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A B S T R A C T   

Background: Altered neurodevelopment is a major clinical sequela of Preterm Birth (PTB) being 
currently unexplored in-utero. 
Aims: To study the link between fetal brain functional (FbF) connectivity and preterm birth, using 
resting-state functional magnetic resonance imaging (rs-fMRI). 
Study design: Prospective single-centre cohort study. 
Subjects: A sample of 31 singleton pregnancies at 28–34 weeks assigned to a low PTB risk (LR) (n 
= 19) or high PTB risk (HR) (n = 12) group based on a) the Maternal Frailty Inventory (MaFra) 
for PTB risk; b) a case-specific PTB risk gradient. 
Methods: Fetal brain rs-fMRI was performed on 1.5T MRI scanner. First, directed causal relations 
representing fetal brain functional connectivity measurements were estimated using the Greedy 
Equivalence Search (GES) algorithm. HR vs. LR group differences were then tested with a novel 
ad-hoc developed Monte Carlo permutation test. Second, a MaFra-only random forest (RF) was 
compared against a MaFra-Neuro RF, trained by including also the most important fetal brain 
functional connections. Third, correlation and regression analyses were performed between 
MaFra-Neuro class probabilities and i) the GA at birth; ii) PTB risk gradient, iii) perinatal clinical 
conditions and iv) PTB below 37 weeks. 
Results: First, fewer fetal brain functional connections were evident in the HR group. Second, the 
MaFra-Neuro RF improved PTB risk prediction. Third, MaFra-Neuro class probabilities showed a 
significant association with: i) GA at birth; ii) PTB risk gradient, iii) perinatal clinical conditions 
and iv) PTB below 37 weeks. 
Conclusion: Fetal brain functional connectivity is a novel promising predictor of PTB, linked to 
maternal risk profiles, ahead of birth, and clinical markers of neurodevelopmental risk, at birth, 
thus potentially “connecting” different PTB phenotypes.  
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1. Introduction 

Preterm birth (PTB) (<37 weeks’ gestational age (GA)) [1] is associated with increased risk of long-term neurodevelopmental 
outcomes [2–4]. Etiopathogenesis of PTB is multifactorial and takes the form of gestational constellations of both intrauterine (IU) and 
extrauterine (EU) factors quantifying the patient-specific risk for PTB [5]. However, during pregnancy, the reduction of PTB risk to a 
binary clinical outcome in terms of a GA birth cut-off disregards the effects of maternal frailties on the settlement of neuro
developmental foundations during the fetal period. 

Emerging fetal subcortico-cortical functional synchronization provides the means for the development and training of a nuclear set 
of cognitive tools during gestation progressively shaping a foundational cognitive development blueprint [6], geared towards leaving 
permanent brain-behavior imprints in the extrauterine environment. 

Thus, PTB risk should not be limited to a gestational age cut-off at birth, however should be observed through the lens of maternal 
frailties, identified through the most informative IU-EU gestational constellations, and fetal neurodevelopment, characterized through 
the functional maturation of brain areas and networks, relevant for behavior and cognition during postnatal life. 

The aim of the present study is to ground the degree of PTB risk in the gestational binding between an individualized maternal 
frailty profile and fetal subcortico-cortical connectivity imprints, extending PTB risk interventional projections beyond delivery, to
wards a neurodevelopmental time-continuum spanning from birth to infancy. 

Namely, our goals were i) to trace brain connectivity between-group differences for fetuses classified at highrisk (HR) and lowrisk 
(LR) of PTB based upon a multidimensional assessment and characterization of maternal risk profiles; ii) to identify a candidate set of 
fetal brain functional (FbF) connections able to significantly contribute to the classification of PTB multidimensional maternal risk 
profiles and iii) to verify if viable PTB risk-responsive connections are significantly associated to the GA at birth, maternal category 
membership based on risk characterization, clinical markers of neurodevelopmental risk at birth, and can significantly explain PTB 
occurrence (below or above 37th gestational week (GW) at birth). 

Fig. 1. Flowchart of Study Design and Analysis Methods. This figure outlines our comprehensive approach, starting with the selection of the 
study sample, through to data processing, and concluding with various analytical phases. Initially, from a group of 111 pregnant women, 31 were 
chosen based on a wide spectrum of pregnancy conditions as per the Maternal Frailty (MaFra) Inventory, with high-risk (HR) and low-risk (LR) 
groups categorized according to MaFra risk profiles. The processing phase involved meticulous preprocessing of resting-state fetal functional MRI 
data, including realignment and normalization, to extract functional time series from multiple brain regions. We then applied advanced statistical 
methods, such as Greedy Equivalence Search, Novel Monte Carlo permutation, and Random Forest (RF) models, to discern differences in brain 
connectivity between HR and LR pregnancies and to predict preterm birth (PTB) risk. Finally, correlation and regression analyses were employed to 
associate the predictive model outcomes, denoted as MaFra-Neuro class probabilities, with clinical outcomes such as gestational age at birth, risk 
gradient, perinatal clinical conditions and PTB occurrences. 
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2. Material and Methods 

2.1. Participants 

The sample was selected based on 111 pregnant women who completed the Maternal Frailty (MaFra) Inventory enrolled in the 
Della Rosa et al. (2021) study [5], within the Operative Unit of Gynecology and Obstetrics, at San Raffaele Hospital in Milan, Italy. 

