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Abstract: Fungi are widely distributed in the terrestrial environment, freshwater, and marine habitat.
Only approximately 100,000 of these have been classified although there are about 5.1 million
characteristic fungi all over the world. These eukaryotic microbes produce specialized metabolites
and participate in a variety of ecological functions, such as quorum detection, chemical defense,
allelopathy, and maintenance of symbiosis. Fungi therefore remain an important resource for the
screening and discovery of biologically active natural products. Sesquiterpenoids are arguably the
richest natural products from plants and micro-organisms. The rearrangement of the 15 high-ductility
carbons gave rise to a large number of different skeletons. At the same time, abundant structural
variations lead to a diversification of biological activity. This review examines the isolation, structural
determination, bioactivities, and synthesis of sesquiterpenoids that were specially produced by fungi
over the past five years (2015–2020).
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1. Introduction

Fungi are undoubtedly important resources for natural products discovery. With the
advancement of natural product research, the importance of its biological resources has
been infinitely enlarged. In the giant natural product system of fungi, sesquiterpenes, due
to their carbon skeletons and amounts, are the largest of all types. The C-15-hydrocarbon
skeletal system of various sesquiterpenoids isolated from fungi, bacteria, and plants are
synthesized from farnesyl pyrophosphate (FPP) under the catalysis of sesquiterpene syn-
thases [1,2]. Sesquiterpene synthases catalyze different initial cyclization reactions to
produce secondary or tertiary cyclic carbocation intermediates, which can then be further
cyclized and reassembled until carbocation quenching at the active center, followed by
the enzymatic release of the final sesquiterpenoid scaffold (Figure 1) [3]. A huge number
of sesquiterpenoids were, consequently, produced [4–6]. Among various other resources,
fungal species have an enormous contribution owing to their potential to carry out the
bio-transformations and drug synthesis under environmentally acceptable conditions. For
instance, hydroxymethylacylfulvene (HMAF) is a semisynthetic antitumor agent based on
the naturally occurring illudin S occurring in the mushroom Omphalotus olearius [7]. It has
been advanced into human clinical trials for the treatment of cancers [8,9]. Trichothecenes,
a class of tricyclic sesquiterpenes produced by a wide variety of fungi, are toxic to animals
and humans and frequently present in cereal crops. They have attracted much attention in
the areas such as agriculture, food contamination, and health care [10–13].

Our research group has been engaged in the study of the chemical composition of
fungi for decades [14,15], while a large number of sesquiterpenoids have been reported [6].
It has been found that the vast majority of skeletons, such as alliacane, bergamotane,
hirsutane, tremulane, etc., are specially produced by fungi. Many compounds displayed
significant biological activities, and it is obvious that cytotoxic activity accounts for the
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largest proportion (Figure 2). In addition, with the development of synthetic biology, the
biosynthesis of many fungal sesquiterpenoids has been figured out. This review gives an
overview about the structures, biological activities, chemical synthesis and biosynthesis of
sesquiterpenoids specially produced by fungi presented from 2015 to 2020.

J. Fungi 2021, 7, x FOR PEER REVIEW 2 of 50 
 

 

OPP
FPP

1

3

7

10

11

1,10 closure

trans-Humulyl cation

Presilphiperfolane

Protoilludane

Collobial

E,E-Germacradienyl cation

Germacrene A

H

H

α-Muurolene

Aristolochene ionization
2,3 rotation

3R-NPP

OPP

1,10 closure

Z,E-Germacradienyl cation

(-)-Germacrene D Cubebol

H OH

epi-Zonarene

H

Cadinene

H

1,7 closure 1,6 closure

Cycloheptenyl cation

Daucene trans-Dauca-4(11),8-diene

H

Bisabolyl cation

β-Barbatene

1

6

2

1

6

1

7

α-Barbatene α-Cuprenene Trichodiene

3

7

11

7
11 6

1
3

HO α-Acorenol
OH

Longiborneol

1

6

3
11

1

6
11

3

4

1

7
3

11

10 1
1

10

1
11

1
113

7

4

1
11

7
1

11

3

7

1,11 closure

Silphinane TremulanePunctaporonane

Capnellane Africanane

Ceratopicane

Hirsutane Cucumane

Pleurotellane

Pentalenene Illudin Lactarane

Bullerane

Sterpurane Iso-Lactarane

Hydrogammane Formannosane

O
O

H OH

Trichothecene

72

6

1

Bergamotane

1

6

FusariumdieneAcoradiene  

Figure 1. Cyclization of FPP by characterized fungal sesquiterpene synthases (Reference [3]). 
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Figure 2. The proportion of one activity compared to the whole occurrence of activities of bioactive
fungal sesquiterpenoids.

2. Composition and Bioactivities
2.1. Alliacane, Cadinene, Azulene, and Zierane

Nine alliacane sesquiterpenoids inonoalliacanes A–I 1a/1b–6a/6b–7–9 were isolated
from the culture broth of the basidiomycete Inonotus sp. BCC 22670 [16]. Inonoalliacane A 1
exhibited moderate antibacterial activity against Bacillus cereus with a minimum inhibitory
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concentration (MIC) value of 25 µg/mL. Inonoalliacane B 2 showed antiviral activity
against herpes simplex virus type 1 (HSV-1) with IC50 of 17 µg/mL.

Clitocybulols G–O 10–18, highly oxidized alliacane sesquiterpenoids, were isolated
from the solid culture of the edible fungus Pleurotus cystidiosus [17]. Clitocybulols G 10
and L 15 showed weak inhibitory activity against protein tyrosine phosphatase-1B (PTP1B)
with IC50 values of 49.5, 38.1 µM, respectively.

In the 1H NMR-guided fractionation of extracts from the edible mushroom Lactar-
ius deliciosus, two new azulene-type sesquiterpenoids 19 and 20 were characterized [18].
Pestabacillin A 21 bearing a zierane-type sesquiterpene skeleton was isolated from the
co-culture of the endophytic fungus Pestalotiopsis sp. with Bacillus subtilis [19]. Furthermore,
the absolute configuration of 21 was confirmed by single-crystal X-ray diffraction analysis.
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2.2. Bergamotane, Spiroaminal, and Spiroaxane

Bergamotane sesquiterpenes bearing a bridged 6/4 bicyclic ring incorporated with
an isopentyl unit, are naturally occurring in plants and fungi [20,21]. A new class of
polyoxygenated bergamotanes with notable features inspired by a 6/4/5/5 tetracyclic
ring system was very rare in nature and all examples of the polycyclic bergamotanes only
derived from fungi [22–25].
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Purpurolide A 22, an unprecedented sesquiterpene lactone with a rarely encountered
5/5/5 spirocyclic skeleton, along with five new 6/4/5/5 tetracyclic sesquiterpene lactones
(purpurolides B–F 23–27), was isolated from the cultures of the endophytic fungus Peni-
cillium purpurogenum [26,27]. The structures and absolute configurations of 22–27 were
established by spectroscopic analysis, a single-crystal X-ray diffraction, and calculations
of the 13C NMR and ECD data. The plausible biosynthetic pathway of 22–27 is shown
in Scheme 1. Compounds 22–27 showed significant inhibitory activity against pancreatic
lipase with IC50 values of 1.22–7.88 µM.
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Expansolides C 28 and D 29 were two new bergamotane sesquiterpene lactones
isolated from the plant pathogenic fungus Penicillium expansum [28]. The epimeric mixture
of expansolides C 28 and D 29 (in a ratio of 2:1 at the temperature of the bioassay) exhibited
more potent α-glucosidase inhibitory activity (IC50 0.50 mM) as compared with the positive
control acarbose (IC50 1.90 mM) in an in vitro bioassay.

