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HIGHLIGHTS
•  A narrative review was conducted of machine learning applications and research in the 

field of stroke rehabilitation.
•  Commonly used machine learning models in medical research include random forest, 

logistic regression, and deep neural networks.
•  Machine learning can be used for various purposes, such as predicting function, 

recovery, and rehabilitation of stroke patients.

Brain Neurorehabil. 2022 Nov;15(3):e26
https://doi.org/10.12786/bn.2022.15.e26
pISSN 1976-8753·eISSN 2383-9910

Yoo Jin Choo, Min Cheol Chang 

Use of Machine Learning in Stroke 
Rehabilitation: A Narrative Review

Received: Jul 1, 2022
Revised: Sep 9, 2022
Accepted: Oct 7, 2022
Published online: Oct 31, 2022

Correspondence to
Min Cheol Chang
Department of Physical Medicine and 
Rehabilitation, College of Medicine, Yeungnam 
University, 170 Hyeonchung-ro, Nam-gu, 
Daegu 42415, Korea.
Email: wheel633@gmail.com

Brain & NeuroRehabilitation

02

Special Review

http://crossmark.crossref.org/dialog/?doi=10.12786/bn.2022.15.e26&domain=pdf&date_stamp=2022-10-31


1/11

ABSTRACT

A narrative review was conducted of machine learning applications and research in the field 
of stroke rehabilitation. The machine learning models commonly used in medical research 
include random forest, logistic regression, and deep neural networks. Convolutional neural 
networks (CNNs), a type of deep neural network, are typically used for image analysis. 
Machine learning has been used in stroke rehabilitation to predict recovery of motor function 
using a large amount of clinical data as input. Recent studies on predicting motor function 
have trained CNN models using magnetic resonance images as input data together with 
clinical data to increase the accuracy of motor function prediction models. Additionally, a 
model interpreting videofluoroscopic swallowing studies was developed and investigated. In 
the future, we anticipate that machine learning will be actively used to treat stroke patients, 
such as predicting the occurrence of depression and the recovery of language, cognitive, and 
sensory function, as well as prescribing appropriate rehabilitation treatments.
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INTRODUCTION

Machine learning, an artificial intelligence (AI) technique, enables computer systems to learn 
patterns and rules from information and data provided without explicit programming [1]. 
Machine learning can be largely divided into unsupervised, supervised, reinforcement, and 
deep learning. Unsupervised learning involves predicting the results of new data by grouping 
data without ground-truth labels based on similar features [2]; it is somewhat more difficult 
than supervised learning because patterns and shapes are determined from unlabeled 
data [2,3]. Supervised learning involves using data with ground-truth labels for learning. 
Generally, classification or regression is conducted in the learning process by simultaneously 
providing input and output values [4]. Reinforcement learning involves a defined agent 
recognizing the current state and selecting a behavior or order of behaviors that maximize 
rewards among selectable behaviors in a certain environment [2,5]. Unlike supervised 
learning, reinforcement learning does not necessarily use a training set that consists of 
input and output pairs or explicitly correct and incorrect behaviors [5]. Deep learning is a set 
of machine learning algorithms that attempt high-level abstractions by combining several 
nonlinear transformations [6]. Deep learning, which uses a large amount of data to train 
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and create a model capable of processing new data [7], has been applied in various fields, 
including computer vision, voice recognition, natural language processing, and voice/signal 
processing, producing advanced outcomes [6]. The widely recognized advantages of machine 
learning include its ability to identify interactions between several variables and detect useful 
information in time-series, clinical, and imaging data [8]. Applying conventional machine 
learning may be more appropriate depending on the data size and type, but deep learning 
may be more useful when analyzing big data and detecting useful information in image 
data [8]. Large amounts of information and image data are generated regarding the clinical 
condition of stroke patients [9]. Accordingly, we believe that machine learning can be used 
to process clinical and image data and be advantageous in stroke rehabilitation. Numerous 
studies have investigated applications of machine learning in stroke research. Most studies 
have focused on predicting the prognosis after a stroke using clinical data or on predicting 
functional recovery and screening lesions using magnetic resonance (MR) images or 
videofluoroscopic swallowing study (VFSS) data [10-13].

In this study, we describe machine learning and its use in the field of stroke rehabilitation 
based on previous studies.

