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Lung cancer, one of the most common and deadly forms of cancer, is in some cases
associated with exposure to certain types of particles. With the rise of nanotechnology,
there is concern that some engineered nanoparticles may be among such particles. In
the absence of epidemiological evidence, assessment of nanoparticle carcinogenicity
is currently performed on a time-consuming case-by-case basis, relying mainly on
animal experiments. Non-animal alternatives exist, including a few validated cell-based
methods accepted for regulatory risk assessment of nanoparticles. Furthermore, new
approach methodologies (NAMs), focused on carcinogenic mechanisms and capable
of handling the increasing numbers of nanoparticles, have been developed. However,
such alternative methods are mainly applied as weight-of-evidence linked to generally
required animal data, since challenges remain regarding interpretation of the results.
These challenges may be more easily overcome by the novel Adverse Outcome Pathway
(AOP) framework, which provides a basis for validation and uptake of alternative
mechanism-focused methods in risk assessment. Here, we propose an AOP for lung
cancer induced by nanosized foreign matter, anchored to a selection of 18 standardized
methods and NAMs for in silico- and in vitro-based integrated assessment of lung
carcinogenicity. The potential for further refinement of the AOP and its components
is discussed in relation to available nanosafety knowledge and data. Overall, this
perspective provides a basis for development of AOP-aligned alternative methods-based
integrated testing strategies for assessment of nanoparticle-induced lung cancer.

Keywords: adverse outcome pathways, nanoparticles, genotoxicity, lung cancer, new approach methodologies

INTRODUCTION

A handful of nanosized particles, including welding fumes, diesel exhaust particles, carbon black,
and titanium dioxide (TiO2), have been classified as carcinogenic or possibly carcinogenic by the
International Agency for Research on Cancer (IARC) (IARC, 2010, 2012a, 2014). Due to lack of
epidemiological data for most engineered nanoparticles, insufficient understanding of how their
physicochemical properties influence the disease process, and the need for onerous animal-based
experimentation, it is not feasible to continue conventional types of risk assessments (Grosse et al.,
2014; Catalán et al., 2017; Saber et al., 2019). Thus, the need for reformed safety assessment
methods, founded on alternative non-animal approaches, is obvious. Alternative in silico and
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in vitro new approach methodologies (NAMs) already exist but
are currently applied mainly to identify genotoxic mechanisms
and provide plausibility to mutagenic endpoints observed in
animals. Promising molecular biology tools such as high-
throughput screening of perturbed key molecular players in
toxicity pathways and high-content omics profiling are popular
but hindered for uptake in safety assessment procedures due to
the perceived risk of over-interpretation of the outcome without
consideration of the broader biological context and the relevance
for human carcinogenicity (IARC, 2014; Catalán et al., 2017).

The current understanding of genotoxic modes of action
(MoAs) is fairly far developed and coupled to a battery of more
or less standardized assays, including alternative non-animal
methods, which have been specifically adapted for testing of
nanoparticles (Dusinska et al., 2019). For example, assessment
of primary genotoxicity, i.e., the capacity of an agent to produce
genetic damage either directly by interacting with DNA or
through release of genotoxic reactive oxygen species (ROS)
and/or other agents, is supported by a variety of standardized
in vitro assays, including specifications for applicability to
nanoparticles (reviewed in Elespuru et al., 2018; Evans et al.,
2019b). Other types of MoAs relevant to nanoparticles, such as
secondary genotoxicity, induced by persistent tissue injury and
chronic inflammation, has been difficult to address even using
animal-based assays and standardized cell-based testing systems
do not exist (Catalán et al., 2017). However, recent developments
toward advanced physiologically relevant in vitro techniques
capable of capturing chronic inflammation and secondary
genotoxicity by nanoparticles provide solutions through use of
co-cultures, conditioned media techniques, and diverse parallel
assessments of pro-inflammatory mediators and genotoxicity
(Åkerlund et al., 2019; Evans et al., 2019a; Halappanavar et al.,
2020b; Kohl et al., 2020). Nevertheless, questions remain as to
how to integrate and interpret the resulting data derived from
isolated cells in the broader human-relevant context (Dusinska
et al., 2017).