Donacinolides A 30 and B 31 and donacinoic acids A 32 and B 33, four new rare tetra-
cyclic bergamotane-type sesquiterpenoids, were isolated from the mushroom-associated
fungus Montagnula donacina [29]. Two new β-bergamotane sesquiterpenoids 34 and 35
were isolated from the marine-derived fungus Aspergillus fumigatus [30]. Brasilamides K–N
36–39 were isolated from the plant endophytic fungus Paraconiothynium Brasiliense [31].

Sporulaminals A 40 and B 41, a pair of unusual epimeric spiroaminal derivatives
bearing a 6/4/5/5 tetracyclic ring system derived from bergamotane sesquiterpenoid
(Scheme 2), were isolated from a marine-derived fungus Paraconiothyrium sporulosum [32].
Pleurospiroketal F 42, a new perhydrobenzannulated 5,5-spiroketal sesquiterpene was
isolated from solid-state fermentation of Pleurotus citrinopileatus, and the absolute configu-
ration of 42 was determined by single-crystal X-ray diffraction analysis [33].

Flammuspirones A–J 43–52, ten spiroaxane sesquiterpenoids, were obtained from the
edible mushroom Flammulina velutipes [34]. Flammuspirones A 43 and C 45 showed inhibi-
tion on HMG-CoA reductase with IC50 of 114.7 and 77.6 µM, respectively. Flammuspirones
C–E 45–47 and H 50 showed inhibitory activity on DPP-4 with IC50 values in the range
from 70.9 to 83.7 µM.

Talaminoid A 53 was obtained from the fungus Talaromyces minioluteus [35]. Ta-
laminoid A 53 showed a significant suppressive effect on the production of nitric oxide
(NO) on lipopolysaccharide (LPS) induced BV-2 cell, with IC50 of 5.79 µM. In addition,
talaminoid A 53 exhibited significant anti-inflammatory activities against the production
of TNF-α and IL-6. Further immunofluorescence experiments revealed the mechanism
of action to be inhibitory the NF-κB-activated pathway. A new sesquiterpenoid 54 was
isolated from the fungus Pholiota nameko [36]. Tramspiroins A–D 55–58 have been isolated
from the cultures of Basidiomycete Trametes versicolor [37].
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2.3. Carotane, Cyclonerane, Cyclofarnesane, and Longifolene

A new dimeric sesquiterpene divirensol H 59 and two exceptionally novel trimeric
sesquiterpenes trivirensols A 60 and B 61 were purified from an endophytic fungus Tricho-
derma virens [38]. Divirensol H 59 showed significant activities against fungi Penicillium
italicum, Fusarium oxysporum, Fusarium graminearum, Colletotrichum musae, and Colletotric-
tum gloeosporioides with MIC values of 6.25 to 25 µg/mL. Rhinomilisin A 62 and four new
heptelidic acid derivatives, rhinomilisin B–E 63–66, were isolated from the endophytic
fungus Rhinocladiella similis [39]. Rhinomilisins A 62 showed moderate cytotoxicity activity
against the mouse lymphoma cell line L5178Y with an IC50 value of 5.0 µM.
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Peniterester 67, a new tricyclic sesquiterpene was isolated from the secondary metabo-
lites of an artificial mutant Penicillium sp. T2-M20 [40]. Peniterester 67 showed significant
activities against Bacillus subtilis, Escherichia coli, and Staphylococcus aureus in vitro with
MICs of 8.0, 8.0, and 4.0 µg/mL, respectively.

Piltunines A–F 68–73 and penigrisacids A–D 74–77, ten new carotane sesquiterpenoids,
were isolated from the marine-derived fungus Penicillium griseofulvum and Penicillium
piltunense, respectively [41,42]. Penigrisacid D 75 showed a weak effect on ECA-109
tumor cells with an IC50 value of 28.7 µM [41]. Trichocarotins A–H 78–85, eight new
carotane sesquiterpenes, were isolated from the culture of the fungus Trichoderma virens [43].
Trichocarotins C–E 80–82 and H 85 displayed potent inhibition against the four marine
phytoplankton species (Chattonella marina, Heterosigma akashiwo, Karlodinium veneficum, and
Prorocentrum donghaiense) tested, especially against C. marina with IC50 values ranging from
0.24 to 1.2 µg/mL.
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Trichocaranes E 86 and F 87 were isolated from cultures of the insect pathogenic fungus
Isaria fumosorosea [44]. Trichocaranes E 86 and F 87 showed potent cytotoxic activities
against six tumor cell lines MDA, MCF-7, SKOV-3, Hela, A549, and HepG2 with IC50
values in a concentration range of 0.13–4.57 µg/mL. Two new carotane-type biogenetically
related sesquiterpenes, aspterrics A 88 and B 89, were isolated from the deep-sea-derived
fungus Aspergillus terreus [45].
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Two new cycloneranes 90 and 91 were isolated from the marine alga endophytic fun-
gus Trichoderma citrinoviride [46]. The compound 90 had an inhibition to the marine phy-
toplankton species Karlodinium veneficum with an IC50 value of 8.1 µg/mL. Six new cy-
cloneranes 92–97 were isolated from the fungus Trichoderma harzianum [47–49]. The three 
new ones 95–97 all exhibited growth inhibition of the four phytoplankton species (Chat-
tonella marina, Heterosigma akashiwo, Karlodinium veneficum, and Prorocentrum donghaiense) 
with IC50 values ranging from 0.66 to 75 µg/mL [49].  

Cyclonerotriol B 98 was isolated from the soil fungus Fusarium avenaceum [50]. Cy-
clonerodiol B 99 was isolated from the mangrove plant endophytic fungus Trichoderma sp. 
Xy24 [51]. Cyclonerodiol B 99 exhibited significant neural anti-inflammatory activity by 
inhibiting LPS-induced NO production in BV2 cells with the inhibitory rates of 75.0% at 
0.1 µM, which are more potent than curcumin, positive control with the inhibitory rate of 
21.1% at 0.1 µM.  

Two new cycloneranes 90 and 91 were isolated from the marine alga endophytic
fungus Trichoderma citrinoviride [46]. The compound 90 had an inhibition to the marine
phytoplankton species Karlodinium veneficum with an IC50 value of 8.1 µg/mL. Six new
cycloneranes 92–97 were isolated from the fungus Trichoderma harzianum [47–49]. The three
new ones 95–97 all exhibited growth inhibition of the four phytoplankton species (Chat-
tonella marina, Heterosigma akashiwo, Karlodinium veneficum, and Prorocentrum donghaiense)
with IC50 values ranging from 0.66 to 75 µg/mL [49].

Cyclonerotriol B 98 was isolated from the soil fungus Fusarium avenaceum [50]. Cy-
clonerodiol B 99 was isolated from the mangrove plant endophytic fungus Trichoderma sp.
Xy24 [51]. Cyclonerodiol B 99 exhibited significant neural anti-inflammatory activity by
inhibiting LPS-induced NO production in BV2 cells with the inhibitory rates of 75.0% at
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0.1 µM, which are more potent than curcumin, positive control with the inhibitory rate of
21.1% at 0.1 µM.
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farnesane 111, a new cyclofarnesane sesquiterpenoid, was isolated from cultures of the
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sesquiterpenoid was isolated from the endophytic fungus Trichoderma koningiopsis [57].