REPRESENTATIVE MACHINE LEARNING MODELS

The algorithm models commonly used for machine learning are random forest, boosting, 
support vector machine, logistic regression, and deep neural networks. The random forest 
method is a type of supervised learning that prevents overfitting by creating multiple decision 
trees and averaging the results from each decision tree (Fig. 1A) [14]. Thus, a random forest 
can be considered an ensemble model that performs predictions by collecting classification 
results from several decision trees constructed during training [15]. A decision tree is trained 
by identifying optimal features and an optimal critical point that can effectively classify 
the features of the input data [14]. However, the random forest method randomly selects 
multiple decision trees and identifies a model composed of a set of decision trees with 
optimal features among several sets of decision trees [16]. The random forest method has 
the advantage of determining each input data point, but the disadvantage of being difficult to 
visualize [16,17]. Furthermore, the most important limitation of the random forest approach 
is that generalizing a dataset is difficult owing to the high probability of the accuracy or area 
under the receiver operating characteristic curve being different for each patient cohort [18].

In recent years, frequently-used ensemble approaches, such as eXtreme Gradient Boosting, 
the Light Gradient Boosting Machine, and CatBoost have been considered to outperform 
the random forest method. Boosting is an ensemble technique used to create a powerful 
prediction model by combining several weak decision trees [19]. Gradient boosting is 
a representative algorithm implemented using the boosting technique, and eXtreme 
Gradient Boosting is a library implemented for parallel learning using gradient boosting. 
eXtreme Gradient Boosting demonstrates excellent predictive performance in regression 
and classification domains and has faster learning and classification speeds than gradient 
boosting models. Furthermore, it is a robust method because it is equipped with an 
overfitting control function, but it tends to react sensitively to learning data because it uses 
tree-based learning; in addition, tuning is difficult owing to complicated hyperparameters 
[20]. The Light Gradient Boosting Machine method uses leaf-wise tree segmentation and 
continuously segments leaf nodes with maximum data loss without considering the balance 

https://doi.org/10.12786/bn.2022.15.e26

Machine Learning in Stroke Rehabilitation

https://e-bnr.org


3/11

Brain & NeuroRehabilitation

02

https://e-bnr.org

of the tree; this method can minimize prediction error loss compared with a level-wise tree 
segmentation method. The Light Gradient Boosting Machine method uses less memory and 
has a short training time, automatic transformation, and optimal segmentation of categorical 
features; however, caution is required when using a small dataset because of the high 
probability of overfitting [21]. CatBoost has the advantage of solving the overfitting problem 
of gradient boosting and improving the learning speed of the algorithm over eXtreme 
Gradient Boosting and Light Gradient Boosting Machine. CatBoost is optimized for creating 
a prediction model for a categorical variable, in which input data can be used without an 
encoding process. However, missing data are not processed, and it is inappropriate to apply 
CatBoost to datasets with large amounts of missing data [22].

A support vector machine is a supervised learning model that divides a group of data by 
drawing a reference line or plane for data classification (Fig. 1B) [23]. A support vector 
machine determines the side of the boundary to which new data instances belong based 
on the divided datasets [24]. The reference line or plane is drawn as far away from each 
data point as possible [24]. Support vector machines have the advantage of providing a 
visual representation of data classification results [25]. Although support vector machines 
are powerful classifiers, they have several drawbacks. Various kernel and model parameter 
combinations must be tested to determine an optimal model in which the learning speed 
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Fig. 1. Basic structure of each type of machine learning: (A) random forest, (B) support vector machine, (C) 
logistic regression, and (D) deep neural network.
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decreases as the number of features or examples increases in the input dataset [26]. 
Furthermore, the inner workings of support vector machines may be difficult to understand 
because the model is based on complicated mathematical systems, and interpreting the 
results is challenging [26].

Logistic regression is an algorithm that applies the linear regression method for classification 
and is included in supervised learning models (Fig. 1C) [27]. This technique models the linear 
relationships between at least one independent variable and one dependent variable. The 
dependent variable is determined by calculating and applying weights for each independent 
variable [28]. To develop a linear regression model, the regression coefficients and errors 
allow the generated linear relationship to adequately fit the provided data [28]. A logistic 
regression model provides both classification and probability and has the advantage of 
better understanding the contribution of each variable to the final fit [29]. However, the 
performance tends to degrade when a decision boundary is nonlinear, and interpreting the 
weights is difficult because each weight is multiplied instead of added [30].