Adverse Outcome Pathways (AOPs) offer the much-needed
biological context for in vitro-derived mechanistic data (Edwards
et al., 2016). The AOP framework is conceptually highly similar
to the classical MoA concept, which has governed genotoxicity
research. However, in contrast to MoAs, which are bound
to individual stressors, AOPs are stressor-agnostic and the
information contained can be accessed, reused, updated, and
applied to a variety of substances (Villeneuve et al., 2014;
Sasaki et al., 2020). The AOP framework has emerged as a
robust approach for anchoring mechanistic understanding to
potential health effects in humans. It is expected to take risk
assessment further along toward twenty-first century toxicity
testing due to (i) its structured systematic approach including a
repository and tools for sharing and collaborating (AOP-Wiki,
www.aopwiki.org), (ii) its key focus on mechanistic information,
and (iii) its governance by the OECD leading to broad support
from large regulatory bodies (Leist et al., 2017). Further details
on the framework and its benefits can be reviewed in Leist et al.
(2017). The human relevance of the AOP-anchored mechanistic
information becomes evident through meticulous integration
of diverse types of data (including both legacy and new data)

at various levels of biological organization, for the purpose
of describing the most central molecular, cellular, organ, and
individual level incidents that are connected to the final health
effect. AOP development follows a row of central principles and
is aligned with well-described guidance documents aiming for
particular focus on the causality and essentiality in the chain
of molecular initiating and key events (MIEs and KEs) leading
to adverse outcome (AO). In addition, key event relationships
(KERs) allow for inclusion of information regarding the required
threshold of perturbation for transitioning from one KE to the
next (Coady et al., 2019). Thus, the framework also informs
and facilitates the development of integrated testing and data
interpretation strategies supporting regulatory decision making
(Tollefsen et al., 2014; Ede et al., 2020).

Nanotoxicology has recently seen a rise in the development
of field-relevant AOPs (Gerloff et al., 2017; Halappanavar et al.,
2020b). Worth noting is that although AOPs are stressor-
agnostic, they may still be developed through case study
approaches, whereby data integration focuses on one or several
representative stressors known (or presumed) to be of concern
for a specific AO (Gerloff et al., 2017; Halappanavar et al.,
2019; Vinken, 2019). Focus within nanotoxicology has been
directed toward one of themost relevant target organs for particle
exposure, i.e., the lungs, and a set of six AOPs for diverse
types of lung injury was recently published (Halappanavar et al.,
2020b). In addition, the carcinogenicity of TiO2 was recently
reviewed leading to a suggested AOP for TiO2-induced lung
cancer (Braakhuis et al., 2020). The large body of published data
and information on nanoparticles provides an extensive basis for
further development and refinement of these AOPs (Karlsson
et al., 2014; Gerloff et al., 2017; Elespuru et al., 2018; McCarrick
et al., 2019).

Here, we describe a putative AOP for lung cancer associated
with pulmonary deposition and retention of poorly soluble
nanoparticles, covering aspects of both primary and secondary
genotoxicity. The case study builds on information from diesel
exhaust, carbon black, and TiO2 as representative stressors. In
addition, a selected set of 18 in silico and in vitro assays applicable
to nanoparticles and available for measurement and assessment
of the KEs is aligned with the AOP. While full development of
the AOP is beyond the scope of this perspective, we provide
insight into the information required and the potential for further
refinement of the currently proposed AOP backbone, including
examples of available relevant data sets. Worth noting is that
this perspective does not cover issues associated with high aspect
ratio materials, as the case study stressors do not represent such
materials, which have been handled elsewhere (Halappanavar
et al., 2020b, 2021).