Bipolenin F 114, a new seco-longifolene sesquiterpenoid, and two new seco-sativene
sesquiterpenoids, bipolenins D 115 and E 116, and two novel sesquiterpenoid-xanthone
adducts, bipolenins I 117 and J 118, were obtained from cultures of potato endophytic
fungus Bipolaris eleusines [58,59]. Bipolenins I 117 and J 118 exhibited potent inhibitory
activity against the plant pathogens Alternaria solani with MIC values of 8 and 16 µg/mL,
respectively [59].
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2.4. Cerapicane, Cucumane, Cuparene, Hirsutane, Isohirsutane, and Triquinane

Cuparane-type sesquiterpenoids of fungal origin possess a skeleton with a six-membered
ring connected to a five-membered ring, of which the six-membered ring is always aromatic.
Linear triquinane sesquiterpenoids have a basic skeleton 1H-cyclopenta[α]pentalene [60].
Many compounds displayed a wide range of biological activities, such as cytotoxic, an-
timicrobial, and anti-inflammatory activities. A review gives an overview about the isola-
tion, structure, biological activities, and chemical synthesis of linear triquinane sesquiter-
penoids [61].
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Enokipodins A–D 119–122, highly oxygenated cuparene-type sesquiterpenes were ob-
tained from the fungi Flammulina rossica and Flammulina velutipes. In addition, enokipodins
B 121 and D 122 are oxidized compounds of enokipodins A 119 and C 120, respectively [62].

One new cerapicane cerrenin A 123, and two new isohirsutane sesquiterpenoids cer-
renins B 124 and C 125, were isolated from the broth extract of Cerrena sp. which was
isolated from Pogostemon cablin [63]. Trefoliol C 126, one new cucumane sesquiterpenoid,
was isolated from cultures of the basidiomycetes Tremella foliacea [64]. A new sesquiter-
penoid 127 was isolated from the crude extract of Antrodiella albocinnamomea [65]. Two new
hirsutane-type sesquiterpenoids, chondrosterins N 128 and O 129, were isolated from the
marine fungus Chondrostereum sp. [66].

Ten new hirsutane-type sesquiterpenoids, sterhirsutins C–L 130–139, were isolated
from the culture of Stereum hirsutum [67]. Sterhirsutins C 130 and D 131 possessed an
unprecedented chemical skeleton with a 5/5/5/6/9/4 fused ring system, and the abso-
lute configuration of sterhirsutin C 130 was assigned by single-crystal X-ray diffraction
experiment. Sterhirsutin L 139 was the first sesquiterpene coupled with a xanthine moi-
ety. Sterhirsutins C–L 130–139 showed cytotoxicity against K562 and HCT116 cell lines,
and sterhirsutin K 138 induced autophagy in HeLa cells. Sterhirsutin G 133 inhibited the
activation of the IFNβ promoter in Sendai virus-infected cells.

Cerrenins D 140 and E 141, two new triquinane-type sesquiterpenoids, were obtained
from the endophytic fungus Cerrena sp. A593 [68]. Chondrosterins K–M 142–144 were
isolated from the marine fungus Chondrostereum sp. [69]. Chondrosterins K–M 142–144
showed different degrees of cytotoxicities against various cancer cell lines (CNE1, CNE2,
HONE1, SUNE1, A549, GLC82, and HL7702) in vitro, with IC50 values ranging from 12.03
to 58.83 µM.

J. Fungi 2021, 7, x FOR PEER REVIEW 12 of 50 
 

 

Enokipodins A–D 119–122, highly oxygenated cuparene-type sesquiterpenes were 
obtained from the fungi Flammulina rossica and Flammulina velutipes. In addition, enokip-
odins B 121 and D 122 are oxidized compounds of enokipodins A 119 and C 120, respec-
tively [62].  

One new cerapicane cerrenin A 123, and two new isohirsutane sesquiterpenoids cer-
renins B 124 and C 125, were isolated from the broth extract of Cerrena sp. which was 
isolated from Pogostemon cablin [63]. Trefoliol C 126, one new cucumane sesquiterpenoid, 
was isolated from cultures of the basidiomycetes Tremella foliacea [64]. A new sesquiterpe-
noid 127 was isolated from the crude extract of Antrodiella albocinnamomea [65]. Two new 
hirsutane-type sesquiterpenoids, chondrosterins N 128 and O 129, were isolated from the 
marine fungus Chondrostereum sp. [66].  

Ten new hirsutane-type sesquiterpenoids, sterhirsutins C–L 130–139, were isolated 
from the culture of Stereum hirsutum [67]. Sterhirsutins C 130 and D 131 possessed an un-
precedented chemical skeleton with a 5/5/5/6/9/4 fused ring system, and the absolute con-
figuration of sterhirsutin C 130 was assigned by single-crystal X-ray diffraction experi-
ment. Sterhirsutin L 139 was the first sesquiterpene coupled with a xanthine moiety. Ster-
hirsutins C−L 130–139 showed cytotoxicity against K562 and HCT116 cell lines, and ster-
hirsutin K 138 induced autophagy in HeLa cells. Sterhirsutin G 133 inhibited the activation 
of the IFNβ promoter in Sendai virus-infected cells. 

Cerrenins D 140 and E 141, two new triquinane-type sesquiterpenoids, were obtained 
from the endophytic fungus Cerrena sp. A593 [68]. Chondrosterins K–M 142–144 were iso-
lated from the marine fungus Chondrostereum sp. [69]. Chondrosterins K–M 142–144 
showed different degrees of cytotoxicities against various cancer cell lines (CNE1, CNE2, 
HONE1, SUNE1, A549, GLC82, and HL7702) in vitro, with IC50 values ranging from 12.03 
to 58.83 µM. 

 



J. Fungi 2021, 7, 1026 13 of 48

Antrodins A–E 145–149 were isolated from the fermentation of Antrodiella albocin-
namomea [70]. Tremutin H 150 was isolated from cultures of the basidiomycetes Irpex
lacteus [71]. The absolute configuration of 150 was determined by single-crystal X-ray
diffraction analysis, and 150 shows a weak inhibitory effect on NO production with an IC50
value of 22.7 µM.

2.5. Eudesmanolide, Gymnomitrane, and Humulane

Humulane-type sesquiterpenoids are found rarely in nature. They have been recog-
nized as being biogenetic precursors of many types of sesquiterpenoids [6]. The macrocyclic
nature of members of the humulane group has proved to be troublesome for the determi-
nation of their absolute configurations.

Four new 12,8-eudesmanolides 151–154 were isolated from a mangrove rhizosphere-
derived fungus Eutypella sp. 1–15 [72]. Periconianone A 155, a polyoxygenated sesquiter-
penoid with a new 6/6/6 tricarbocyclic skeleton, was isolated from the endophytic fungus
Periconia sp., and the biosynthesis of the unusual six-membered carbonic ring of 155 was
postulated to be formed through intramolecular aldol condensation (Scheme 3) [73]. The
first enantioselective total synthesis of the periconianone A 155 based on a postulated
biogenesis has been reported (Scheme 4) [74].
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An unusual type sesquiterpene 156 possessed an unusual 14(7-6)-cuparane scaffold
(Scheme 5), and six rarely-encountered gymnomitrane-type sesquiterpenoids 157–162,
were isolated from the medicinal mushroom Ganoderma lingzhi [75]. A new gymnomitrane-
type sesquiterpenoid 163 was isolated from the fruiting body of Ganoderma lucidum [76].
This compound 163 significantly inhibited the growth of epidermal growth factor receptor-
tyrosine kinase inhibitor EGFR-TKI-resistant human lung cancer A549 and human prostate
cancer PC3 cell lines. Antrodin F 164 was isolated from the fermentation of Antrodiella
albocinnamomea [70].

