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Abstract: The systemic gene interactions that occur during osteoporosis and their underlying mech-
anisms remain to be determined. To this end, mesenchymal stromal cells (MSCs) were analyzed
from bone marrow samples collected from healthy individuals (n = 5) and patients with osteoporosis
(n = 5). A total of 120 osteoporosis-related genes were identified using RNA-sequencing (RNA-seq)
and Ingenuity Pathway Analysis (IPA) software. In order to analyze these genes, we constructed a
heatmap of one-way hierarchical clustering and grouped the gene expression patterns of the samples.
The MSCs from one control participant showed a similar expression pattern to that observed in the
MSCs of three patients with osteoporosis, suggesting that the differentiating genes might be impor-
tant genetic determinants of osteoporosis. Then, we selected the top 38 genes based on fold change
and expression, excluding osteoporosis-related genes from the control participant. We identified a
network among the top 38 genes related to osteoblast and osteoclast differentiation, bone remodeling,
osteoporosis, and sarcopenia using the Molecule Activity Predictor program. Among them, 25 genes
were essential systemic genes involved in osteoporosis. Furthermore, we identified 24 genes also
associated with diabetes and obesity, among which 10 genes were involved in a network related
to bone and energy metabolism. The study findings may have implications for the treatment and
prevention of osteoporosis.

Keywords: osteoporosis; gene network analysis; mesenchymal stromal cells

1. Introduction

Osteoporosis is a common, but severe, systemic skeletal disease caused by low bone
mass, which results in bone fragility and results in increased risk of hip, spine, wrist, and
other bone fractures [1,2]. Risk factors such as aging, low body weight, smoking, alcoholism,
and a history of fracture contribute to osteoporosis development [3]. Osteoporosis is charac-
terized by reduced bone mineral density (BMD), deteriorated bone tissue microarchitecture,
and a low amount and lack of variety in altered bone proteins [4]. However, systemic gene
interactions and molecular mechanisms underlying osteoporosis remain unelucidated.

Obesity is a global health concern. In 2016, over 650 million adults worldwide were
classified as obese, with high-energy food intake and physical inactivity considered as
the main causes of obesity and overweight [5]. Numerous studies have reported that
certain genes affect the progression of obesity, including peroxisome proliferator-activated
receptor γ (PPARG), CCAAT enhancer binding protein α (C/EBPα), and interleukin 6
(IL6) [6–8]. Moreover, adiponectin, a protein secreted by adipocytes that is involved
in regulating glucose levels and lipid metabolism, can be regulated by osteoblasts [9].
Mesenchymal stromal cells (MSCs) can be isolated from various tissues and differentiated
into multiple mesenchymal families, such as osteogenic, chondrogenic, adipogenic, and
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neurogenic cells [10,11]. In addition, the transcriptional profile of osteoporotic stem cells
contains numerous genes that predispose individuals to osteoporosis [12]. Osteogenesis
and adipogenesis are controlled by the Wnt signaling pathway [13], and nuclear receptor
subfamily 4A (NR4A) is commonly associated with osteoporosis and obesity [14].

Osteoporosis is a common complication of diabetes mellitus, and patients with diabetes
usually have skeletal disorders [15–17]. Diabetic osteopathy, an important comorbidity of
both type-1 and type-2 diabetes mellitus, increases the risk of bone fracture [18]. Mutation
in the gene encoding lipoprotein receptor-related protein 6 (LRP6), a co-receptor in the Wnt
signaling pathway, is associated with osteoporosis, diabetes mellitus, and coronary artery
disease [19].

Although previous studies have investigated the individual mechanisms responsible
for the development of osteoporosis, obesity, and diabetes, the common molecular mecha-
nisms underlying the development of these conditions have not yet been determined. In
addition, systematic genetic analyses of endocrine diseases need to be performed. There-
fore, the aim of the current study was to identify the genetic network related to osteoporosis
using next generation sequencing to analyze MSCs isolated from skeletal bone marrow
samples collected from healthy individuals with normal bone mineral density (BMD) and
patients with osteoporosis. Subsequently, we aimed to discover the network comprised
of differentially expressed genes (DEGs) related to osteoporosis, diabetes, and obesity
using Ingenuity Pathway Analysis, thus elucidating the relationship of these genes with
osteogenesis and adipogenesis.