DEVELOPMENT OF A PUTATIVE AOP FOR
LUNG CANCER ASSOCIATED WITH
NANOPARTICLES

The particulate fraction of diesel exhaust is known to be
required for carcinogenesis, since filtered exhaust does not
cause lung cancer in rodents (Brightwell et al., 1989). Inhaled,
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nanosized particles deposit primarily in the alveolar region,
where clearance is low, and lead to prolonged particle retention
enabling particle-bio interaction (Oberdörster et al., 2005; Gaté
et al., 2017). Interaction between particles and lung resident cell
membrane components (Figure 1A, MIE) leads to inflammation
(KE1A) which is proportional to the total deposited surface
area (Schmid and Stoeger, 2016; Danielsen et al., 2020; Kokot
et al., 2020). The persistence of particles results in long-lasting
inflammation (Hougaard et al., 2010; Chézeau et al., 2018).
Metabolic activity of pro-inflammatory cells induces formation
of ROS, which may also be augmented by the surface reactivity
of particles themselves (Jacobsen et al., 2008b; Bendtsen et al.,
2020). The sustained inflammatory signaling and concomitant
synthesis of reactive radicals, cause a chronic state of oxidant-
antioxidant imbalance and loss of protective mechanisms,
potentially resulting in secondary genotoxicity (KE1B) (Evans
et al., 2019a). Diesel exhaust consists of nanosized particles
of inorganic and organic carbon with associated metal oxides
and polyaromatic hydrocarbons (PAHs) (Taxell and Santonen,
2016; Bendtsen et al., 2020). Both the carbon core and solvent-
extractable fractions containing PAHs are mutagenic in vivo

and several metal (oxides) have been classified as (possibly)
carcinogenic (IARC, 2006, 2012b; Hashimoto et al., 2007). It is
possible that such genotoxic agents leach from the pulmonary
deposited particles leading to activation of alternative AOPs
associated with the formation of bulky DNA adducts and
resulting in accumulation of mutations (Li and Nel, 2006)
as indicated by the alternative path in Figure 1A (in gray)
(Sasaki et al., 2020). In addition, the insoluble carbon core
generates particle-induced ROS leading to oxidative stress
(KE1C) (Bendtsen et al., 2020; Gren et al., 2020). In a recent
study of five diesel exhaust particles designed to differ in chemical
composition, DNA strand breaks (KE2) in bronchoalveolar
lavage cells were found to correlate with the ROS forming
capacity of the particles (Bendtsen et al., 2020). Similarly, carbon
black generates surface-dependent ROS, causing oxidative DNA
damage (KE2) and mutagenicity (KE3) in vivo and in vitro
(Jacobsen et al., 2008b). Finally, direct interactions between
nanosized particles and DNA or the mitotic spindle are also
possible, and the AOP features a direct link between the MIE
and mutagenicity, i.e., KE3 (Buliaková et al., 2017; Patel et al.,
2017).

FIGURE 1 | A putative AOP for pulmonary deposition and retention of nanosized foreign matter leading to lung cancer, including anchored in silico and in vitro

methods. (A) A putative AOP developed based on information and knowledge about the process-generated and engineered nanoparticles diesel exhaust, carbon
black, and TiO2. Suggested relevant existing KEs in the AOP-Wiki, that could serve for informing development of the proposed AOP, are mentioned within
parentheses. (B) The AOP supports integrated application of in silico- and in vitro-based standard OECD tests with new approach methodologies (NAMs), including
models/approaches for prediction of deposited dose, detection of ROS generation, inflammation, DNA damage, mutations, and cell transformation. Examples of
specific assays are provided at the bottom. MIE, molecular initiating event; KE, key event; AO, adverse outcome; AOP, adverse outcome pathway; IC-PMS, inductively
coupled plasma mass spectrometry; AAS, atomic absorption spectroscopy; TEM, transmission electron microscopy; ROS, reactive oxygen species; DCFH-DA,
2’-7’dichlorofluorescin diacetate; GSH, glutathione; ELISA, enzyme-linked immunosorbent assay; HT, high-throughput; FPG, formamidopyrimidine DNA glycosylase;
OECD, Organization for Economic Co-operation and Development; HPRT, hypoxanthine phosphorybosyl transferase; TK, thymidine kinase; FE1-MML,
FE1-MutaMouse lung epithelial cells.
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The genotoxic MoA is less clear for TiO2 nanoparticles.
However, it is known that the carcinogenic potential of TiO2