Nine new humulane-derived sesquiterpenoids, ochracenes A–I 165–173, were isolated
from the Antarctic fungus Aspergillus ochraceopetaliformis [77]. A biogenetic pathway for
them was given in Scheme 6. The two unprecedented 8,9-secocyclic sesquiterpenoids,
ochracenes B 166 and C 167, exhibited inhibitory effects on LPS-induced NO release in
RAW 264.7 mouse macrophage cell with IC50 values of 14.6 and 18.3 µM, respectively.
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2.6. Illudane, Illudalane, Protoilludane, Marasmane, and Norilludane

A review offers a comprehensive description of the investigations that started with
the discovery of illudins in 1950, led to HMAF clinical trials against various tumors as a
single agent and in combination therapy beginning in 2002, and culminated in the past
decade of advances in chemical synthesis and mechanisms of toxicity of AFs, including
biotransformation processes, DNA alkylation products, unique influences of DNA repair
capacities, and enzyme inhibition properties [9]. The 4/6/5 ring-fused protoilludane-type
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sesquiterpenoids are the precursors of many other sesquiterpenoids, representing the
largest group of sesquiterpene metabolites of fungal origin.

Phellinignin D 174 was isolated from the fungus Phellinus igniarius, which possessed a
new carbon skeleton that might derive from an illudane framework by methyl shift and
aromatization [78]. Phellinignin D 174 showed moderate cytotoxicities to three human
cancer cell lines (HL-60, SMMC-7721, and SW480) with the IC50 values of 21.1, 12.3, and
13.9 µM, respectively.

Illudadienes A 175 and B 176 were obtained from the wood-decomposing fungus
Granulobasidium vellereum [79]. Phellinuin J 177 and sulphureuine A 178 were isolated from
cultures of Phellinus tuberculosus and Laetiporus sulphureus [80]. Agrocybins H–K 179–184
were obtained from the edible mushroom Agrocybe salicacola [81]. Craterellins D 185 and
E 186 were isolated from cultures of Craterellus cornucopioides [82]. Illudalane derivative,
granulolactone 187, and a 15-norilludane, granulodione 188, were isolated from an agar
plate culture of Granulobasidium vellereum [83].
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Two new disesquiterpenoid derivatives, bovistol B 189 and C 190, and a new protoil-
ludane derivative, pasteurestin C 191, were isolated from the fermentation broth of the
edible mushroom Cyclocybe aegerita [84]. Four illudalanes 192–195, an unusual 2,3-seco-
protoilludane 196, and eight protoilludanes 197–204 were identified from the liquid culture
of the endophytic fungus Phomopsis sp. TJ507A [85]. Phomophyllins A–G 196–202, and
phomophyllin I 204 displayed β-site amyloid precursor protein cleaving enzyme 1 (BACE1)
inhibitory activities ranging from 19.4% to 43.8% at the concentration of 40 µM.

Epicoterpenes A–E 205–209, and armilliphatic A 210 were isolated from Armillaria
sp. by co-culture with the endophytic fungus Epicoccum sp. associated with Gastrodia
elata [86]. Epicoterpene D 208 was the first example of an ent-protoilludane sesquiterpenoid
scaffold bearing a five-membered lactone. Two new protoilludane sesquiterpene aryl esters
211 and 212 were isolated from the mycelium of Armillaria mellea [87]. Compound 212
showed cytotoxic activity for HepG2 cells with an IC50 value of 18.03 µg/mL. Three new
sesquiterpene aryl esters, melleolide N 213, Q 214, and R 215, were isolated from the EtOH
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extract of the mycelium of Armillaria mellea [88]. And 213–215 showed cytotoxicity to
several human cancer cell lines.
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Unified total syntheses of marasmane, mellolide, and protoilludane sesquiterpenoids
have been achieved through a key organocatalytic enantioselective annulation (Scheme 7) [89].
The elaboration of key bicyclic lactone 216 was the molecular springboard from which the
first enantioselective total syntheses of protoilludanes echinocidin B 220 and echinocidin D
221, and the mellolide armillaridin 219, as well as the synthesis of the marasmane isovelleral
222, were accomplished. The vanadium(II)/zinc(II) reductive coupling yielded the final
ring of the densely functionalized cis-fused carbocyclic core. Finally, the unexpected semi-
Pinacol-type ring contraction to establish cyclopropyl aldehyde 218 from cyclobutanediol
217 was potentially biomimetic in origin.
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2.7. Botryane and Seco-Probotryane

A botryane-type sesquiterpenoid 223 was identified from the liquid culture of the
endophytic fungus Phomopsis sp. TJ507A [85]. Arthrinins E–G 224–226, three new sesquiter-
penoids possessing non-isoprenoid botryane skeleton, were isolated from the endophytic
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fungus Arthrinium sp. HS66 [90]. Five new botryanes 227–231 were obtained from an
endophytic fungus Nemania bipapillata [91]. Five new botryanes 232–236 were isolated
from Trichoderma oligosporum [92]. Compounds 236 showed moderate cytotoxicity activity
against K562 cells with an inhibitory rate of 45–60% at 6.25 µM (Taxol was used as a positive
control with 60.3% inhibition at 2.0 µM).

A new 10-norbotryane derivative 237 and three new botryanes 238–240 were isolated
from the ascomycete Hypoxylon rickii [93,94]. Five new botryanes 241–245, along with
4,5-seco-Probotryenols A–C 246–248 derived from cleavage of the probotryane skeleton at
C-4/C-5, were isolated from Stachybotrys bisbyi [95]. Six new heterodimeric botryane ethers,
hypocriols A–F 249–254, were isolated from the insect-associated Hypocrea sp. EC1-35 [96].
A plausible biosynthetic pathway for 249–254 was given (Scheme 8). Hypocriols A–D
249–252 and F 254 showed significant activity against the HeLa cell, with IC50 values of 7.7,
3.1, 11.8, 3.8, and 4.6 µM, respectively. Hypocriol F 254 inhibited the proliferation of the
HCT116 cell, showing an IC50 value of 2.7 µM.
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2.8. Tremulane, Sterpurane, Phlebiane, Merulane, and Irlactane

Tremulane-type sesquiterpenoids are a class of sesquiterpenoids with a 5/7-ringfused
perhydroazulene carbon skeleton. The first example was isolated from the wood-decaying
fungus Phellinus tremulae in 1993 [97]. The biosynthesis pathway was elucidated through
a 13C-labeled feeding experiment revealed that tremulanes are derived from trans,trans-
farnesyl pyrophosphate via humulene and a key step of methyl migration [98].

A new irlactane-type, irlactin K 255, was isolated from the fermentation broth of the
medicinal fungus Irpex lacteus [99]. The absolute configuration of 255 was established
by single-crystal X-ray diffraction analysis. Irlactin K 255 could be derived from the
tremulane type sesquiterpene irlactin E via a ring rearrangement [100]. Conosiligins
A–D 256–259, four ring-rearranged sesquiterpenoids, were isolated from cultures of the
basidiomycete Conocybe siliginea [101]. Conosiligins A 256 and B 257 possessed a 5/8-fused
ring system, while conosiligin C 258 has a 5/6-fused backbone conjugated with a γ-lactone.
Conosiligin D 259 was a 5,6-seco tremulane derivative with the loss of a skeletal carbon,
featuring a tetracyclic system involving a pyranone moiety (Scheme 9). Conosiligins C
258 and D 259 inhibited Con A-induced T cell proliferation with IC50 values of 12.3 and
6.6 µM, respectively.
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Antroalbocin A 260 possessing a bridged tricyclic system was isolated from cultures of
the higher fungus Antrodiella albocinnamomea [102]. The structure with the absolute configu-
ration was determined by extensive spectroscopic methods and single-crystal X-ray diffrac-
tion analysis and a plausible biosynthetic pathway for 260 was proposed (Scheme 10).