2. Materials and Methods
2.1. Study Subjects

Ten subjects aged 40 to 85 years, regardless of gender and with and without osteoporo-
sis, were enrolled in the present study. MSCs were obtained from samples of femur bone
marrow collected from participants during total hip or knee arthroplasty due to osteoarthri-
tis, hip fracture, or traffic-related accident. Subjects who presented with other metabolic
disorders and secondary causes of osteoporosis were excluded. BMD was measured using
dual-energy X-ray absorptiometry (iDXA, GE Lunar, Madison, WI, USA). Subjects with
osteoporosis had vertebral fractures or hip fractures and low BMD (T-scores of the lumbar
spine, femoral neck, and total hip were ≤−2.5). The five subjects in the control group
had no prior fractures and normal BMD (T-scores of the lumbar spine, femoral neck, total
hip, and whole BMD were ≥−1.0). The obesity criterion was BMI ≥ 25 kg/m2 based on
the guidelines of the Korean (Asian) Society for the Study of Obesity [20]. Subjects with
osteoporosis and type-2 diabetes mellitus were also enrolled in the study if the onset of
diabetes was >30 years of age and supported by medical history/records.

2.2. Human MSC Isolation and Culture

Human MSCs were isolated by negative immunoselection (RosetteSep Isolation Kit,
STEMCELL Technologies Inc., Vancouver, BC, Canada) according to manufacturer’s in-
structions. Bone marrow samples were incubated at room temperature (20–22 ◦C) for
25 min with a depletion cocktail of tetrameric antibodies. The samples were then diluted
in 1× phosphate-buffered saline and isolated by density-gradient centrifugation (CR3-22,
Jouan, Saint Herblain, France). Isolated human MSCs were seeded into vented 25 cm2

tissue culture flasks (Thermo Fisher Scientific, Waltham, MA, USA) containing Complete
MesenCult® Medium (human) and MesenCult® MSC Basal Medium (human) mixed with
Mesenchymal Stem Cell Stimulatory Supplements (human) (STEMCELL Technologies Inc.)
and streptomycin (Welgene, Gyeongsan, Korea). The flasks were incubated in a humidified
atmosphere containing 5% CO2 at 37 ◦C, and half of the medium was replaced with fresh
medium every 3 days. When cells reached 90% confluence, the adherent cells were subcul-
tured in a 100 mm2 culture dish (first passage) and re-seeded into three 100 mm2 culture
dishes (second passage). Once cells reached confluence at the end of the second or third
passage, they were used immediately or cryo-preserved [21].
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2.3. RNA Isolation

Total RNA content was extracted from second or third passaged human MSCs using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instruc-
tions and quantified using a Nanadrop1000 spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE, USA). The resulting complete RNA was used for RNA-sequencing.

2.4. RNA Library Preparation and Sequencing

To construct cDNA libraries, 1 µg of total RNA was used with the TruSeq strand-
specific mRNA library kit (Illumina Inc., San Diego, CA, USA) to achieve polyA-selected
RNA extraction, RNA fragmentation, random hexamer primed reverse transcription, and
100 nt paired-end sequencing using the HiSeq 4000 sequencing system (Illumina Inc.). The
cDNA libraries were quantified by using quantitative polymerase chain reaction (qPCR)
according to the qPCR Quantification Protocol Guide, and library quality was assessed
using the 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA).

To estimate expression levels, RNA-seq reads were mapped to the human genome
using TopHat version 1.3.3 software (accessed on 2 August 2018) [22]. The human reference
genome sequence (hg19) and annotation data were downloaded from the University of
California Santa Cruz Genome Browser website (http://genome.uscs.edu, accessed on
2 August 2018). The transcript counts were calculated at the gene level, the relative
transcript abundance was reported in terms of fragments per kilobase of exon per million
(FPKM), and fragments were mapped using Cufflinks version 1.2.1 software [23].

2.5. Analysis of Gene Expression

Relative gene abundance was calculated in Read Count using StringTie. Statistical
analysis was performed to identify DEGs using the estimates of abundance for each gene
in the sample. Sample genes that had Read Count values of one more than zero were
excluded. The statistical significance of the DEG set was assessed using the edgeR package
in Bioconductor and fold change with a null hypothesis showed that no difference existed
between groups.