As a machine learning method, a deep neural network model is trained in an artificial neural 
network structure based on the neural network structure of the human brain (Fig. 1D) [31]. An 
artificial neural network consists of several hidden layers between the input and output layers 
[32]. When the input data are fed to the deep neural network, the input value is multiplied 
by weights at the nodes constituting each layer, and the output data are produced through an 
activation function [32]. Parameters such as the loss function, learning rate, optimizer, batch 
size, and the number of epochs and iterations are varied by researchers to generate a deep 
neural network, with an optimal model selected by evaluating and comparing the accuracy of 
each model generated [33,34]. The multiple layers of complex networks appear to effectively 
represent the complex nature of the input and output variables [32]. This characteristic of 
deep neural networks allows the analysis of image data in addition to clinical data [32,33]. 
A convolutional neural network (CNN), which uses multiple channels of two-dimensional 
data as input and repeatedly transforms them using convolution and pooling operations, is 
a representative deep neural network (Fig. 2) [32,34]. These processes enable the extraction 
of useful features from input data. Consequently, CNNs have been used to identify image 
patterns and process image data [32]. Transformers are another type of model frequently 
used in the computer vision field. A transformer is a neural network that learns context and 
meaning by tracking relationships within sequential data [35]. Transformers are powerful 
neural network models that can detect subtle changes in the meaning of data elements 
apart from each other as their relationships change by applying evolving mathematical 
techniques that are referred to as attention or self-attention [35]. Transformers can learn from 
voice, image, and text data and have been used in various types of technologies, including 
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translation, real-time conversion of voice to text, information extraction, and automatic 
question answering [36]. The fundamental drawback of transformers is that controlling 
attention is difficult. For example, a translator can only process character strings of a fixed 
length, while excessively long sentences must be segmented into segments or chunks of 
a certain number [37]. Nonetheless, the computation used in transformers is suitable for 
parallel processing, enabling a fast execution speed. Moreover, transformers are the most 
widely used neural network model in recent years owing to outstanding performance 
compared with CNNs and recurrent neural networks [35].

MACHINE LEARNING ALGORITHMS TRAINED ON 
CLINICAL DATA
Analyzing numerous input data to produce significant results using conventional statistical 
analysis methods is challenging. However, when the number of input data is large, machine 
learning, particularly deep learning, can be useful for identifying associations between data 
and producing meaningful outcomes.