Twenty-two tremulanes, irlactins F–J 261–265, L–M 266–267, irlactam A 268, and
irpexolactins A–N 269–282, were isolated from cultures of the medicinal fungus Irpex
lacteus [99,103–105]. Irlactin I 264 exhibited moderate cytotoxicities on HL-60, SMMC-7721,
A-549, MCF-7, and SW480 cells with IC50 values of 16.23, 20.40, 25.55, 19.05, and 18.58 µM,
respectively [104].
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Phellinignins A–C 283–285 were new tremulane sesquiterpenoids that have been iso-
lated from Phellinus igniarius [78]. Phellinignins A 283 and B 284 showed certain cytotox-
icities to three human cancer cell lines (HL-60, SMMC-7721, and SW480) with the IC50 val-
ues of 0.7–17.4 µM, respectively. Tremutins A−G 286−292 were isolated from cultures of 
the basidiomycetes Irpex lacteus [71]. Tremutins A 286 and B 287 possessed an unusual 6/7-
fused ring system that might be derived from a tremulane framework (Scheme 11), 289 
and 290 were the first tremulane examples with a 1,2-epoxy moiety to be reported. 
Tremutin A 286 inhibited the lipopolysaccharide (LPS)-induced proliferation of B lym-
phocyte cells with an IC50 value of 22.4 µM. Tremutin B 287 inhibited concanavalin A (Con 
A)-induced T cell proliferation and LPS-induced B lymphocyte cell proliferation with IC50 
values of 16.7 and 13.6 µM, respectively. 
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grospora oryzae and Irpex lacteus in a solid medium [107]. 5-Demethyl conocenol C 294 
showed antifungal activities against Didymella glomerate and Colletotrichum gloeosporioides 
with MICs of 1 and 8 µg/mL, respectively.  

Davotremulanes A–D 296–299 were isolated from a plant-associated fungus X1-2 
[108]. Davotremulanes A 296 and B 297 displayed selectively moderate activities to the 
A549 cell line with IC50 at 15.3, 25.2 µg/mL. A new tremulane sesquiterpenoid analogue 
300 was isolated from the cultures of endophytic fungus Colletotrichum capsica [109]. Lep-
tosphin B 301 was isolated from the endophytic fungus Leptosphaeria sp. XL026 [110]. Lep-
tosphin B 301 showed moderate antibacterial activity against Bacillus cereus with a MIC 
value of 12.5 µg/mL.  

Six 5,6-seco-tremulane analogues 302–307 were isolated from the culture broth of the 
medicinal fungus Irpex lacteus [111]. Two sesquiterpenes with new carbon skeletons, seco-
sterpurane 308 and phlebiane 309, and a novel merulane sesquiterpene 310 were isolated 
from cultures of the basidiomycete Phlebia tremellosa [112]. The plausible biogenetic path-
ways of 309 and 310 is shown in Scheme 12. 

Phellinignins A–C 283–285 were new tremulane sesquiterpenoids that have been
isolated from Phellinus igniarius [78]. Phellinignins A 283 and B 284 showed certain cyto-
toxicities to three human cancer cell lines (HL-60, SMMC-7721, and SW480) with the IC50
values of 0.7–17.4 µM, respectively. Tremutins A–G 286–292 were isolated from cultures of
the basidiomycetes Irpex lacteus [71]. Tremutins A 286 and B 287 possessed an unusual 6/7-
fused ring system that might be derived from a tremulane framework (Scheme 11), 289 and
290 were the first tremulane examples with a 1,2-epoxy moiety to be reported. Tremutin
A 286 inhibited the lipopolysaccharide (LPS)-induced proliferation of B lymphocyte cells
with an IC50 value of 22.4 µM. Tremutin B 287 inhibited concanavalin A (Con A)-induced T
cell proliferation and LPS-induced B lymphocyte cell proliferation with IC50 values of 16.7
and 13.6 µM, respectively.
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Nigrosirpexin A 293 was produced by Nigrospora oryzae co-cultured with Irpex lac-
teus [106]. Two new tremulanes 294 and 295 were obtained from different cocultures of
Nigrospora oryzae and Irpex lacteus in a solid medium [107]. 5-Demethyl conocenol C 294
showed antifungal activities against Didymella glomerate and Colletotrichum gloeosporioides
with MICs of 1 and 8 µg/mL, respectively.

Davotremulanes A–D 296–299 were isolated from a plant-associated fungus X1-2 [108].
Davotremulanes A 296 and B 297 displayed selectively moderate activities to the A549 cell
line with IC50 at 15.3, 25.2 µg/mL. A new tremulane sesquiterpenoid analogue 300 was
isolated from the cultures of endophytic fungus Colletotrichum capsica [109]. Leptosphin
B 301 was isolated from the endophytic fungus Leptosphaeria sp. XL026 [110]. Leptosphin
B 301 showed moderate antibacterial activity against Bacillus cereus with a MIC value of
12.5 µg/mL.

Six 5,6-seco-tremulane analogues 302–307 were isolated from the culture broth of
the medicinal fungus Irpex lacteus [111]. Two sesquiterpenes with new carbon skeletons,
seco-sterpurane 308 and phlebiane 309, and a novel merulane sesquiterpene 310 were
isolated from cultures of the basidiomycete Phlebia tremellosa [112]. The plausible biogenetic
pathways of 309 and 310 is shown in Scheme 12.



J. Fungi 2021, 7, 1026 22 of 48J. Fungi 2021, 7, x FOR PEER REVIEW 23 of 50 
 

 

 
Scheme 12. Plausible biogenetic pathways of 308–310 (Reference [112]). 

2.9. Trichothecene, Merosesquiterpenoid, Norsesquiterpenoid, and Pyrone 
Trichothecenes are a family of sesquiterpenoid mycotoxins produced by multiple 

genera of fungi, including plant and insect pathogens, and they are toxic to animals and 
humans and frequently detected in cereal crops [113]. Because of their diversity in struc-
ture and biological activity, trichothecenes are of concern in agriculture, food contamina-
tion, health care, and building protection. 

Trichoderminol 311 was isolated from the filamentous fungus Trichoderma albo-
lutescens [114]. Trichobreols A–E 312−316 were isolated from the marine-derived fungus 
Trichoderma cf. brevicompactum [115,116]. Trichobreols A−E 312−316 inhibited the growth 
of two yeast-like fungi, Candida albicans, and Cryptococcus neoformans, with a range of MIC 
values of 1.6 to 50 µg/mL [115,116]. Three new macrocyclic trichothecenes, miophytocen 
D 317, roridin F 318, and satratoxin I 319, were isolated from a deadly poisonous mush-
room Podostroma cornu-damae [117]. Satratoxin I 319 showed cytotoxic potency to etopo-
side against four human breast cancer cell lines (Bt549, HCC70, and MDA-MB-231), with 
IC50 values of 1.8, 7.7, and 3.6 µM, respectively. 