2.5.1. Hierarchical Clustering

Hierarchical clustering analysis was performed using complete linkage and Euclidean
distance as a measure of similarity to show the expression patterns of DEGs that satisfied
the conditions of |fold change| ≥ 2 and raw p < 0.05.

2.5.2. Network Analysis

To construct pathways between genes of interest and biofunctions, we used the Path
Explorer tool in Ingenuity Pathway Analysis (IPA) software (QIAGEN Inc., Hilden, Ger-
many) (https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis,
accessed on 2 June 2021). Pathways were connected by adding intermediate molecules
from the QIAGEN Knowledge Base. The Molecule Activity Predictor tool was used to
identify downstream effects. Red and pink nodes indicated increased expression of DEGs,
while green nodes indicated reduced expression. Orange nodes indicated predicted gene
activation and inhibition, whereas blue nodes indicated biofunctions and diseases. The de-
gree of expression or prediction was indicated by node color intensity. Solid lines indicated
direct interaction, whereas dashed lines suggested possible gene interaction.

2.6. Statistical Analysis

We performed statistical analyses with R software, version 4.0.1 (R Foundation for
Statistical Computing, Vienna, Austria). Participant data of clinical characteristics were
converted to standardized score (Z-score) and then calculated by the univariate linear
regression model with age. To translate the data converted to Z-score to the original scale,
an age-adjusted value was multiplied by the sample standard deviation of raw data, and
the average value of raw data was added.

http://genome.uscs.edu
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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3. Results
3.1. Clinical Characteristics of Study Participants

We compared MSCs extracted from the bone marrow of five patients with osteo-
porosis (osteoporosis group) with those extracted from the bone marrow of five healthy
individuals with normal BMD (control group) (Table 1 (a). The mean weights and BMI
values of the osteoporosis group were also lower than those of the control group. Addi-
tionally, most participants in the osteoporosis group were diagnosed with type 2 diabetes.
There was a significant difference between control and osteoporosis patients with lumbar
spine, femur neck, total hip, and whole-body BMD values in age-adjusted analysis data
(Table 1 (b)). Other variables including sex, diabetes, obesity, and menopause did not show
any significance.

Table 1. (a) Clinical characteristics of study participants. (b) Age-adjusted analysis of bone min-
eral densities.

(a)

Subjects

Bone Mineral Density

no. Age
(yrs)

Height
(cm)

Weight
(kg)

Lumbar
Spine

(g/cm2)

Femur
Neck

(g/cm2)

Total
Hip

(g/cm2)

Whole
BMD

(g/cm2)
ASMI

(kg/m2)
LBM
(kg)

BMI
(kg/m2) Diabetes

Control
(n = 5) 1 70.0 154.5 75.2 1.023 0.865 0.920 1.068 6.728 37.088 32 No

2 42.0 164.0 88.1 1.279 1.023 1.102 1.277 7.745 47.568 33 No
3 64.0 150.1 55.2 1.016 1.022 0.989 0.970 6.133 31.741 25 No
4 55.0 172.0 70.6 1.269 1.102 1.157 1.380 6.946 47.762 24 No
5 71.0 150.0 70.3 1.016 0.905 1.134 1.201 6.938 39.237 31 No

Mean 60.4 158.12 71.9 1.121 0.983 1.060 1.179 6.898 40.679 28.77
Osteoporosis

(n = 5) 6 85.0 160.0 49.1 0.713 0.519 0.625 0.760 4.339 30.890 19 Yes

7 71.0 151.0 46.6 0.775 0.461 0.520 0.743 5.472 33.145 20 Yes
8 79.0 152.0 59.0 0.922 0.558 0.579 - - - 26 Yes
9 80.0 151.0 54.0 0.810 0.636 0.623 0.878 4.613 28.831 24 Yes
10 72.0 141.0 54.8 0.794 0.696 0.728 0.836 5.384 28.872 28 No

Mean 77.4 151.0 52.7 0.803 0.574 0.615 0.804 4.952 30.435 23.28

(b)

Subjects

Bone Mineral Density

no. Lumbar Spine
(g/cm2)

Femur Neck
(g/cm2)

Total Hip
(g/cm2)

Whole BMD
(g/cm2)