31 participants (mean maternal age in years = 32.9; StDev = 6.4; range = 18:44) were sampled from this pool of 111 pregnant 
women and assigned to a HR (n = 12) or LR (n = 19) group based on their MaFra intrauterine and/or extrauterine risk profiles [5] for 
inclusion in the FbF MRI protocol (see Fig. 1). 

The sample of pregnant women (n = 31) encompassed a group of individuals with heterogeneous risks of PTB leading to an average 
increased risk of PTB for the whole group, due to the extensive presence of risk factors including short cervical length, pPROM, 
medically assisted procreation, prior PTB, pregnancy induced hypertention (PIH), placenta previa, preeclampsia, fetal growth re
striction, complex autoimmune disease. 

The study protocol was approved a priori by the Ethics Committee of the San Raffaele Hospital (EC Register of Opinions Number: 
51/INT/2018). All pregnant women provided written and verbal informed consent for both MaFra administration and prenatal MRI 
examination. The study was conducted according to the principles of the Declaration of Helsinki. All imaging data were anonymized 
before further analysis. STROBE guidelines for reporting observational studies were followed [7]. 

2.1.1. Participants – obstetric clinical assessment 
All pregnancies underwent regular and standardized clinical assessment from the first trimester to birth, according to the local 

protocol with particular interest to tailoring intensity of follow-up and care according to the individual patient risk-profile. The data 
were collected from all pregnant women before the Coronavirus 19 pandemic outbreak, between June 2018 and Februrary 2020. 

Each pregnant woman included in the study sample received a detailed clinical interview including the assessment of the MaFra 
Inventory [5]. All sampled participants underwent the first-trimester combined screening test at 11+0–13 + 6 weeks according to the 
Fetal Medicine Foundation United Kingdom guidelines (FMF-UK; www.fetalmedicine.org), which included: i) estimation of gestational 
age based upon the crown rump length measurement; ii) screening for chromosomal defects based upon fetal nuchal translucency, 
additional ultrasound markers and maternal serum concentrations of free β-human chorionic gonadotropin, pregnancy associated 
plasma protein-A and placental growth factor; iii) screening for preeclampsia based upon uterine arteries pulsatility index, mean 
arterial pressure and placental biomarkers cited above. The exclusion criteria were: fetuses with prenatal diagnosis of major mal
formation with subsequent medical abortion, twin pregnancies, pregnant women who did not sign the informed consent [5]. Low-dose 
Aspirin (150 mg) was recommended to all those with risk of preterm preeclampsia exceeding 1:150 according to the FMF-UK algo
rithm. Second trimester ultrasound was carried out in all cases at 19–21 weeks for anatomical survey, uterine arteries Doppler studies 
and cervical length measurement [8]. Cervical length was performed in all cases with an empty bladder and drawing a straight line 
with caliper between internal and external or across the endocervical mucosa; three repeated measurements were collected over 3 min 
of which the shortest was chosen for records. Vaginal natural progesterone 200 mg was administered to all pregnant women with 
cervical length below 20 mm and additional cervical cerclage was proposed to all pregnant women with ultrasound cervical length 
≤10 mm. When amniotic sludge was diagnosed by ultrasound, according to the criteria described by Kusanovic et al., 2007 [9], 
additional antibiotics treatment was recommended as well as before cerclages, regardless of amniotic sludge or when clinically 
indicated based upon symptoms or microbiological cultures. Third trimester ultrasound was carried out between 26 and 36 weeks 
according to clinical indications (once at 32–36 weeks in low-risk pregnancies or repeatedly in high-risk cases according to clinical 

Table 1 
P-value ordering of the fetal brain functional connections. FbF edges (i.e. directional connections) with a more consistent presence either in the 
HR or in the LR group ordered by the p-value (smaller or equal to 0.10) obtained from a local (i.e. at edge level) permutation test. In italics the FbF 
edges present in at least 20% of subjects (7/31). The number of subjects with active connections in each group and the mean difference in GA at birth 
(active vs non active) are also reported.  

FbF Directional Connections Edge p-value Active Connections HR Active Connections LR Mean difference in GA at birth 

Brainstem → R Cortical Plate 0.008 0 8 1.61 
R Hippocampus → R Cerebellum 0.014 4 0 − 2.57 
R Subthalamic → R Lentiform 0.019 0 7 1.36 
R Lentiform → R Hippocampus 0.019 0 7 1.25 
R Cortical Plate → R Cerebellum 0.021 5 1 − 0.35 
L Lentiform → L Hippocampus 0.037 0 6 0.7 
L Caudate → L Cortical Plate 0.042 7 4 − 0.56 
Brainstem → R Cerebellum 0.045 3 12 1.91 
R Hippocampus → R Lentiform 0.059 5 2 − 3.27 
L Hippocampus → R Amygdala 0.064 4 1 − 4.41 
L Cerebellum → R Amygdala 0.068 0 5 1.17 
L Lentiform → R Subthalamic 0.069 0 5 1.98 
R Cerebellum → R Cortical Plate 0.071 0 5 1.05 
R Cortical Plate → L Cerebellum 0.072 0 5 2.27 
R Cortical Plate → R Lentiform 0.082 7 5 − 0.27  
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indications provided by individual physicians managing the cases). All pregnancies were also seen every 4–6 weeks according to their 
risk profile. Low-risk (LR) patients received an average of 6 screening clinical assessment (including visits and ultrasound scans), and 
high-risk (HR) patients were seen more often, particularly in the third trimester, with serial evaluations according to their risk profile 
and clinical needs. In each medical examination, cervical length, hematological and serological works, blood pressure measurement, 
weight and well-being assessment were investigated. Patients with progressive cervical shortening or significant other risks of iat
rogenic or spontaneous prematurity or presenting with threatened preterm labor were hospitalized and treated accordingly based upon 
global clinical evaluation (course of betamethasone for fetal lung maturation, tocolysis with atosiban, antibiotics). All HR patients 
underwent a case-by-case clinical assessment and when the risk of PTB within 7 days was deemed high, a course of steroids with 
bethametasone 12 mg per day for 2 days was indicated. All patients received standardized intrapartum care with continuous car
diotocography in labour, and neonatal assessment and care provided by on call neonatologists. 