is highly size-dependent and may include both particle-induced
ROS generation and secondary genotoxicity (Liao et al., 2019;
Saber et al., 2019). In fact, in 2-year inhalation studies in rats,
carbon black, TiO2 nanoparticles, and diesel exhaust particles
have shown highly similar carcinogenic potency (Saber et al.,
2019) and the mutation frequency of carbon black and diesel
exhaust particles were also very similar in vitro (Jacobsen
et al., 2007, 2008a). This may be a coincidence, but it may
also indicate that these low solubility particles share common
pathways of carcinogenesis. Diesel exhaust, carbon black, and
TiO2 nanoparticles have all also been shown to induce lung
cell proliferation and transformation (KE4) in vitro and in vivo
(Driscoll et al., 1996; Bayram et al., 2006; Medina-Reyes et al.,
2015, 2019; Vales et al., 2015).

The MIE, KEs, and AO in the suggested AOP were aligned
with relevant existing KEs in the AOP-Wiki, as well as selected
evidence for their association with exposure to nanoparticles
(Table 1). The table lists the original evidence from the three
focus-stressors used to support the development of the AOP
(as described above), as well as additional literature associated
with metal (oxide) nanoparticles, including nickel (Ni), nickel
oxide (NiO), silver, and gold, as well as silicon dioxide
(SiO2) nanoparticles.

Factors Contributing to Particle-Induced
Lung Carcinogenesis
Significance of the Overload Hypothesis
Particle-induced lung cancer in rats has been subject to extensive
scientific discussions (Institute IRS, 2000; Saber et al., 2019, 2020)
due to the overload hypothesis, which suggests that particle-
induced lung cancer observed in rats is an artifact caused
by species-specific impaired particle clearance (Warheit et al.,
2016). The hypothesis stems from observations that at very
high lung burden, particle clearance is completely inhibited
in rats, but not in mice (Elder et al., 2005). Furthermore,
rats, but not mice, develop lung cancer following particle-
exposure (Heinrich et al., 1995). However, particle clearance
was demonstrated in inhalation studies showing diesel exhaust-
, carbon black- and TiO2 nanoparticle-induced lung cancer
(Heinrich et al., 1995). The particle clearance half-lives were
determined to be 300–600 days (Heinrich et al., 1995), which
may be comparable to the half-life of “several hundred days” for
humans (Taxell and Santonen, 2016). Dose-response relationship
between diesel exhaust exposure and lung cancer occurrence has
been determined both in epidemiological studies and in chronic
inhalation studies in rats (Heinrich et al., 1995; Ge et al., 2020).
Epidemiological evidence indicates that occupational exposure to
1 µg/m3 diesel exhaust measured as elemental carbon during a
45-year work life, is associated with 40–170 excess lung cancer
cases per 100,000 exposed. Thus, based on epidemiological
evidence, lung cancer occurs in humans at exposure levels (1–
10 µg/m3), where particle overload cannot be a problem. In
comparison, 1.3 excess lung cancer cases per 100,000 exposed are
expected based on chronic inhalation studies in rats (Vermeulen

et al., 2014; Saber et al., 2019; Ge et al., 2020). Hence, when
comparing risk estimates based on epidemiological studies with
those based on inhalation studies in rats, diesel exhaust appears
most potent in the epidemiological studies, indicating that
chronic inhalation studies of particles in rats are predictive of
human cancer risk, at least with regard to diesel exhaust particles
(Saber et al., 2019). The available data on the carcinogenic
potency of diesel in both epidemiological studies and animal
studies, in addition to knowledge on the potential MoAs in
relation to carcinogenicity, makes diesel exhaust a suitable model
stressor in the current AOP-development case study.