Control (n = 5) 1 1.024 0.866 0.921 1.073
2 1.139 0.909 0.978 1.131
3 1.082 1.076 1.048 1.045
4 1.010 0.892 0.928 1.107
5 1.084 0.960 1.194 1.278

Mean 1.068 0.940 1.014 1.127
Osteoporosis (n = 5) 6 0.632 0.453 0.554 0.678

7 0.828 0.504 0.567 0.804
8 0.960 0.589 0.613
9 0.863 0.679 0.670 1.098

10 0.995 0.860 0.906 0.841
Mean 0.856 0.617 0.662 0.855

p-value 0.0141 0.0039 0.0026 0.0194

ASMI: appendicular skeletal muscle mass index; LBM: lean body mass; BMI: body mass index.

3.2. Comparison of Gene Expression Patterns between Control and Osteoporosis Groups

To determine the essential systemic genes related to osteoporosis, DEG analysis was
performed on MSCs isolated from each participant. A total of 120 DEGs were identified,
and a heatmap of one-way hierarchical clustering was constructed (Figure 1A). Subse-
quently, 120 DEGs were regrouped by similarity of expression pattern via hierarchical
clustering analysis of significant genes. According to the heatmap, three participants in
the osteoporosis group (no. 6, 8, and 9) demonstrated similar gene expression patterns,
which were similar to that displayed by participant no. 3 in the control group (Figure 1B).
This result suggested that the differentiating genes between control subject no. 3 and those
commonly upregulated and downregulated (i.e., similar expression patterns) among the
other four participants in the control group could be used as genetic factors to classify
participant no. 3 as the control subject in further analysis.
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Figure 1. Heatmap of DEG of mesenchymal stromal cells from control and osteoporosis groups.
(A) Heatmap of one-way hierarchical clustering of all samples showing 120 differentially expressed
genes complying with |FC| ≥ 2, independent t-test raw p-value < 0.05, and Z-score for normal-
ized value (log2 based). (B) Heatmap grouped by similarity of gene expression pattern via hier-
archical clustering analysis of significant genes (distance measure = Euclidean distance; linkage
method = completeness).
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3.3. RNA Analysis of Bone Remodeling Epigenome

To compare the gene expression pattern observed for control subject no. 3 with that of
the other participants in the control (excluding the chemical molecules registered in IPA),
nine genes related to bone remodeling were selected among the top 120 genes (marked
in red in Figure 1A). To connect these nine genes with the bone remodeling epigenome,
intermediate molecules expressed in the MSCs of all participants in the control group were
added to produce 38 genes. The expression levels of these 38 genes for the participants in the
control group are listed in Tables 2 and S1. The expression of some genes was upregulated
for control subject no. 3 compared to that of the other control group participants, while
that of other genes was downregulated (Table S2). Specifically, the expressions of BCL2
apoptosis regulator (BCL2), bradykinin receptor B2 (BDKRB2), insulin-like growth factor 1
(IGF1), IL6, PPARG coactivator 1 α (PPARGC1A), transferrin (TF), and 19 other genes were
upregulated for control subject no. 3 compared to that of other control group participants,
while the expressions of insulin-like growth factor 2 (IGF2), interleukin 1 receptor type 1
(IL1R1), and PPARG were downregulated. In contrast, the expression of myocyte enhancer
factor 2C (MEF2C) was upregulated for control subject no. 3 but downregulated for the
other participants in the control group (Table 3). Direct and indirect relationship networks
of the 38 genes related to osteoblasts, osteoclasts, bone remodeling, osteoporosis, and
sarcopenia were subsequently generated (Figures 2 and S1). Based on these data, we
identified 25 commonly upregulated genes that might be essential systemic genes involved
in normal bone remodeling and osteoporosis prevention.

Table 2. Expression log2 fold change values of 38 genes related to osteoblasts, osteoclasts, bone
remodeling, osteoporosis, and sarcopenia in mesenchymal stromal cells from participants in the
control group based on RNA-sequencing data.