2.1.2. Participants – PTB risk characterization 
PTB risk and gradient characterization, based upon evaluation of risk factors with their specific magnitude, was performed by a 

senior obstetrician specialized in maternal-fetal medicine (PC), following the ACOG 2012 clinical management guidelines [10] and 
through the Maternal Frailty inventory of risk factors (MaFra) (see Ref. [5] for a full list of all included factors). 

PTB risk was characterized through the evaluation of both IU and EU risk factors related to 1) obstetrical and gynecological history; 
2) lifestyle before and during pregnancy (see Table 1 in Ref. [5] for maternal risk characterization and descriptives) and results of the 
first and second trimester clinical assessment following obstetric clinical assessment. 

The PTB risk characterization gradient was instead defined by the qualitative evaluation of risk factors with their specific 
magnitude. Each risk factor was weighed with a qualitative approach and assessed as a whole over the total of factors present in each 
specific case, as defined in our previous study [5]. A 4-point Likert scale was used to characterize PTB risk in each participant on an 
incremental scale (i.e. 1- very low; 2- low, 3- high, 4- very high). 

2.2. Fetal brain MRI data acquisition 

All the pregnant women included in the study sample underwent fetal MRI acquisition at the Pediatric Unit in the Department of 
Neuroradiology of the San Raffaele Hospital in Milan, Italy. 

Fetal functional and structural MR scanning was performed on a Philips Achieva 1.5 T scanner (GW at fetal scan mean = 31.6; 
StDev = 1.92; median = 31.7; range = 27.6:34.7), using a 16 channels body coil supervised by an expert pediatric neuroradiologist 
(CB). 

Fetal functional scans (rs-fMRI) consisted of GE EPI scans (TR = 2000 ms, TE = 30 ms, acquisition voxel size 2.81 × 2.86 × 3 mm, # 
slices = 25, slice gap = 0). Each rs-fMRI scan consisted of 60 vol lasting 2 sec each, for a total scanning time of 2 min per scan. Four-to- 
six consecutive rs-fMRI sessions (i.e. 240-360 scans, covering 8–12 min of continuous brain activity at rest were acquired for each fetus 
[11]. All pregnant women were asked not to eat within 3 h previous fetal MR scanning. 

Fetal structural scans for clinical evaluation consisted of a T2 Single Shot Turbo Spin Echo scan on the axial, sagittal and coronal 
planes of the fetus, TR = 8000 ms, TE = 125 ms, voxel size 1.17 x 2.76 × 3 mm, #slices = 25, for a total scanning duration time of 17 
sec. All fetuses showed no sign of fetal neurodevelopmental abnormality nor brain parenchymal signal alterations acknowledged by a 
specialized experienced neuroradiologist (CB) using structural MRI investigation. 

2.3. Resting-state fetal fMRI data preprocessing 

Resting State functional volumes were preprocessed using a baseline fetal rs-fMRI preprocessing pipeline [12] in Statistical 
Parametric Mapping (SPM) (SPM12, University College London, available at http://www.fil.ion.ucl.ac.uk/spm/). The baseline fetal 
rs-fMRI preprocessing pipeline included the following steps: i) manual spatial reorientation in correct SPM orientation and origin set; 
ii) with-in session realignment to a session-specific reference image; iii) 1st pass with-in session scrubbing procedure including 
frame-to-mean (https://www.nitrc.org/projects/artifact_detect) and frame-to-frame estimates of motion and calculation of signal 
intensity changes [13,14]; iv) visual inspection and exclusion of with-in session outlier volumes; v) with-in session specific reference 
image masking to exclude maternal abdominal tissue; vi) realignment and calculation of the between-session mean reference masked 
image from with-in session-specific reference masked images; vii) 1st between-session realignment of all functional volumes to the 
between-session mean reference masked image; viii) 2nd pass between-session scrubbing procedure and between-session outlier 
volume exclusion; ix) 2nd between-session realignment post-scrubbing; x) between-session mean reference abdominal skull- and 
body-stripping using a subject-specific brain segmentation procedure a) for creation of an inner fetal brain mask based on 
subject-specific GW fetal tissue class probability maps [15] and b) for calculation of the deformation parameters for spatial normal
ization to fetal subject-specific GW standard space; xi) fetal inner-brain masking, spatial normalization and smoothing with a 4 mm 
gaussian kernel of all functional volumes. 