For TiO2, the overload hypothesis in humans remains
unsolved due to lack of epidemiological data, as described in
the recent review by Braakhuis et al. (2020). Since particle size
and hence deposited surface area is a strong determinant of
the carcinogenic potency of TiO2 particles in animal studies,
the lack of information on particle size distribution in available
epidemiological studies of TiO2 exposure hampers comparison
of the carcinogenic potency of these particle in rats and humans
(Heinrich et al., 1995).

Taken together, the AOP includes consideration of
“Deposition and retention of nanoparticles in the lung”
(Figure 1A) and anchors to methods allowing for dose-
determination (Figure 1B, see further details on methods below
in section Assessment of deposited dose). However, the overload
hypothesis is then not specifically considered in the AOP, since
literature on diesel exhaust supports the notion that lung cancer
in humans is present at lower doses than at which overload
would be.

Significance of Inflammation and Secondary

Genotoxicity
Immune and pro-inflammatory responses are a critical
component of host defense (Shacter and Weitzman, 2002). In
lungs, the interaction of stressors with resident cells leads to
cell injury resulting in release of cellular content such as danger
associated molecular patterns or alarmins, including cellular
debris, cytokines, and chemokines. Alarmins bind to cell surface
receptors and activate inflammatory pathways, such as secretion
of a variety of cytokines and chemokines, which in turn signal
recruitment of neutrophils, macrophages, and other immune
cells to the site of infection or injury (Villeneuve et al., 2018;
Halappanavar et al., 2019). The primary purpose of inflammation
is to resolve infection and promote healing. However, repeated
exposure or tissue persistence of the noxious substance results in
unresolved inflammation, leading to tissue injury and chronicity.
Chronic inflammation precedes tissue dysfunction and disease
progression (Halappanavar et al., 2020a). The immune cells and
the pro-inflammatory mediators involved in the inflammatory
process are indistinguishable in acute and chronic inflammation,
and it is rather the lack of resolution of inflammation, leading to
injury, that is potentially causative of cancer. Soluble mediators
such as oxidants, arachidonic acid, cytokines, and chemokines
released as result of the metabolic activity of immune cells such
as neutrophils and macrophages, can lead to oxidative stress,
oxidative DNA damage, and cellular proliferation.
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TABLE 1 | MIE, KEs, and AO in the suggested putative AOP aligned with existing KEs available in the AOP-Wiki (https://aopwiki.org/) and selected evidence from
nanotoxicology literature [with focus on the case study stressors and metal (oxide) nanoparticles].

KE in newly

suggested AOP

Existing associated KE in the

AOP-Wiki

Relevant evidence from studies on

nanoparticles

References

MIE KE1495 interaction with the lung
resident cell membrane components

Retained nanoparticles, including TiO2,
carbonaceous, and a number of metal (oxide)
nanoparticles interact with lung resident cell
membranes and receptors (e.g., through
toll-like receptors)

Chen et al., 2013; Labib et al., 2016;
Nikota et al., 2016; Schmid and
Stoeger, 2016; Danielsen et al., 2020;
Gliga et al., 2020; Kokot et al., 2020;
Vasilichin et al., 2020

KE1A KE1492 tissue resident cell activation Induction of pulmonary inflammation
proportional to the surface area of TiO2,
polystyrene, carbonaceous nanoparticles, and
the insoluble carbon core of diesel exhaust

Hougaard et al., 2010; Saber et al.,
2014; Labib et al., 2016; Nikota et al.,
2016; Schmid and Stoeger, 2016;
Bendtsen et al., 2020; Danielsen
et al., 2020; Kokot et al., 2020

KE1496 increased, secretion of
proinflammatory and profibrotic
mediators

KE1497 increased, recruitment of
inflammatory cells

KE1B –(Secondary genotoxicity) Inflammation-driven genotoxicity observed in
bronchial epithelial cells for TiO2, SPIONs, and
NiO nanoparticles