Gene Symbol no. 1 no. 2 no. 3 no. 4 no. 5

ACKR3 6.855 1.439 1.303 3.895 15.063
AGT −2.107 1.005 4.004 −1.015 3.397
BCL2 −1.472 1.542 2.091 1.187 −1.068

BDKRB2 27.36 3.53 1.683 12.459 17.274
BMP2 8.682 −1.198 1.278 2.626 6.76
C3AR1 1.315 3.404 1.158 2.263 1.045
C5AR1 −2.64 1.496 1.305 −1.334 −2.939
CCL5 5.637 2.635 1.199 1.268 4.472
CFB 9.544 1.4 1.361 2.173 3.967
CSF1 4.442 2.414 1.685 2.024 3.503

CXCL2 9.746 1.278 2.029 2.115 3.785
CXCL3 81.438 1.572 2.468 10.269 20.713
DKK1 2.336 −4.204 −2.932 −1.544 1.073
EFNB2 1.194 1.937 1.172 2.068 −1.052

HGF 1.221 2.207 1.339 1.817 1.562
HSD11B1 30.422 4.501 1.147 18.48 29.309

ID1 2.283 1.614 1.799 1.486 5.361
IGF1 9.016 1.147 1.068 1.793 14.374
IGF2 1.476 3.942 −1.069 5.632 4.821
IL1R1 3.726 2.233 −1.03 2.565 3.842

IL6 5.484 1.272 1.155 1.505 1.657
MDK 1.975 1.966 1.07 2.106 3.017

MEF2C −2.282 −1.75 1.051 −2.7 −2.127
NTN1 8.152 2.264 1.058 7.593 9.835
OASL 7.487 3.377 1.48 2.564 1.796
PCSK1 58.887 6.653 2.041 21.927 77.419
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Table 2. Cont.

Gene Symbol no. 1 no. 2 no. 3 no. 4 no. 5

PPARG 1.233 2.796 −1.014 2.469 2.021
PPARGC1A 19.933 3.017 3.13 12.553 32.307

PPL 10.936 9.128 2.676 19.03 19.77
PTGER4 −1.016 2.245 2.538 3.785 5.318
PTPN22 8.385 3.023 1.19 4.239 7.19

RAPGEF3 2.288 2.067 1.051 2.22 4.005
SFRP1 6.398 6.344 2.657 6.847 6.662
SOD2 12.349 1.219 1.229 2.142 3.923
STAT1 1.141 −1.865 −1.121 −2.134 −1.723
STC1 12.298 1.987 1.49 2.41 5.001

TF 9.482 8.842 2.214 4.156 5.078
TNFRSF11B 2.63 −2.201 −4.728 −1.36 −1.556

Entrez gene names and p-values are listed in Table S1.

Table 3. Commonly upregulated or downregulated genes in mesenchymal stromal cells from partici-
pants in the control group.

Commonly
Upregulated for

Control Subject no. 3
Compared to Other

Participants in
Control Group (25)

Commonly
Downregulated for
Control Subject no.

3 Compared to Other
Participants in

Control Group (0)

Downregulated for
Control Subject no. 3
and Upregulated for
Other Participants in

Control Group (3)

Upregulated for
Control Subject no. 3
and Downregulated

for Other
Participants in

Control Group (1)

ACKR3 - IGF2 MEF2C
BDKRB2 - IL1R1 -
C3AR1 - PPARG -
CCL5 - - -
CFB - - -
CSF1 - - -

CXCL2 - - -
CXCL3 - - -

HGF - - -
HSD11B1 - - -

ID1 - - -
IGF1 - - -
IL6 - - -

MDK - - -
NTN1 - - -
OASL - - -
PCSK1 - - -

PPARGC1A - - -
PPL - - -

PTPN22 - - -
RAPGEF3 - - -

SFRP1 - - -
SOD2 - - -
STC1 - - -

TF - - -
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Figure 2. Functional relationship network of genes involved in osteoporosis pathogenesis. Functional
relationship network for control subject no. 3 compared with three participants in the osteoporosis
group (no. 6, 8, and 9).