2.4. Functional time series data Extraction 

The smoothed normalized rs-fMRI time series for all subjects underwent denoising procedures in the CONN functional connectivity 
toolbox (Version 18b) (CONN18b, available at https://web.conn-toolbox.org/) [16]. CONN’s denoising step allows to identify po
tential inter-subject confounding effects (i.e. physiological noise, scanner magnetization) to the estimated BOLD signal through linear 
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regression. An anatomical component-based noise correction procedure (aCompCor) removes potential noise from the cerebrospinal 
and white matter regions of the brain at each voxel for each subject and session. BOLD signal components above 0.09Hz and below 
0.008Hz are further removed with a temporal band-pass filtering procedure to minimize the influence of physiological noise. 
Following removal of potential confounding effects to the BOLD signal, the denoised mean BOLD parameters were computed 
considering all the voxels included in fetal brain regions of interest (ROIs) across the rs-fMRI time series for all subjects. Namely, the 
mean denoised BOLD time series parameters were extracted from the following fetal brain ROIs: left (L) and right (R) Thalamus, L and 
R Hippocampus, L and R Caudate Nucleus, L and R Amygdala, L and R Lentiform Nucleus (Globus Pallidus + Putamen) and L and R 
Subthalamic Nucleus, L and R Cerebellum, L and R Cortical Plate and Brainstem. Fetal brain ROI masks were defined using a 
subject-specific GW fetal brain parcellation [15] in the same standard fetal GW space of subject-specific normalized functional 
volumes. 

2.5. Statistical Analysis 

The statistical analyses conducted in this study are organized into three sequential phases: initially, the learning and testing phase; 
subsequently, the predictive phase; and finally, the validation phase. 

In the first phase, the functional connectivity (FC) brain network of each subject was estimated. Networks of FbF connections were 
then used as inputs for a Monte Carlo permutation test, assessing evidence for fewer FbF connections in HR versus LR pregnancies. In 
the second phase, we compared the predictive performance of a MaFra-only random forest [17] (RF) classifier, trained solely with 
“degree of risk” factors representative of the MaFra [5], with a MaFra-Neuro RF, trained also with the inclusion of the most important 
FbF connections. In the third phase, correlation and regression analyses were performed between MaFra-Neuro class probabilities, 
obtained from the MaFra-Neuro RF classifier, and i) the GA at birth; ii) PTB risk gradient, iii) PTB below 37 weeks, iv) perinatal vital 
systems impairment’ (pVSI) composite estimates and v) neonate size-at-birth classification scores. 

In the following paragraphs, we provide a detailed description of the statistical procedures carried out in each distinct phase. All 
statistical analyses were conducted using R (version 3.6.0) [18]. The package CompareCausalNetworks was used to estimate the FC 
networks while the package caret for training the RF models. Statistical tests were performed at significance level 5% unless otherwise 
stated. 

2.5.1. Learning and testing phase 
We define a generic brain network N = (V, E) with nodes set V = {1, ..,m} and edges set E ⊆ V× V. In our study, each node j ∈ V 

represents a brain Region of Interest (ROI), and the edge set E captures the dependency relationships among the ROIs. To learn these 
relationships, we need to impose a probabilistic graphical model [19] where V is associated with random variables X1,…,Xm (m = 17 
in our study). If causal relationships among the variables are of interest, we can specify a directed graphical model in which a directed 
edge j → k represents a causal effect of Xj on Xk. Within this class of models, the most relevant is the Bayesian network [20]. In practice, 
under this modeling assumption, the presence/absence and the direction of an edge is inferred from observations (i.e., rs-fMRI time 
series) on each node j ∈ V. Learning these directed networks from observational data is known to be challenging [21] but it allows a 
researcher to conclude, for example, that brain Region A causally influences brain Region B which is one of the main end goals of FC 
analysis [21]. Following these considerations, we have chosen a causal search procedure i.e., the Greedy Equivalence Search (GES) 
algorithm [22], to learn the connectivity networks, as other well-known methods (e.g., the graphical lasso [23]) target only the 
presence/absence of an edge and not its direction. GES adds, removes, or inverts the direction of FbF connections between different 
ROIs until capturing maximal goodness-of-fit measured by the Bayesian Information Criterion (BIC) [24]. In the Supplementary 
Material, we provide a detailed review of the different methods that learn connectivity networks from fMRI data, and several moti
vations for the specific choice of GES among them. In addition, many studies have used GES with fMRI data [21] e.g., to investigate 
Autism spectrum disorder [25] or traumatic brain injury [26]. In our work, we have used GES on the single-subject preprocessed 
functional TS (n.tot. subjects = 31) (mean number of timepoints = 157; SD = 5.7; IQR = 44) to estimate the set of directed causal 
relations [21,27] that represent the FC of that specific subject (each FC matrix: 17x17 seeds = 289 FbF connections). 

The FC networks learned by GES, were used as inputs to test, with a left-tailed specification, the research hypothesis of fewer FbF 
connections in HR versus LR pregnancies. First, we encoded the information on the edge set E in an adjacency matrix A for each subject 
in the sample. Within our context, the adjacency matrix is a (0, 1) matrix where a value of 1 for a given element ajk of A with j,k ∈ V, 
indicates the presence of an edge (directed) from j to k. Conversely a value of 0 implies the absence of that same edge. As previously 
outlined, the adjacency matrix of each subject (i.e., a mathematical representation of its FC network) was estimated by GES on the 
preprocessed functional time series. Next, we aggregated information at subject level by counting how many connections were “active” 
(i.e., ajk = 1) in the adjacency matrix of each subject. We stored these counts in a vector c with i-th component: 

ci =
∑m

j=1

∑m

k=1
ajki  

Where i ∈ {1,…, n} denotes the specific subject considered in a sample of size n. In our study, n = 31 and the number of nodes m = 17. 
Moreover, if we name G1 the group of HR pregnancies (nG1 = 12) and G2 the LR group (nG2 = 19), we can express the observed average 
number of “active” connections in a generic group G as: 
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cG =