The process of developing a machine learning algorithm using a large amount of clinical data 
as input is as follows. First, clinical data used for machine learning are collected. The clinical 
data are divided into input and target data, arranged and stored as CSV files [38]. For machine 
learning algorithms, programming languages such as Python, R, and Python-based deep 
learning frameworks such as PyTorch, TensorFlow, and Keras are typically used [39]. The data, 
divided into input and target data, are loaded onto the platform and converted into the NumPy 
array format for analysis using machine learning [39]. Subsequently, the data are stacked in a 
column and standardized. The data are then divided into training and test datasets, and the 
machine learning model is trained [39]. The accuracy of the model is tested, and the results 
are primarily presented in terms of accuracy, the receiver operating characteristic curve, 
and the area under the curve (AUC) [39]. In recent research, the precision-recall curve and 
Matthews correlation coefficient have been considered as ways to evaluate the performance 
of AI algorithms that use an imbalanced dataset, such as clinical data [40,41]. The precision-
recall curve expresses precision and recall by changing the threshold, which is a parameter, 
and the accuracy of a model’s prediction can be identified using a graph [42]. The Matthews 
correlation coefficient is typically used for addressing a binary classification problem as it 
evaluates the performance of AI algorithms by considering the balance ratio of four confusion 
matrix categories (true positive, true negative, false positive, and false negative) [41]. In 
the field of stroke rehabilitation, patients’ clinical data have been used as input variables to 
develop machine learning algorithms to predict their functional outcomes. In 2017, Gupta 
et al. [10] collected more than 200 types of clinical data from 575 patients with intracerebral 
hemorrhage (ICH); these data included demographic data, state at admission, laboratory 
results, therapeutic tools, neurological findings, complications, medical history, and state at 
discharge. Gupta et al. [10] then classified the functional outcomes at 3 and 12 months after 
ICH onset as “good” or “poor” based on the National Institutes of Health Stroke Scale score, 
modified Rankin Scale score, Acute Physiology and Chronic Health Stroke Scale score, and 
Glasgow Coma Scale. They used a random forest model and obtained AUCs between 0.87 
and 0.89. In 2018, Lin et al. [11] recruited 313 stroke patients and collected their clinical data 
during the early stage following stroke onset. Their data included the Barthel index, Berg 
balance scale, Fugl–Meyer assessment, 6-minute walk test, Mini-Mental State Examination, 
aphasia test, and dysphagia scale, which were used as input variables. The functional status at 
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discharge was used as the output variable and was classified into three categories according 
to the Barthel index: ≥ 91, slight dependence; 61–90, moderate dependence; ≤ 60, extreme 
dependence. Random forest, logistic regression, and support vector machine models were 
used to develop the machine learning algorithm models, and the AUCs of the models were 
0.792, 0.762, and 0.774, respectively. In 2019, Heo et al. [43] recruited 2,604 patients and 
collected data based on 38 variables, including age, sex, time from onset at admission, blood 
pressure, previous medical history, National Institutes of Health Stroke Scale score, and 
laboratory findings, to develop machine learning models for predicting motor outcomes 3 
months post-stroke. They classified motor outcomes as “favorable” and “poor” following the 
measured modified Rankin Scale at 3 months post-stroke: ≤ 2: favorable, > 2: poor. The AUCs 
of the logistic regression, random forest, and deep neural networks were 0.849, 0.857, and 
0.888, respectively.

However, it is difficult to apply models for the prognosis of patients with stroke that use 
a large amount of clinical data as input in the clinical domain because each hospital has 
different clinical data and tools for evaluating patient conditions. If any input and output 
variables used in model development are omitted, the developed model cannot be applied. 
Therefore, Kim et al. [44] recruited 833 stroke patients in 2022 and developed a model for 
predicting upper and lower extremity function using only essential patient data as input: 
age, sex, type of stroke (ischemic or hemorrhagic), modified Brunnstrom classification, 
functional ambulatory category, and Medical Research Council score at an early stage (8–30 
days following stroke onset). The model produced AUCs of 0.736–0.836. Random forest, 
logistic regression, and deep neural network methods were used for model development, and 
the performance of the deep neural network was the highest.

Furthermore, based on data from 474 stroke patients in 2021, Choo et al. [45] constructed a 
model for predicting the necessity of applying an ankle-foot orthosis in early-stage patients 6 
months following stroke onset. The prediction performances of the random forest, logistic 
regression, and deep neural network models were 0.855, 0.845, and 0.887, respectively.

