanger sequencing.

SNV calls using other methods. We performed SNV calls using the GATK
(v.1.6.13)23 and SAMtools (v.0.1.8)20 with the following parameters; minimum base
quality . 30 and minimum mapping quality . 60 for GATK, and consensus quality
$ 20 and root mean square (RMS) $ 2530 for SAMtools. The commands for
SAMtools and GATK were ‘‘samtools pileup -s -cf reference.fa bam_file’’ and ‘‘java
-jar GenomeAnalysisTK.jar-l INFO -T UnifiedGenotyper -R reference.fa -mbq 30
--read_filter MappingQuality --min_mapping_quality_score 60 -I bam_file’’,
respectively.

For indel calling in SAMtools, we examined candidate indels with the depth $ 5 for
WGS and depth $ 10 for WES, and indels with a ‘‘*/*’’ genotype were excluded.
Indels from GATK were identified with the following command; ‘‘java -jar
GenomeAnalysisTK.jar -T UnifiedGenotyper -R reference.fa -I bam_file --out output
-glm INDEL’’.

1. Londin, E. R. et al. Whole-exome sequencing of DNA from peripheral blood
mononuclear cells (PBMC) and EBV-transformed lymphocytes from the same
donor. BMC Genomics 12, 464 (2011).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2161 | DOI: 10.1038/srep02161 5

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data


2. Ng, S. B. et al. Exome sequencing identifies the cause of a mendelian disorder. Nat
Genet 42, 30–5 (2010).

3. Rusk, N. & Kiermer, V. Primer: Sequencing--the next generation. Nat Methods 5,
15 (2008).

4. Metzker, M. L. Sequencing technologies - the next generation. Nat Rev Genet 11,
31–46 (2010).

5. Mardis, E. R. Next-generation DNA sequencing methods. Annu Rev Genomics
Hum Genet 9, 387–402 (2008).

6. Roach, J. C. et al. Analysis of genetic inheritance in a family quartet by whole-
genome sequencing. Science 328, 636–9 (2010).

7. Lee, W. et al. The mutation spectrum revealed by paired genome sequences from a
lung cancer patient. Nature 465, 473–7 (2010).

8. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a
human cancer genome. Nature 463, 191–6 (2010).

9. Beroukhim, R. et al. The landscape of somatic copy-number alteration across
human cancers. Nature 463, 899–905 (2010).

10. Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological
influences on mutation patterns and recurrent mutations in chromatin regulators.
Nat Genet 44, 760–4 (2012).

11. Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nat
Genet 44, 623–30 (2012).

12. Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel
DNA sequencing. Proc Natl Acad Sci U S A 106, 19096–101 (2009).

13. Chang, H. et al. Exome sequencing reveals comprehensive genomic alterations
across eight cancer cell lines. PLoS One 6, e21097 (2011).

14. Wei, X. et al. Exome sequencing identifies GRIN2A as frequently mutated in
melanoma. Nat Genet 43, 442–6 (2011).

15. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF
complex gene PBRM1 in renal carcinoma. Nature 469, 539–42 (2011).

16. Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma
reveals inactivating mutations in NOTCH1. Science 333, 1154–7 (2011).

17. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing:
computational challenges and solutions. Nat Rev Genet 13, 36–46 (2012).

18. Fujimoto, A. et al. Whole-genome sequencing and comprehensive variant analysis
of a Japanese individual using massively parallel sequencing. Nat Genet 42, 931–6
(2010).

19. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25, 1754–60 (2009).

20. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics
25, 2078–9 (2009).

21. Bamshad, M. J. et al. Exome sequencing as a tool for Mendelian disease gene
discovery. Nat Rev Genet 12, 745–55 (2011).

22. Mills, R. E. et al. Natural genetic variation caused by small insertions and deletions
in the human genome. Genome Res 21, 830–9 (2011).

23. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res 20, 1297–303
(2010).

24. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated
sequencer traces using phred. I. Accuracy assessment. Genome Res 8, 175–85
(1998).

25. Brockman, W. et al. Quality scores and SNP detection in sequencing-by-synthesis
systems. Genome Res 18, 763–70 (2008).

26. Li, M., Nordborg, M. & Li, L. M. Adjust quality scores from alignment and
improve sequencing accuracy. Nucleic Acids Res 32, 5183–91 (2004).

27. Challis, D. et al. An integrative variant analysis suite for whole exome next-
generation sequencing data. BMC Bioinformatics 13, 8 (2012).

28. Torri, F. et al. Next Generation Sequence Analysis and Computational Genomics
Using Graphical Pipeline Workflows. Genes (Basel) 3, 545–575 (2012).

29. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic
Acids Res 27, 573–80 (1999).

30. Li, H. & Durbin, R. Inference of human population history from individual whole-
genome sequences. Nature 475, 493–6 (2011).

Acknowledgements
This work was supported partially by the National Project on ‘Next-generation Integrated
Living Matter Simulation’ and Grant-in-Aid for Young Scientists (B) (Number: 23790389)
of Ministry of Education, Culture, Sports, Science and Technology.

Author contributions
D.S. and A.F. analyzed the data and wrote the manuscript; D.S. and A.F. contributed equally
as first authors; M.K. performed the experiments of DNA genotyping arrays; K.N. and H.N.
performed the experiments of next generation sequencing; K.N., M.F., U.Y. and H.N.
performed Sanger sequencing verification; S.A., T.A. and K.A.B. provided the technical
assistance; T.T. organized this work and wrote the manuscript. All authors contributed to
and approved the final manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Shigemizu, D. et al. A practical method to detect SNVs and indels
from whole genome and exome sequencing data. Sci. Rep. 3, 2161; DOI:10.1038/srep02161
(2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-nd/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2161 | DOI: 10.1038/srep02161 6

http://creativecommons.org/licenses/by-nc-nd/3.0
http://creativecommons.org/licenses/by-nc-nd/3.0
http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 Read depth per nucleotide and GC content.
	Table 1 Estimation of the accuracy of VCMM using SNP genotyping platforms
	Table 2 Number of identified SNVs and indels
	Figure 2 Common indels identified by VCMM, GATK and SAMtools.
	Table 3 Comparison of VCMM with other methods using SNP genotyping platforms
	References