Åkerlund et al., 2019; Evans et al.,
2019a

KE1C KE1115 increased, reactive oxygen
species

A number of nanoparticles, including TiO2 and
SiO2, as well as the insoluble carbon core of
diesel exhaust generates ROS leading to
oxidative stress in lung cells both in vitro and
in vivo

Jacobsen et al., 2008b; Bendtsen
et al., 2020; Gren et al., 2020;
Karkossa et al., 2021

KE1538 decreased protection against
oxidative stress

KE1088 increased, oxidative stress

KE2 KE1634 increase, oxidative damage
to DNA

Diesel exhaust nanoparticles, TiO2, and a
number of other metal (oxide) nanoparticles,
such as silver and gold, cause oxidative
damage to DNA in lung cells both in vitro and in
vivo

Karlsson et al., 2014; Golbamaki
et al., 2015; Lebedová et al., 2018;
Bendtsen et al., 2020; Ling et al.,
2020

KE3 KE185 increase, mutations Diesel exhaust nanoparticles, carbon black,
TiO2, and a number of other metal (oxide)
nanoparticles, such as silver, Ni, and NiO,
induce gene mutations, formation of
micronuclei, and chromosomal aberrations in
lung cells

Jacobsen et al., 2007, 2008a;
Golbamaki et al., 2015; Åkerlund
et al., 2018; Lebedová et al., 2018;
Ling et al., 2020

KE1669 increased, DNA damage,
and mutation

KE4 KE870 increase, cell proliferation Diesel exhaust, TiO2 and carbon black
nanoparticles induce lung cell proliferation, and
a number of other metal (oxide) nanoparticles,
such as silver, as well as SiO2, have been
shown to induce lung cell transformation

Driscoll et al., 1996; Bayram et al.,
2006; Medina-Reyes et al., 2015,
2019; Vales et al., 2015; Fontana
et al., 2017; Gliga et al., 2018

KE429 cellular proliferation and clonal
expansion of mutant cells
(pre-neoplastic foci), alteration of
cellular growth homeostasis

AO AO1670 lung cancer Diesel exhaust is linked with dose-dependent
increase in the risk for lung cancer in humans.
Diesel exhaust, TiO2, and carbon black are all
also coupled to highly similar rates of
dose-dependent induction of lung cancer
in vivo

Mauderly et al., 1994; Heinrich et al.,
1995; Vermeulen et al., 2014; Ge
et al., 2020
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Chronic inflammation involving pathogenic infections,
chemicals, and non-soluble particles is known to lead to tissue
cancer in animal models (reviewed in Shacter and Weitzman,
2002). In addition, particle deposition and persistence, lung
inflammation, and increased risk of developing cancer has been
observed in workers exposed to coal dust, carbon black, diesel
exhaust, and crystalline silica (Kuempel and Ruder, 2009). Poorly
soluble low-toxicity particles such as TiO2 are suggested to
induce cancer via secondary genotoxicity mechanisms involving
oxidative stress, chronic inflammation, and cell proliferation
(Braakhuis et al., 2020). Furthermore, some engineered
nanoparticles induce fibrosis of lungs, which is also linked to
initiation of carcinogenesis (Elder et al., 2005; Zhou et al., 2020).
Thus, although it has been difficult to find evidence directly
supporting the role of inflammation in nanomaterial-induced
carcinogenic processes, the existing literature is suggestive
of such links. These links have not to date been described in
the AOP-Wiki.

AOP-Anchored Tests for Carcinogenicity
Assessment by Nanoparticles
To provide a basis for the development of integrated testing
strategies for the assessment of lung carcinogenicity by
nanoparticles, we provide an overview of 18 in silico and in vitro
standard methods and NAMs applicable to and in some cases
already frequently used for nanoparticles, and anchor them to the
putative AOP described above (Figure 1B).