∑

i∈G
ci

nG  

Where nG is the group size. At this point, we defined the test statistic T which measures the discrepancy between the data and the null 
hypothesis H0. Under the null, the population means (i.e., the average number of “active” FbF connections) of the two groups are equal 
and, given that we wanted evidence of fewer FbF connections in HR pregnancies versus LR (i.e., a left tailed test), we have chosen as 
test statistic the difference of the sample means of the two groups: 

T = cG1 − cG2 

Large negative values of T are evidence against H0 because the average counts of “active” connections (i.e., present edges) would be 
then generally higher in G2 with respect to G1. To perform this test, the distribution of the test statistic T under H0 should be specified. We 
built the distribution by calculating all possible values of the test statistic under all possible rearrangements (i.e., permutations) of the 
observed components of the vector c in two groups of size nG1 and nG2 . In our specific case, calculating all possible permutations would 
have been computationally unfeasible and thus we relied on the Monte Carlo method to obtain an approximate p-value with a standard 
procedure (see e.g. Ref. [28], ch.4). Thus, we developed a novel Monte Carlo permutation test that evaluates global differences in FC 
under all possible rearrangements (i.e., permutations) of the whole sample of subjects in two groups of size 12 (HR) and 19 (LR). We 
decided to perform 20000 permutations for any Monte Carlo permutation test presented in our study. This enabled us to have a very 
accurate estimate of the exact p-value however, in general, a value of 1000 is already considered safe in many contexts [28,29]. In 
addition, robustness checks on the permutation test were performed to avoid the influence of potential confounding factors such as 
difference in group sample sizes, unequal variances in the two groups, suboptimal inference on the direction of the FbF connections 
and different rs-fMRI time-series lengths. Indeed, taking inspiration from [30], the current testing procedure can be made robust to 
differences in group sample sizes (i.e., nG1 ∕= nG2 ) and potential between-group differences in the variances of the observed counts via 
studentization. This implies dividing the test statistic T by an estimator of the standard deviation that corrects for both instances. 
Moreover, we considered as alternative test inputs also the undirected networks learned by GES for each single individual, since some 
evidence exists (e.g. [31]) that GES may not be optimal for estimating the direction of causal relationships but accurate in identifying 
when a connection is present. Furthermore, we explored the possibility of setting an equal length within-group to the rs-fMRI time series 
that we have observed on each node j ∈ V. Indeed, the original time series had different lengths (mean number of timepoints = 157; SD 
= 5.7; IQR = 44) and, since GES exploits them to infer the presence/absence (and the direction) of a given edge, this difference could 
have impacted the variability of the estimation procedure. In the Supplementary Material, we have also discussed other interesting 
alternative modifications of the proposed testing procedure and its place within the broader statistical literature. Finally, we applied 
the same permutation test locally (i.e., for each individual FbF connection), now with a two-tailed specification, to rank the importance 
of the directional connections through the p-values of the local tests. For example, to provide evidence for the FbF connection j → k, 
with j, k ∈ V, being less present in group G1 with respect to G2, we defined a local test statistic Tjk = aG1

jk − aG2
jk where aG

jk represents the 
proportion of “active” j → k connections in a generic group G. Given this local specification, we then approximated the exact p-value 
once more with a MC permutation approach. This analysis helped us to both isolate the most important FbF connections, whose 
differences in proportions between-groups are either supporting or opposing the global test result, and drastically reduce the space of 
brain features (i.e., FbF connections) used in the following predictive phase. 

2.5.2. Predictive phase 
Initially, we obtained the out-of-sample classification errors, estimated by means of leave-one-out cross validation (LOOCV), of two 

distinct RF classifiers. The first one, was trained solely with a subset of the most informative “degree of risk” factors (n = 4/9), 
representative of the MaFra and present in at least 20% of the pregnant women in our sample (7/31) (i.e., antibiotics; cervical length; 
physical exercise in pregnancy; maternal anxiety). We named this RF model MaFra-only because it does not exploit any knowledge of 
the FC networks of the subjects. The second RF classifier was trained adding the most important FbF connections (Table 1), present in 
at least 20% of the subjects (7/31), to the subset of MaFra most informative risk factors. Thus, we named this RF model MaFra-Neuro as 
it combines standard “degree of risk” factors with FbF connectivity. PTB-risk class probabilities of the two RF classifiers were then 
obtained and we compared their predictive performance with a receiver operating characteristics (ROC) curve analysis to find the RF 
model with the best area under the curve (AUC). 

2.5.3. Validation phase 
We first considered the class probabilities of the MaFra-Neuro RF model, trained in the predictive phase, as a continuous measure that 

combines degree of maternal risk and FbF connectivity. This specific RF classifier includes both MaFra most informative risk factors 
and the most relevant FbF connections. MaFra-Neuro RF model class probabilities were reviewed for clinical plausibility, by an expert 
in maternal fetal medicine (P.C.), for each subject. 

In addition, data from the clinical records of the newborns, following delivery of the pregnant women included in the study sample 
at the San Raffaele hospital (26 out of 31), was used to compute neonate size-at-birth classification scores (i.e. small, adequate or large 
for gestational age), based on the Intergrowth 21st birth weight centiles standards [32] and ‘perinatal vital systems impairment’ (pVSI) 
composite estimates. The pVSI scores captures variability related to the neonate’s vital systems conditions, during the perinatal period, 
following delivery and before discharge. 