3.4. Genetic Relationship among Osteoporosis, Obesity and Diabetes

To clarify the related pathways among osteoporosis, obesity, and diabetes, the DEGs
in obesity-related and diabetes-related networks were identified among the MSCs of all
participants in the control group genes using IPA software. A total of 24 osteoporosis-
related genes, including IGF1, IL6, pyruvate dehydrogenase kinase 4 (PDK4), PPARGC1A,
and TF, were also associated with obesity and diabetes. All 24 genes were highly expressed
with direct or indirect relationships established via intermediate molecules such as calcitriol,
colony stimulating factor 2 (CSF-2), interferon-γ (IFN-γ), IL1, IL4, transforming growth
factor-α (TGF-α), transforming growth factor-β (TGF-β), and tumor necrosis factor (TNF)
(Tables 4 and S3). The relationship networks are illustrated in Figures 3 and S2, and they
demonstrate that 24 candidate genes reduced diabetes and increased obesity. These results
suggested that the 24 candidate genes might be involved in the development of osteoporosis
as well as obesity and diabetes.

Table 4. Expression log2 fold change values of 24 genes related to osteoporosis, obesity, and diabetes
in mesenchymal stromal cells from participants in the control group based on RNA-sequencing data.

Gene Symbol no. 1 no. 2 no. 3 no. 4 no. 5

C1QTNF1 16.527 3.107 1.901 3.946 7.916
CFB 9.544 1.4 1.361 2.173 3.967

CHI3L1 15.654 2.156 1.85 2.939 16.257
CP 14.028 15.237 2.171 10.585 40.727

CSF1 4.442 2.414 1.685 2.024 3.503
CXCL2 9.746 1.278 2.029 2.115 3.785
GNA14 8.773 4.354 1.338 7.26 47.7

HSD11B1 30.422 4.501 1.147 18.48 29.309
IGF1 9.016 1.147 1.068 1.793 14.374
IL6 5.484 1.272 1.155 1.505 1.657
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Table 4. Cont.

Gene Symbol no. 1 no. 2 no. 3 no. 4 no. 5

KCNJ2 13.25 8.057 1.156 6.693 4.853
KYNU 21.468 5.505 3.764 17.825 35.813

LBP 47.991 98.045 3.718 66.303 84.066
MME 15.395 3.207 1.072 6.601 3.175

NR4A2 16.509 4.202 1.354 6.798 7.023
NTN1 8.152 2.264 1.058 7.593 9.835
OAS1 8.047 3.939 2.701 3.431 7.107
PCSK1 58.887 6.653 2.041 21.927 77.419
PDK4 10.246 1.569 2.154 1.917 10.588
PLIN2 6.437 1.52 1.065 1.003 1.366

PPARGC1A 19.933 3.017 3.13 12.553 32.307
PTGDS 9.258 5.15 4.065 13.654 3.19
SOD2 12.349 1.219 1.229 2.142 3.923

TF 9.482 8.842 2.214 4.156 5.078
Entrez gene names and p-values are listed in Table S3.
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3.5. Common Related Genes in Osteoporosis, Sarcopenia, Diabetes, and Obesity

The IPA results revealed 10 common candidate genes (CFB, CXCL2, HSD11B1, IGF1,
IL6, NTN1, PCSK1, PPARGC1A, SOD2, and TF) that were inhibited in osteoporosis, sarcope-
nia, and diabetes but activated in obesity for all participants in the control group (Figure 4).
Furthermore, IPA data suggested that activation of HSD11B1 and PPARGA1A resulted in
obesity, but the other eight candidate genes were not significantly associated with obesity.
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4. Discussion

MSCs are multipotent cells with the potential to differentiate into multiple lineages,
including osteoblasts, adipocytes, and chondroblasts [24,25]. Therefore, MSCs were em-
ployed in the present study to investigate the relationship between bone and fat cells.
RNA-seq was performed to identify DEGs in MSCs collected from healthy individuals
and subjects with osteoporosis [26–29]. Previous studies have pooled numerous samples
together to obtain DEG data during investigations of the overall trends of disease [14,30,31].
In the traditional pooling system, individual specific genes may not be selected or lost
by other control samples. In the current study, each of the five samples from the control
and osteoporosis groups was analyzed separately to determine the minimum individual
character gene groups involved in osteoporosis.