Assessment of Deposited Dose
Dose is a key factor for toxicological assessment including for
assessment of human relevance, i.e., allowing for comparisons
between human and in vitro exposure. Exposure via inhalation
is typically reported in terms of particle concentration in
air (mg/m3) whereas in vitro studies often report mass of
nanoparticles per unit volume (µg/ml). In order to enable
comparisons between models, it is helpful to consider cellular
target dose as compared to tissue burden. The nominal
concentration in the medium of in vitro studies can differ
substantially from the cell dose since different nanoparticle
characteristics affect their ability to reach the cells at the bottom
of the culture dish (Teeguarden et al., 2007). For metal (oxide)
nanoparticles, the cellular dose can be measured quantitatively
using e.g., Inductively Coupled Plasma Mass Spectrometry
(ICP-MS) or Atomic Absorption Spectroscopy (AAS), or
qualitatively through cellular imaging using Transmission
Electron Microscopy (TEM). For ICP-MS and AAS, however, it
may be difficult to distinguish between nanoparticles taken up
by the cells and those simply attached to the cell membrane.
Another limitation is their inability in general to distinguish
between the nanoparticle itself and ions released from the
nanoparticles. The delivered dose can alternatively be estimated
by modeling, e.g., using the in vitro Sedimentation, Diffusion and
Dosimetry (ISDD) model to estimate the movement of particles
to the cells (Hinderliter et al., 2010). Similarly, estimations
of tissue deposition of airborne nanoparticles with different
characteristics can be performed with the Multiple-Path Particle
Deposition model (MPPD), which calculates the deposition

and clearance of mono- and polydisperse aerosols containing
particles ranging in size from ultrafine/nanosized (100 nm) to
coarse (20µm) in the respiratory tract of humans (Miller et al.,
2016). Overall, these methods are useful for assessment and
estimation of the deposited dose both in vitro and in humans to
allow for comparisons and identification of required thresholds
of perturbation in results obtained with assays anchored to
downstream components of the AOP (Figure 1A).

Assessment of Oxidative Stress and Inflammation
Phagocytic cells may internalize deposited particles leading
to respiratory burst and release of ROS, leading to oxidative
stress and inflammation (KE1C and KE1A, Figure 1A). The
fluorometric assay relying on the intracellular oxidation of 2’-
7’dichlorofluorescin diacetate (DCFH-DA) is commonly used
to detect ROS release in cells in vitro (Decan et al., 2016).
In addition, lipid peroxidation, protein oxidation, and protein
carbonylation can be measured as indicative of oxidative stress
using proteomics techniques (Riebeling et al., 2016). Other
approaches include measurement of intracellular glutathione
levels using the ThiolTrackerTM Violet assay (Decan et al.,
2016), glutathionylation of proteins, or expression assessment
of relevant genes and proteins associated with antioxidant
pathways, e.g., using reporter cell lines such as the ToxTracker
system (Karlsson et al., 2014; Riebeling et al., 2016).

The selection of pro-inflammatory mediators for investigation
differs and is dependent on the expertise of the lab, cell types
studied and availability of the specific antibodies. Most routine
assays involve measuring the abundance of cytokine mRNA
in a given sample using targeted or array-based quantitative
(q)RT-PCR. In addition, novel high-throughput and targeted
transcriptomic techniques are increasingly becoming available
for assessment of transcriptional changes in relevant gene sets
and biological pathways (Collins et al., 2017). The protein levels
of cytokines and their activation state can also be measured
using targeted Western blot assays and ELISA assays. The
latter allows quantitative measurement of antigens in biological
samples. Both mRNA- and protein-based methods are readily
applicable to in vitro cell culture models, where cell culture
supernatants or whole cell homogenates are useful, and allow
for high-throughput, simultaneous assessment of multiple pro-
inflammatory mediators in a single setting (Husain et al., 2015).
Lastly, immunohistochemistry can be used to detect specific
immune cell types producing pro-inflammatory mediators and
its downstream effectors in any given tissue (Costa et al.,
2018). However, the technique is not quantitative and the
sensitivity depends on the specificity of the antibodies employed
(Amsen et al., 2009). Some of the most commonly assessed pro-
inflammatory mediators include IL-6, IL-8, TNFα, IL-1β, NF-
κB, and IFNγ (Nymark et al., 2018a). However, the relative
predictive efficiency and sensitivity are not validated and may
vary from one test system to another. Moreover, most pro-
inflammatory mediators play a pleotropic role and their activities
in carcinogenicity still require further research (Gomes et al.,
2014).