To this end, for each vital system, we evaluated the presence or absence (i.e. dichotomous scoring) of a particular clinical condition 
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or medical procedure (so that the higher the number of clinical conditions and medical procedures, the higher the degree of 
impairment). Specifically, the respiratory system was characterized in terms of presence or absence of respiratory distress, conven
tional ventilation procedures, and mechanical ventilation procedures; the digestive system was characterized in terms of presence or 
absence of parenteral nutrition; the cardiocirculatory system was characterized in terms of presence or absence of arterial hypotension 
and Botallo’s duct; the hematopoietic system was characterized in terms of presence or absence of anemy; the endocrine system was 
characterized in terms of presence or absence of hypoglycemia, and icterus. 

A global estimate of vital systems impairment was then calculated as the average of dichotomous scores (i.e. presence or absence) 
for all conditions and procedures received by each neonate for each classified vital system. The total number of received pharma
cological treatments was also calculated, as a further indicator of vital systems impairment. Namely, administration of surfactant, 
corticosteroids, inotropes, eritropoietin and opioid drugs were scored dichotomously. The pVSI score was then calculated by weighting 
(i.e. multiplying) the global vital system impairment estimate by the average number of pharmacological treatments received by each 
subject. 

We then performed correlation and regression analyses to assess a) the association between MaFra-Neuro class probabilities and i) 
the GA at birth with a left-tailed Pearson product-moment correlation test; ii) the risk gradient, based on a qualitative evaluation of 
specific risk factors on an ordinal scale (i.e., 1- very low; 2- low, 3- high, 4- very high), with a right-tailed Spearman’s rank correlation 
test; iii) the perinatal vital systems impairment’ (pVSI) composite estimates with a right-tailed Spearman’s rank correlation test; iv) the 
neonate size-at-birth classification scores with a left-tailed Spearman’s rank correlation test b) the relationship between MaFra-Neuro 
class probabilities and birth occurring before or after the 37th GW coded as a binary variable, with a multivariate logistic regression 
controlling for the GW at scan. 

3. Results 

3.1. Learning and testing phase 

The permutation test (p = 0.0199; n.perm. = 20000) revealed fewer FbF connections in HR versus LR pregnancies. Our robustness 
checks on some potential confounding factors (see Learning and Testing Phase in the Material and Methods section) confirmed the above 
result. Indeed, the original test specification corrections addressed at: a) allowing for differences in group sample sizes or unequal 
variances in the two groups via studentization (p = 0.0133; n.perm. = 20000), b) preventing a suboptimal inference on the direction of 
the FbF connections by focusing only on undirected FbF connections (p = 0.0316; n.perm. = 20000) and c) avoiding an additional 

Fig. 2. Visualization of Significant Fetal Brain Functional Connections in Prediction Analysis. This figure presents brain network renderings 
using the BrainNet Viewer [50], showcasing significant directional connections (fetal brain functional -FbF- edges) identified during the predictive 
phase of our study. These edges, determined as statistically significant with p < 0.1 (refer to Table 1), are observed in a minimum of 20% of 
participants (7 out of 31 subjects). The visualizations are depicted from both left and right sagittal orientations, illustrating the integration of FbF 
edges with the most informative markers of “degree of risk” (MaFra factors). Color coding is employed to differentiate the prevalence of these edges: 
green for those consistent in the low-risk (LR) group and red for the high-risk (HR) group, providing a clear visual representation of the directional 
connections differentiating the two groups. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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variability in the GES estimation procedure by setting an equal length within-group to the rs-fMRI time series (p = 0.0145; n.perm. =
20000), validated the conclusion of the original permutation test. Main positive/negative drivers either supporting or opposing the 
global test result are provided in Table 1, ordered by local p-values (p < 0.1), together with the number of active connections per group 
and mean difference in GA at birth between subjects with active versus subjects with inactive connections. A higher presence of active 
connections in the HR (LR) group is associated to a negative (positive) mean difference in GA. Among the most important (i.e., p < 0.1) 
FbF connections, the ones present in at least 20% of the subjects (7/31) are: L caudate to L cortical plate, R hippocampus to R lentiform 
nucleus, R cortical plate to R lentiform nucleus which were more active in the HR group (see Fig. 2). On the other hand, brainstem to R 
cortical plate, R subthalamic nucleus to R lentiform nucleus, R lentiform nucleus to R hippocampus, brainstem to R cerebellum 
connections were more consistently active in the LR group (see Fig. 2). 

3.2. Predictive phase 

In the LOOCV analysis, the MaFra-only RF classifier achieved a best accuracy of 74.19% (i.e., a classification error of 25.81%) and 
an AUC of 0.7039. On the other hand, the MaFra-Neuro RF classifier yielded a best accuracy of 83.87% (i.e., a classification error of 
16.13%) and an AUC of 0.8684. We also present the graphs of the two ROC curves (Fig. 3) and the variable importance ranking 
(Table 2) of the RF MaFra-Neuro classifier. 

3.3. Validation phase 

The 31 newborns were classified as preterm-born (<37 weeks’ GA) (n = 6) or at term-born (>37 weeks’ GA) (n = 25), based on 
gestational age at delivery collected for the entire study sample of pregnant women (mean weeks’ GA at delivery = 38,4, StDev = 2,78, 
min-max range = 29,3–41,4). 

No signs of broncopulmonary displasia, retinopathy of prematurity and auditory impairment, cerebral infarction, hemorrhage, and 
encephalopathy of prematurity were evident in all screened neonates (n = 26). 