MACHINE LEARNING ALGORITHMS TRAINED ON IMAGE 
DATA
Several attempts have recently been made to construct models for predicting the prognosis 
of stroke patients by learning from brain MR images. In 2021, Kim et al. [13] recruited 221 
corona radiata infarct patients and developed a CNN model to predict the independent gait of 
patients 6 months following the onset of the infarct by extracting three T2-axial consecutive 
brain MR images at the levels of the lateral ventricle body from each patient as input data; the 
AUC of the model was 0.751. In 2021, Liang et al. [46] developed an algorithm that predicted 
post-stroke somatosensory function using the MR images and tactile discrimination test 
results of 40 patients with chronic stroke. Linear regression and a support vector machine 
model were used to develop the prediction model; two engineered feature pools (i.e., low- 
and high-order functional connectivity, or low-order functional connectivity only) and four 
prediction models were built and evaluated. Consequently, a regression model that used both 
low- and high-order functional connectivity predicted the results based on the correlation 
coefficient (r = 0.54, p = 0.0002). In 2022, Kim et al. [47] used clinical data, including age, 
sex, modified Brunnstrom classification, functional ambulation score, and Medical Research 
Council score at an early stage (8–30 days following stroke onset), and MR image data (three 
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images from each patient) of the same 221 corona radiata infarct patients as input to develop 
the prediction model. This study demonstrated that an integrated algorithm trained using 
clinical data of patients and brain MR images could improve the accuracy of the prediction 
of long-term upper extremity function and ambulatory outcomes. In 2022, Meng et al. [48] 
developed a model that predicted hemorrhagic transformation using multiple parameter 
MR images of 71 patients with acute ischemic stroke. Multiple-parameter MR images were 
divided into normal regions of interest (ROIs) and abnormal ROIs to build a radiomics model 
using the random forest method. The radiomics model with an all-ROI feature obtained 
an AUC of 0.871, whereas the model with only an abnormal ROI feature obtained an AUC 
of 0.831. The AUC was further improved to 0.911 when the radiomics feature and clinical 
data were combined. This model may significantly help doctors diagnose the hemorrhage 
transformation of patients with acute ischemic stroke. In 2022, Mutke et al. [49] collected 
MR images and clinical data of 210 patients with acute ischemic stroke and large vessel 
occlusion for whom mechanical thrombectomy was performed. The data were used to 
predict favorable and poor outcomes after mechanical thrombectomy. The AUCs for two 
prediction scenarios were examined using seven machine learning algorithms: ElasticNet, 
generalized linear model, Lasso algorithm, multilayer perceptron, naive Bayes, support 
vector machine classifier, and tree boosting. Tree boosting provided the highest accuracy in 
the prediction models for favorable and poor outcomes, with the AUCs of both prediction 
models being 0.73. In 2022, Shin et al. [50] developed a CNN model for functional prediction 
using the brain MR images of 1,233 patients during early-stage stroke onset (20.8 images on 
average); the entire image was configured in three dimensions at the entire-brain level as the 
input data. The prediction performance in terms of the AUC of the upper extremity function 
was 0.768, and that of the lower extremity function was 0.828.

Dysphagia is a common complication in stroke patients [51], causing pneumonia and 
potentially resulting in death; thus, accurately evaluating the incidence of dysphagia is critical 
[51]. The standard diagnostic tool for dysphagia is the VFSS [12]. In 2022, Kim et al. [12] used 
the VFSS image data of 190 dysphagia patients, including 190 stroke patients, to construct 
an AI model using a CNN that distinguished “normal,” “penetration,” and “aspiration.” The 
developed model exhibited a high accuracy, with AUCs of 0.942, 0.878, and 1.000, respectively.

Numerous algorithms are being developed for using medical image data, such as MR images 
and computed tomography, to help diagnose and make treatment decisions. However, it 
must not be overlooked that using a high-quality dataset is a prerequisite for obtaining 
excellent learning and analysis results when using image data. According to professional 
organizations such as the Radiological Society of North America and the American 
Association of Physicists in Medicine, the systematic curation of high-quality image datasets 
affects AI development speed [52]. Therefore, caution should be taken not to use low-quality 
image data, including low-resolution, excessively small, and noisy images, for analysis and 
evaluation [53].

CONCLUSION

We reviewed machine learning research and its applications in the field of stroke 
rehabilitation. To date, machine learning models have been developed to predict the 
prognosis of motor function in stroke patients using clinical data and MR images as input 
data. Moreover, a machine learning model was developed to interpret the VFSS test. The 
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results of previous studies imply that machine learning can be useful in clinical settings; 
such studies are important foundations for developing more valuable and accurate AI 
algorithms. However, most research on machine learning has focused on the internal 
validation of retrospective data, with insufficient research that performed external validation. 
Therefore, future studies should perform external validation to ensure that a similar level of 
performance can be demonstrated even when using data from diverse regions or countries 
to reduce generalization errors. AI is expected to be applied in predicting depression and 
language, cognitive, and sensory function recovery in stroke patients. However, for further 
improving the clinical usefulness of AI in the stroke rehabilitation field, simply predicting 
a favorable or poor outcome for patients after they suffer from stroke may be insufficient. 
Practical AI algorithms can be developed for healthcare professionals and patients, such 
as prescribing appropriate treatment for each patient in real time according to individual 
characteristics during clinical practice or predicting and providing rehabilitation treatment 
periods and costs. We expect AI to be increasingly applied in the future for various purposes 
in the stroke rehabilitation field. A basic knowledge of machine learning is essential for 
understanding research results and conducting research using machine learning. We hope 
that clinicians in the stroke rehabilitation field find this review useful for studying and 
understanding machine learning.
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