Epiroridin acid 320, verrucarins Y 321 and Z 322, and dihydromyrothecine C 323, 
four new macrocyclic trichothecenes, were isolated from the endophytic fungus Myrothe-
cium roridum [118–121]. The cytotoxic mechanisms result showed that the epiroridin acid 
320 induced the apoptosis of cancer cell HepG-2 via activation of caspase-9 and caspase-
3, up-regulation of bax gene expression, down-regulation of bcl-2 gene expression, and 
disruption of the mitochondrial membrane potential of the HepG-2 cell [118]. 

Chartarenes A–D 324−327 were isolated from the sponge-derived fungus Stachybotrys 
chartarum [122]. Chartarenes A–D 324−327 exerted potent or selective inhibition against a 
panel of tumor cell lines including HCT-116, HepG2, BGC-823, NCI-H1650, and A2780, 
with IC50 values ranging from 0.68 to 10 µM. In addition, chartarenes B 326, C 327, and D 
324 showed potent inhibition against tumor-related kinases FGFR3, IGF1R, PDGFRb, and 
TRKB, with IC50 values ranging from 0.1 to 12.9 µM. 

Scheme 12. Plausible biogenetic pathways of 308–310 (Reference [112]).

2.9. Trichothecene, Merosesquiterpenoid, Norsesquiterpenoid, and Pyrone

Trichothecenes are a family of sesquiterpenoid mycotoxins produced by multiple
genera of fungi, including plant and insect pathogens, and they are toxic to animals and
humans and frequently detected in cereal crops [113]. Because of their diversity in structure
and biological activity, trichothecenes are of concern in agriculture, food contamination,
health care, and building protection.

Trichoderminol 311 was isolated from the filamentous fungus Trichoderma albolutescens [114].
Trichobreols A–E 312–316 were isolated from the marine-derived fungus Trichoderma cf.
brevicompactum [115,116]. Trichobreols A–E 312–316 inhibited the growth of two yeast-like
fungi, Candida albicans, and Cryptococcus neoformans, with a range of MIC values of 1.6 to
50 µg/mL [115,116]. Three new macrocyclic trichothecenes, miophytocen D 317, roridin F
318, and satratoxin I 319, were isolated from a deadly poisonous mushroom Podostroma
cornu-damae [117]. Satratoxin I 319 showed cytotoxic potency to etoposide against four
human breast cancer cell lines (Bt549, HCC70, and MDA-MB-231), with IC50 values of 1.8,
7.7, and 3.6 µM, respectively.

Epiroridin acid 320, verrucarins Y 321 and Z 322, and dihydromyrothecine C 323, four
new macrocyclic trichothecenes, were isolated from the endophytic fungus Myrothecium
roridum [118–121]. The cytotoxic mechanisms result showed that the epiroridin acid 320
induced the apoptosis of cancer cell HepG-2 via activation of caspase-9 and caspase-3, up-
regulation of bax gene expression, down-regulation of bcl-2 gene expression, and disruption
of the mitochondrial membrane potential of the HepG-2 cell [118].

Chartarenes A–D 324–327 were isolated from the sponge-derived fungus Stachybotrys
chartarum [122]. Chartarenes A–D 324–327 exerted potent or selective inhibition against
a panel of tumor cell lines including HCT-116, HepG2, BGC-823, NCI-H1650, and A2780,
with IC50 values ranging from 0.68 to 10 µM. In addition, chartarenes B 326, C 327, and D
324 showed potent inhibition against tumor-related kinases FGFR3, IGF1R, PDGFRb, and
TRKB, with IC50 values ranging from 0.1 to 12.9 µM.
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12-Deoxytrichodermin 328, 12-deoxyroridin J 329, and 12-deoxyepiisororidin E 330 
were isolated from the fungus Calcarisporium arbuscular, and Trichoderma sp., respectively 
[123,124]. The structure-activity relationship investigation of 328−330 with other known 
natural trichothecenes against a human colon cancer cell line (COLO201) and filamentous 
fungus Cochliobolus miyabeanus revealed that the 12-epoxide functionality is essential for 
the antifungal activity [124]. 

12-Deoxytrichodermin 328, 12-deoxyroridin J 329, and 12-deoxyepiisororidin E 330
were isolated from the fungus Calcarisporium arbuscular, and Trichoderma sp., respec-
tively [123,124]. The structure-activity relationship investigation of 328–330 with other
known natural trichothecenes against a human colon cancer cell line (COLO201) and
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filamentous fungus Cochliobolus miyabeanus revealed that the 12-epoxide functionality is
essential for the antifungal activity [124].
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erone A 358 possessed an unprecedented 5/7 bicyclic ring architecture, emerone B 359 had 
an unusual substituted 10-membered ring, and emerone C 360 had an undescribed norses-
quiterpene skeleton. Ochraceopone F 361, a new α-pyrone merosesquiterpenoid pos-
sessing an angular tetracyclic carbon skeleton, was isolated from the marine fungus As-
pergillus flocculosus [129].  

Five new highly oxygenated α-pyrone merosesquiterpenoids, ochraceopones A−E 
362−366, were isolated from an Antarctic soil-derived fungus Aspergillus ochraceopetali-
formis [130]. Ochraceopones A−D 363−366 were the first examples of α-pyrone meroses-
quiterpenoids possessing a linear tetracyclic carbon skeleton. Ochraceopone A 363 exhib-

Scheme 14. Proposed biosynthetic pathway for 333 and 334 (Reference [125]).

The semisynthesis of several trichodermin and trichodermol derivatives has been
developed (Scheme 15) [127]. Some derivatives with a short chain at the C-4 position
displayed selective antimicrobial activity against Candida albicans and they showed MIC
values similar to those displayed by trichodermin. It was important to highlight the
cytotoxic selectivity observed for compounds 350, 354, and 356, which presented average
IC50 values of 2 µg/mL and were cytotoxic against tumorigenic cell line MCF-7 (breast
carcinoma) and not against Fa2N4 (non-tumoral immortalized human hepatocytes).
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Scheme 15. Chemical transformations were carried out on trichodermin and trichodermol for the preparation of compounds
344–357 (Reference [127]).

Three novel highly oxygenated α-pyrone merosesquiterpenoids, emerones A–C 358–
360, have been obtained from the fungus Emericella sp. XL029 [128]. Structurally, emerone
A 358 possessed an unprecedented 5/7 bicyclic ring architecture, emerone B 359 had an un-
usual substituted 10-membered ring, and emerone C 360 had an undescribed norsesquiter-
pene skeleton. Ochraceopone F 361, a new α-pyrone merosesquiterpenoid possessing
an angular tetracyclic carbon skeleton, was isolated from the marine fungus Aspergillus
flocculosus [129].