Correlation analyses showed a significant association between MaFra-Neuro class probabilities and i) the GA at birth (Pearson 
correlation r = − 0.43; p = 0.008; CI = − 1.00: 0.14), ii) the PTB risk gradient characterization (Spearman’s rank correlation rho = 0.46; 
p = 0.005; CI = 0.12:0.70), iii) the ‘perinatal vital systems impairment’ (pVSI) composite estimates (Spearman’s rank correlation rho 
= 0.44; p = 0.012; CI = 0.07:0.71), iv) the neonate size-at-birth classification scores (Spearman’s rank correlation rho = − 0.41; p =
0.019; CI = − 0.69: 0.03). The multivariate logistic regression model having birth occurring before or after the 37th GW as a dependent 
variable and MaFra-Neuro class probabilities as the independent variable, controlling for GW at scan, showed a significant explanatory 
effect (z-value = 2.07; p = 0.038, CI = 1.25:14.38). A detailed output of the model is presented in Table 3. 

Fig. 3. Visual Comparison of Model Predictive Efficacy Using ROC Analysis. This figure illustrates the comparative effectiveness of two 
predictive models using Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) metrics. The first model, denoted as 
’MaFra-Neuro’, incorporates both the most informative maternal ’degree of risk’ (MaFra) factors and the most consistently observed fetal brain 
functional (FbF) directional connections. The second model, termed ’MaFra-only’, includes only the subset of the most informative MaFra ’degree of 
risk’ factors. The ROC curves demonstrate the true positive rate versus the false positive rate of each model, while the AUC provides a quantitative 
measure of the model’s ability to correctly classify subjects into the correct risk category. 
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4. Discussion 

This study showed that altered neurodevelopment with differential or excessive fetal brain connectivity is not a mere consequence 
of PTB, instead it anticipates birth, being demonstrated in-utero. More so, in-utero fetal brain connectivity showed specific neuro
developmental signatures and a significant relationship to PTB. A combined model based upon maternal frailties and fetal neuro
development significantly predicted PTB. 

4.1. Neurobiological groundings 

During the third trimester of pregnancy, the functional synchronization of subcortical and cortical activity of neuronal pools into 
coherent information processing networks is a core neurobiological feature of the fetal brain maturation process [33–35]. Particularly, 
networks underlying goal-directed behavioral interactions with the environment develop with high ontogenetic priority and appear in 
‘prototypical’, adult-like configurations already at fetal functional investigations performed during the third trimester [6,36]. 
Consistently, our results revealed that functional signatures for both groups were found in terms of subcortical connectivity patterns 
related to purposed behavior functionality (i.e. cerebellum, brainstem, hippocampus and striatum). However, despite this general 
pattern of shared functional maturation, important differences emerged between groups. 

First, striato-cortical synchronization emerged as an exclusive functional signature of the HR group. The establishment and 
consolidation of connectivity in the cortical plate is an important index of maturation of brain functionality and, under normal cir
cumstances, this process is ontogenetically scheduled to take place throughout the third trimester of pregnancy [37,38]. To this end, 
our results could suggest that in a physiological context characterized by a heightened risk of PTB, maturation of connectivity 
pathways essential for perinatal behavioral adaptation could be triggered and prioritized [36,39]. In fact, the striatum relays inputs 
through parallel loops in the cortico-striato-thalamo-cortical circuit [40] and ‘functionally coaches’ connectivity of sensorimotor, 
frontal and limbic cortices respectively for sensorimotor integration, motor and cognitive control regulation, emotion and reward 
modulation [41,42]. 

Second, the LR group brainstem-cerebellum edge, which plays a pivotal role for the development of gross and fine motor function 
[43], and the involvement of the subthalamic nucleus in subcortical circuitry were highlighted as exclusive features of the LR group. 
This latter structure is a major convergence site for processing of information related to motor function, decision making and attri
bution of emotional valence [44–46]. Thus, its absence from edges characterizing the HR group could suggest that early striato-cortical 
synchronization could come at the cost of later processing complexity and information integration. 

Third, a lentiform-hippocampus edge was observed for both groups, although with inverse directionality (i.e. lentiform to hip
pocampus for LR and vice-versa). Effective striatal-hippocampal connectivity underlies encoding facilitation for unexpected familiar 
stimuli, a key component for the regulation of exploratory behaviors [47]. In adults, hippocampal overactivation within this circuitry 
is associated with aberrant salience/valence attribution, which in turn is a key hallmark of several psychopathological conditions 
[48–50]. Considering the higher susceptibility of preterm borns to develop psychiatric disorders (including ADHD, schizophrenia, 

Table 2 
Variable importance ranking of the Random Forest model that combines degree of maternal 
risk and brain connectivity. Mean leave one out (LOO) variable importance ranking for the RF 
classifier trained with both the subset of MaFra “degree of risk” factors and the most consistently 
present FbF directional connections (see Table 1).  

Predictive Variables Mean LOO Variable Importance 

Cervical Length 100 
Brainstem → R Cortical Plate 59.82 
L Caudate → L Cortical Plate 58.58 
R Cortical Plate → R Lentiform Nucleus 46.95 
Brainstem → R Cerebellum 36.37 
R Subthalamic Nucleus → R Lentiform Nucleus 35.46 
R Lentiform Nucleus → R Hippocampus 33.60 
R Hippocampus → R Lentiform Nucleus 30.10 
Anxiety 14.80 
Physical Exercise 2.70 
Antibiotics Medication 0.32  

Table 3 
Multivariate logistic regression model output. Birth occurring before or after the 37th GW (i.e. PTB) is the dependent variable while MaFra-Neuro, 
i.e. the continuous measure that combines degree of maternal risk and FbF connectivity, and the GW at scan are the independent variable.  