Using IPA software, we identified 25 important systemic genes related to bone remod-
eling and 24 candidate osteoporosis-related genes associated with obesity and diabetes.
Moreover, 10 common genes that influence metabolic disorders such as osteoporosis, sar-
copenia, diabetes, and obesity were identified. Most of the candidate genes were related to
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bone remodeling and/or sarcopenia, diabetes, and obesity, as supported by the results of
previous studies. Complement factor B (CFB) plays a significant role in the pathogenesis of
diabetic retinopathy [32], and there might be a relationship between CFB and diabetes onset.
Furthermore, CFB plays an important role in the differentiation of 3T3-L1 preadipocytes
in CFB transgenic mice [33], and CFB and IL6 are associated with the rapid metabolism
of glucagon in metabolically compromised subjects [34]. Additionally, IL6 individually
controls osteoblast differentiation and induces bone resorption [35]. Since hypertrophied
white adipose tissue produces chemokines, CXCL2 expression is increased in osteoclastoge-
nesis [36] compared with osteoblastogenesis [37], and white adipose tissue is activated by
CXCL2 to prevent the onset of obesity [38]. HSD11B1 might be related to BMD [39] and
is associated with the onset of type 2 diabetes [40,41]. IGF-1 is known to enhance muscle
mass and alleviate sarcopenia [42], and low serum IGF-1 levels could increase the risk of
idiopathic osteoporosis [43,44]. Low IGF-1 levels not only affect BMD but also results in
the onset of type 1 or 2 diabetes mellitus [45,46]. NTN1 is an essential factor involved in the
differentiation of osteoclasts [47] and is also involved in osteoblast differentiation [48]. Low
PCSK1 expression might be related to obesity and diabetes [49], and PPARGC1A expression
can increase obesity risk [50]. SOD2 increases osteoblast differentiation and bone forma-
tion [51,52] and protects neurons in diabetic neuropathy [53]. The expression of SOD2 is
higher in patients with obesity than in healthy individuals [54]. TF can repress alkaline
phosphatase activities in osteoblasts due to high oxidative stress [55], and increased TF
expression increases the risk of type 1 and/or type 2 diabetes [56]. Taken together, these
findings support that the 10 candidate genes identified in the current study are associated
with metabolic disorders.

Osteoporosis commonly occurs with other endocrine system-related diseases, such
as obesity and diabetes. Bone and fat cells are known to have a common origin [57],
and osteoporosis and diabetes can both be induced by vitamin D deficiency [58]. More-
over, insulin signaling pathway-associated proteins can induce both osteoporosis and
diabetes [59]. However, studies that include osteoporosis, sarcopenia, obesity, and diabetes
are extremely rare.

In the current study, we analyzed individual differences in MSC gene expression
among participants in the control and osteoporosis groups to overcome the disadvantage of
previous studies that investigated overall expression trends. Another merit of the present
study is that using MSCs to identify osteoporosis-related DEGs enabled us to evaluate
the genetic relationship among osteoporosis, sarcopenia, obesity, and diabetes using cells
from which osteoblasts and adipocytes commonly originate. Nevertheless, this study has
some limitations. First, the mean age difference between the control and osteoporosis
groups is statistically significant. The subjects in the control group underwent surgery due
to unexpected accidents; therefore, no medical history was available and the statistical
difference was unavoidable. Second, we analyzed transcriptional differences associated
with osteoporosis-related genes (mRNA). The process of mRNA translation is not always
successful; thus, a mechanistic study of these genes is needed. The molecular mechanisms
of the identified genes will be explored in future studies.

In summary, we identified the top 25 essential systemic genes involved in osteoporosis
using IPA software and the Molecule Activity Predictor tool. Furthermore, we constructed
a network of the top 24 genes also associated with diabetes and obesity to verify their
association with osteoporosis. The study findings provide insight into the relationship
among osteoporosis, obesity, and diabetes, suggesting potential targets for osteoporosis
treatment and prevention.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes13030459/s1, Figure S1: Functional relationship networks of genes associated with the
canonical pathways related to osteoporosis development in control group participants; Figure S2:
Functional relationship networks of genes associated with the canonical pathways related to obesity
and diabetes onset in control group participants; Table S1: RNA-sequencing data of 38 genes related to
osteoblasts, osteoclasts, bone remodeling, osteoporosis, and sarcopenia in mesenchymal stromal cells
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among participants in the control group; Table S2: Genes commonly upregulated or downregulated
for control subject no. 3 according to RNA-sequencing data, compared to control participants no.
(A) 1, (B) 2, (C) 4, and (D) 5; Table S3: Expression of 24 genes related to obesity and diabetes in
mesenchymal stromal cells among participants in the control group based on RNA-sequencing data.
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