Five new highly oxygenated α-pyrone merosesquiterpenoids, ochraceopones A–E
362–366, were isolated from an Antarctic soil-derived fungus Aspergillus ochraceopetali-
formis [130]. Ochraceopones A–D 363–366 were the first examples of α-pyrone meros-
esquiterpenoids possessing a linear tetracyclic carbon skeleton. Ochraceopone A 363
exhibited antiviral activities against the H3N2 influenza virus with IC50 values of 12.2 µM.
Yaminterritrem C 367 was isolated from a deep-sea-derived fungus Penicillium chryso-
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genum [131]. Verruculides A 368 and B 369 were isolated from a culture broth of the
Indonesian ascidian-derived Penicillium verruculosum [132]. Verruculide A 368 inhibited
the activity of PTP1B with an IC50 value of 8.4 µM.
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Two new sesquiterpenes 370 and 371 and seven new dimeric norsesquiterpene con-
geners, divirensols A–G 372–378, along with seven new firstin-class trimeric sesquiterpenes,
trivirensols A–G 379–385, were obtained from the Australian termite nest-derived fungus
Trichoderma virens [133,134]. A pair of rare naturally enantiomeric norsesquiterpenoids,
(±)-preuisolactone A (386 and 387) featuring an unprecedented tricyclo[4.4.01,6.02,8]decane
carbon scaffold were isolated from Preussia isomera (plausible biosynthetic pathway shown
in Scheme 16) [135]. (±)-Preuisolactone A (386 and 387) exhibited remarkable antibacterial
activity against Micrococcus luteus with a MIC value of 10.2 µM.
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Hitoyol A 388, an unprecedented norsesquiterpenoid with an exo-tricyclo[5.2.1.02,6]decane
skeleton, along with a novel skeletal hitoyol B 389 containing 4-cyclopentene-1,3dione, was
isolated from the fungus Coprinopsis cinerea [136]. Hitoyol A 388 was possibly biosynthe-
sized through decarboxylation-induced cyclization of lagopodin B, a known cuparene-type
sesquiterpenoid (Scheme 17). Hitoyol B 389 showed weak antimalarial activity against
Plasmodium falciparum with an IC50 of 59 µM.
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An α-pyrone 9-hydroxyxylarone 390 was isolated from a culture broth of endophytic
fungus Xylaria sp. NC1214 [137]. Four new polyenic α-pyrone mycotoxins, avertoxins A–D
391–394, were obtained from an endophytic fungus Aspergillus versicolor [138]. Avertoxins
B 392 and C 393 showed activity against human tumor HCT116 and HeLa cell lines with
an IC50 value of 10 µM. And avertoxin B 392 was an active inhibitor against human
acetylcholinesterase with the IC50 value of 14.9 µM.
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2.10. Other Types

Three new sesquiterpenoids, chermesiterpenoids A–C 395–397, were isolated and
identified from the marine red algal-derived fungus Penicillium chermesinum [139]. Cher-
mesiterpenoid B 396 showed antimicrobial activities against the aquatic pathogens Vibrio
anguillarum, Vibrio parahaemolyticus, Micrococcus luteus, and human pathogen Escherichia
coli with minimum inhibitory concentration (MIC) values of 0.5, 16, 64, and 64 µg/mL,
respectively. Similarly, chermesiterpenoid C 397 showed activities against the aquatic
pathogens V. anguillarum, V. parahaemolyticus, and M. luteus with MIC values of 1, 32,
and 64 µg/mL, respectively. Chermesiterpenoids A–C 395–397 exhibited activity against
the plant pathogenic fungus Colletottichum gloeosporioides with MIC values of 64, 32, and
16 µg/mL, respectively.
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extract of Amycolatopsis alba [142]. Pseudapenes A–C 414−416 possessing unique carbon 
skeletons were isolated from the marine-derived fungus Pseudallescheria apiosperma [143]. 

Emericellins A 417 and B 418, representing a new type of sesquiterpenoid with an 
unprecedented tricyclo[1,2,4,4]hendecane scaffold (Scheme 18), were isolated from the liq-
uid cultures of an endophytic fungus Emericella sp. associated with the leaves of Panax 
notoginseng [144]. Emericellins A 417 and B 418 displayed moderate activities against three 
fungal strains (Verticillium dahliae Kleb, Helminthosporium maydis, and Botryosphaeria 
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Scheme 18. The proposed formation of 417 and 418 from the drimane-type sesquiterpenoid skeleton (Reference [144]). 

Fomitopins A–L 398–409 were isolated via bioassay-guided purification from the
bracket fungus Fomitopsis pinicola [140]. Fomitopin K 408 exhibited the most potent anti-
inflammatory activity with IC50 of 0.81 µM for inhibition of superoxide anion genera-
tion and IC50 of 0.74 µM for inhibition of elastase release. Fomitopins J 407 and L 409
also exhibited moderate inhibition of superoxide anion generation with IC50 of 1.66 and
1.72 µM, respectively.

1-Methoxypestabacillin B 410 was obtained from the solid cultures of a mangrove
endophytic fungus Diaporthe sp. SCSIO 41011 [141]. Pestabacillin B 411 was isolated from
the co-culture of the endophytic fungus Pestalotiopsis sp. with Bacillus subtilis [19]. Two new
abscisic acid-type sesquiterpenes 412 and 413 were isolated from the fermentation extract
of Amycolatopsis alba [142]. Pseudapenes A–C 414–416 possessing unique carbon skeletons
were isolated from the marine-derived fungus Pseudallescheria apiosperma [143].

Emericellins A 417 and B 418, representing a new type of sesquiterpenoid with an
unprecedented tricyclo[1,2,4,4]hendecane scaffold (Scheme 18), were isolated from the
liquid cultures of an endophytic fungus Emericella sp. associated with the leaves of Panax
notoginseng [144]. Emericellins A 417 and B 418 displayed moderate activities against
three fungal strains (Verticillium dahliae Kleb, Helminthosporium maydis, and Botryosphaeria
dothidea) and three bacterial strains (Bacillus subtilis, Bacillus cereus, and Escherichia coli) with
MIC values of 25–50 µg/mL.
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Stereumenes A–C 419–421 were isolated and identified from the fungus Stereum
sp. [145]. Stereumene B 420 showed weak nematicidal activity against Caenorhabditis
elegans, which killed 41.1% of C. elegans at 200 mg/L in 24 h. Sesteralterin 422 was obtained
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from the culture extract of an Alternaria alternata strain isolated from the surface of the
marine red alga Lomentaria hakodatensis [146]. Colletotrichine A 423 was obtained from the
endophyte fungus Colletotrichum gloeosporioides [147].

Four novel mixed terpenes, stereumamides A–D 424–427, which were sesquiterpenes
combined with α-amino acids to form quaternary ammonium hybrids, were isolated from
the mycelium of mushroom Stereum hirsutum [148]. Stereumamides A 424 and D 427
showed antibacterial activity against Escherichia coli, Staphylococcus aureus, and Salmonella
typhimurium, with MIC values of 12.5–25.0 µg/mL.
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Hypocoprins A–C 429–431 have a distinctive ring system consisting of fused cyclo-
propane and cyclodecene units were isolated from the Coprophilous fungus Hypocopra
rostrate [150]. Pestaloporonins A–C 432–434, three new sesquiterpenoids related to the
caryophyllene-derived punctaporonins, were isolated from cultures of a fungicolous isolate
of Pestalotiopsis sp. MYC-709 [151]. Among them, pestaloporonins A 432 and B 433 con-
tained new bicyclic and tricyclic ring systems, respectively, and the absolute configuration
of 432 was confirmed by single-crystal X-ray crystallographic analysis.