Dependent Variable: PTB (<37 GW) Number of observations: 31    

Predictors Estimate (SE) CI 95% Z-value P-value 
(Intercept) 12.78 (10.48) (-6.66, 36.89) 1.22 0.222 
MaFra Neuro 6.53 (3.15) (1.25, 14.38) 2.07 0.038 
GW at scan − 0.57 (0.36) (-1.44, 0.06) − 1.59 0.113  
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anxiety and depression) [51,52] our findings could suggest that maternal and fetal conditions heightening the risk for prematurity 
could also lead to alterations of the functional balance between regions pivotal for the emergence of the brain-behavior tie, thus 
driving a grounding, detrimental impact on its long-term developmental trajectory [53]. 

Neuronal migration and synaptogenesis are paramount in determining subcortical-cortical functional organization. From the 
developmental pathoconnectomics perspective [36], many clinical [5,10] and environmental [5] PTB risk factors occurring before 
conception and during pregnancy may induce considerable developmental perturbations of the functional brain connectome. Despite 
the causes of PTB are deeply grounded in maternal, fetal or placental risk factors, poor fetal brain connectomic evidence exists for 
identifying possible crossroads between neurodevelopmental disruptions and the emergence of a subcortical-cortical functional ho
meostasis in advance of PTB. 

Namely, in this context, alterations in neurodevelopment due to a PTB risk-sensitive prenatal functional “miswiring” [54,55] may 
change brain-behaviour receptiveness and adaptation to postnatal environmental conditions (i.e. differential susceptibility [56]) 
resulting in specific combinations of PTB risk-sensitive neurofunctional phenotypes. 

Della Rosa et al. [5] have already shown in a previous study that preterm birth risk estimation can be achieved by means of a 
hierarchical procedure selecting intrauterine and extrauterine factors through a cost-effective model including a limited group of 
predictors. In this study, the addition of PTB risk-sensitive connections to the aforementioned model, including only maternal risk 
factors, improved model performance for the classification of maternal PTB risk. In addition, the subject-wise presence/absence of PTB 
risk-sensitive connections resulted significantly associated to PTB risk gradient characterization, GA at birth, perinatal vital systems 
impairment evaluation, size-at-birth classification and significantly predicted PTB outcome. 

Perinatal medical conditions and birthweight are two well-known factors associated to neurodevelopmental outcomes during 
infancy and childhood, both in conjunction and independently of premature delivery [57,58]. 

Moving from our hypothesis, and from the pathoconnectomics perspective [36], fetal brain functional connectivity can be thus 
framed as a potential biomarker, not only able to predict preterm birth outcome, ahead of birth, in interaction with the maternal 
environment, but also related to neonatal clinical indicators of potential aberrant neurodevelopmental patterns, following premature 
birth, thus enhancing its relevance to prenatal care and intervention strategies. 

4.2. Clinical groundings 

This study opens room to a cutting-edge vision of PTB, in which neurodevelopmental perturbations already begin in utero. Since 
potential aberrant neurodevelopment has classically been traced back to preterm birth outcome, our results push the search of the 
noxae of aberrant neurodevelopment already in utero and before birth, in the prenatal rather than postnatal life. 

It is true that PTB produces postnatal consequences on neurodevelopment due to organ immaturity potentially leading to com
plications related to abnormal neurodevelopment (e.g., brain hypoxia due to abnormal lung function, parenchimal haemorrage, 
nutritional perturbations due to bowel disease of prematurity, etc). However, it is also true that in-utero conditions affect neuro
development before birth, adding on insults and noxae to premature birth itself. Our results are in line with two decades of research on 
PTB phenotypes [59,60], with profiles traced back to unknown reasons showing better postnatal neurodevelopment as compared to 
those led back to infection or fetal anomaly [60,61]. 

However, future research should encompass larger sample sizes for a finer-grained delineation of PTB risk-sensitive neurofunc
tional phenotypes and for exploration of potential interactions effects between risk factors, which may play different roles when 
present alone or acting in combination. 

Lastly, if aberrant neurodevelopment is already demonstrated in utero and not due to PTB, the question raises concerning clinical 
benefit of PTB prevention aimed at prolonging pregnancy in all cases at risk. Theoretically, future in-utero intervention studies may 
define the selection of cases in which postponing birth may provide the greatest clinical benefit vs. those in which this approach may be 
less beneficial or further deteriorate neurodevelopment, based upon multifactorial etiological phenotyping, as described by recent 
major research on PTB phenotyping [59–63]. 

4.3. Conclusions 

This study supports the groundings of PTB phenotyping, proposed recently by the INTERBIO-21st study, which identified 8 major 
phenotypes: no main condition detected, infections, preeclampsia, fetal distress, intrauterine growth restriction, severe maternal 
disease, bleeding and congenital anomaly [61]. 

Thus, these results encourage future prediction studies with larger samples based upon fetal brain connectomics as a novel 
promising risk marker for redefining preterm birth also in neurodevelopmental terms and aimed at PTB phenotyping through a 
common denominator linking spontaneous or iatrogenic PTB (and related risk factors) to abnormal neurodevelopment. On this basis, 
the route towards studies aimed at prevention of aberrant neurodevelopment with individualized early preventive strategies may be 
initiated, in order to improve fetal and neonatal outcome. This approach will stimulate prospective intervention studies assessing 
whether aberrant neurodevelopmental trajectories may possibly be rerouted already in utero along with PTB prevention and geared 
towards implementing precision medicine approaches addressed at individual patient-specific treatment for PTB. 
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