Phomanoxide 435 was isolated from the solid substrate fermentation cultures of the
fungus Phoma sp. [152]. Colletotrichine B 436 was produced by the fungal Colletotrichum
gloeosporioides [153]. Three new chlorinated sesquiterpenes, lepistatins A–C 437–439, were
isolated from the culture broth of Basidiomycete Lepista sordida [154]. The structures of
lepistatins A–C 437–439 feature the indanone core structure but differ from other indanone-
containing sesquiterpenes of fungal origin by the alkyl substitution pattern. This indicates
that lepistatins A–C 437–439 probably possessed a new sesquiterpene scaffold derived from
the common precursor, trans-humulyl cation, by an alternative cyclization (Scheme 20).
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A novel sesquiterpene methylcyclopentenedione, penicilliumin B 440, was obtained
from a deep sea-derived fungus Penicillium sp. F00120 [155]. Penicilliumin B 440, pre-
senting the first example with the sesquiterpene cyclopentenedione skeleton as natural
products (Scheme 21), was structurally determined by analysis of the NMR and MS spec-
troscopic data, while the absolute configurations were assigned by single-crystal X-ray
experiments. Penicilliumin B 440 with low toxicity showed significant potential to inhibit
the kidney fibrogenic action in vitro by a mechanism dependent on disruption of oxidative
stress. Seiricardine D 441 was a new bicyclic sesquiterpene obtained from the endophytic
fungus Cytospora sp. [156]. Twenty new sesquiterpenes (442–461) were isolated from the
endophytic fungus Pseudolagarobasidium acaciico [157]. Among them, compounds 459 and
460 displayed cytotoxicity against several cancer and normal cell lines.
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3. Biosynthesis
3.1. Asperterpenoid A

A putative three-gene cluster for asperterpenoid A was identified [158]. Stepwise
reconstitution of this gene cluster in Aspergillus oryzae reveals that astC encodes a sesterter-
pene cyclase to synthesize preasperterpenoid A 462, which was dually oxidized by a P450
enzyme AstB to give asperterpenoid A 463 along with a minor product asperterpenoid
B 464, and asperterpenoid A 463 was further oxidized by another P450 enzyme AstA
to afford a new sesterterpenoid asperterpenoid C 465 (Scheme 22). Asperterpenoids A
463 and B 464 exhibit potent inhibitory activity against Mycobacterium tuberculosis protein
tyrosine phosphatase B with IC50 values of 3–6 µM.
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3.2. Cuparene

Use of the ku70-deficient strain of Coprinopsis cinerea enabled confirmation within
the native context of the central role the sesquiterpene synthase Cop6 plays in lagopodin
biosynthesis [159]. Furthermore, yeast in vivo bioconversion and in vitro assays of two
cytochrome P450 monooxygenases Cox1 and Cox2 allowed elucidation of the network of
oxidation steps that build structural complexity onto the α-cuprenene framework during
the biosynthesis of lagopodins (Scheme 23). Three new compounds 466–468 were identified
as intermediates formed by the redox enzymes.

3.3. Fusariumdiene and Fusagramineol

The novel sesquiterpenes fusariumdiene 469, epi-fusagramineol 470, and fusagrami-
neol 471 with 5/7 bicyclic and 5/6/3 tricyclic ring systems, respectively, as well as five
known sesquiterpenes 472–476 have been produced by exploiting the potential power of
sesquiterpene synthase FgJ03939 from Fusarium graminearum in a farnesyl diphosphate-
overexpressing Saccharomyces cerevisiae chassis (Scheme 24) [160].
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3.4. Hirsutenoid

The identification and successful cloning of the previously elusive hirsutene synthase
from the wood-rotting mushroom Stereum hirsutum provide the biosynthetic pathways
of hirsutane-type sesquiterpenoids (Scheme 25) [161]. The hirsutene synthase, as an
unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-
methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain,
was part of a biosynthetic gene cluster that includes P450s and oxidases that were expressed
and could be cloned from cDNA.
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3.5. Koraidiol

Two known oxygenated sesquiterpenoid products, culmorin 477 and culmorone
478, and a new compound, koraidiol 479, were successfully generated and characterized
by a combinatorial biosynthesis approach which was utilized by the combination of a
promiscuous myxobacterial P450 (CYP260B1) with two sesquiterpene cyclases (FgJ01056,
FgJ09920) of filamentous fungi Fusarium graminearum (Scheme 26) [162].

3.6. Protoilludenes

Sixteen sesquiterpene synthases genes as full-length cDNAs have been isolated by
using RT-PCR, and heterologous expression revealed that the sesquiterpene synthases could
produce a series of sesquiterpene scaffolds with distinct metabolic profiles (Scheme 27) [163].

3.7. Trichothecenes

The acyltransferase-encoding gene tri18-encoded acyltransferase (TRI18) and a pre-
viously characterized acyltransferase (TRI3) were required in the saprotroph Trichoderma
arundinaceum for conversion of the trichothecene biosynthetic intermediate trichodermol
480 to harzianum A 482, an antifungal trichothecene analog with an octa-2,4,6-trienedioyl
acyl group [164]. Previous studies indicate that tri18 may not be necessary for the biosyn-
thesis of harzianum A 482 because all catalytic activities required for its formation can
be accounted for by activities of enzymes (TRI5, TRI4, TRI22, TRI17, and TRI3) encoded
by other tri genes [165,166]. Further analysis proposed that TRI3 catalyzes trichothecene
4-O-acetylation, and subsequently, TRI18 catalyzes replacement of the resulting acetyl
group with octa-2,4,6-trienedioyl to form harzianum A 482 (Scheme 28) [164].
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ence [163]).

An artificial metabolic route to an unnatural trichothecene was designed by taking
advantage of the broad substrate specificities of the T-2 toxin biosynthetic enzymes of
Fusarium sporotrichioides [167]. By feeding 7-hydroxyisotrichodermin, a shunt pathway
metabolite of F. graminearum, to a trichodiene synthase-deficient mutant of F. sporotrichioides,
7-hydroxy T-2 toxin 483 was obtained as the final metabolite (Scheme 29). The toxicity of
7-hydroxy T-2 toxin 483 was 10 times lower than that of T-2 toxin in HL-60 cells.
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The candidate gene, Clm2, a second structural gene required for culmorin biosyn-
thesis in the plant pathogen Fusarium graminearum, encodes a regio- and stereoselective
cytochrome P450 monooxygenase for C-11 of longiborneol 484 (Scheme 30) [168]. Clm2
gene disruptants were grown in liquid culture and assessed for culmorin production via
HPLC-evaporative light scattering detection. The analysis indicated a complete loss of
culmorin 485 from the liquid culture of the ∆Clm2 mutants. Culmorin production resumed
in a ∆Clm2 complementation experiment. A detailed analysis of the secondary metabolites
extracted from the largescale liquid culture of disruptant ∆Clm2D20 revealed five new
natural products: 486–490. The structures of the new compounds were elucidated by a
combination of HRMS, 1D and 2D NMR, and single-crystal X-ray crystallography analysis.
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4. Conclusions and Future Prospects

Natural products, in particular bioactive molecules as precursor pharmaceutical com-
pounds, have attracted particular attention in the field of health promotion and drug
discovery and development. Compared with other sources, fungal species play a decisive
role in bio-transformations and drug synthesis owing to their wide varieties, easy culti-
vation, diverse chemical compositions, and distinct biological activities. This process has
been accelerated by considerable advances in microbial genome research and in under-
standing the structure of genes and their corresponding products. Genome mining-based
natural products discovery programs mainly use the most identifiable terpene synthases
and prenyltransferases to locate and quickly identify new terpenoids. In the last five years,
nearly 500 new sesquiterpenes, including about 20 new skeletons were identified from
fungi. These sesquiterpenoids exhibit various biological activities, such as anti-tumor,
anti-viral, anti-microbial, anti-inflammatory, etc. These efforts have clearly led to a global
promotion of discovery and characterization of fungal terpenoids and offer optimism for
the future of fungal terpenoid discovery.

This review summarized the isolation, chemical structures, plausible biosynthetic path-
ways, bioactivity, chemical synthesis, and biosynthesis of 490 recent sesquiterpenoids. This
could be a useful reference for modern researchers studying this category of compounds.
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