Recruitment of pro-inflammatory cells is currently not
possible to assess in vitro. However, with the development
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of more advanced model systems, such as conditioned media
approaches, co-cultures, and ultimately organotypic cultures it
may become feasible (Kohl et al., 2020).

Assessment of DNA Damage and Mutagenicity,

Including Secondary Genotoxicity
In vitro assessment of genotoxicity can be divided into two types
of assays; (i) assessment of repairable DNA damage or related
DNA repair mechanisms, and (ii) assessment of irreparable DNA
damage, i.e., inheritable chromosome damage and mutations.
Here, we refer to the former as genotoxicity assays, which are
anchored with KE1B and KE2 (Figure 1A), and the latter as
chromosome damage and mutation assays, anchored with KE3.
Detailed definition of genotoxicity and mutagenicity can be
reviewed in Catalán et al. (2017).

The comet assay is one of the most commonly used methods
for assessing genotoxicity of nanoparticles (Magdolenova et al.,
2014; Golbamaki et al., 2015; Elespuru et al., 2018). Overall,
the assay is generally applicable to nanoparticles but with some
precaution and awareness (Karlsson et al., 2015). For example,
photo-catalytically active nanoparticles, e.g., TiO2 may cause
false positives in the presence of light. In addition, DNA damage
formed during the assay performance has also been reported
for copper oxide (CuO) nanoparticles, but the extent to which
it interferes with the assay remains to be elucidated (Karlsson
et al., 2015). The comet assay can also be combined with
enzymes, most commonly FPG (formamidopyrimidine DNA
glycosylase), allowing for detection of oxidatively damaged DNA
(Magdolenova et al., 2014). Recent developments of the comet
assay has resulted in higher throughput approach, including
automated scoring of mini-gel comets (Jackson et al., 2013;
Brunborg et al., 2014; Collins et al., 2017). Other high-throughput
assays used for the indication of (still repairable) genotoxicity
include e.g., flow cytometry or immunohistochemistry to detect
the formation of phosphorylated histone H2AX (γ-H2AX),
indicating initiation of DNA repair mechanisms targeting double
strand breaks (Nelson et al., 2017; Åkerlund et al., 2018). The
ToxTracker reporter assay is also, in addition to oxidative
stress mentioned above, capable of assessing genotoxicity,
protein folding and p53-related cellular stress based on the
transcriptional activation of a set of six key genes (Hendriks et al.,
2016). Recent results have demonstrated the applicability of the
assay to 33 different nanoparticles, showing a great diversity in
activation and magnitude of induction of the various reporters
(Cappellini et al., 2020; McCarrick et al., 2020). Thus, these
assays have been anchored with KE2 (Figure 1A). Both KE1B
and KE2 are also covered by newly developed methods including
conditioned media approaches, whereby cells are treated with
media from nanomaterial-exposed immune cells, or co-cultures
of e.g., macrophages and epithelial cells, as described previously
in relation to testing superparamagnetic iron oxide (SPION) and
NiO nanoparticles (Åkerlund et al., 2019; Evans et al., 2019b).

With regard to mutagenicity and chromosomal aberration
assays, these include another of the most commonly used
assay for nanoparticles, i.e., the micronucleus assay [OECD test
guideline (TG) 487; Magdolenova et al., 2014; Golbamaki et al.,
2015; Elespuru et al., 2018]. Modifications of the assay toward

applicability to nanoparticles are included in the standardized
guidelines for nanoparticle-application (Elespuru et al., 2018).
The assay can be coupled to flow cytometry to increase
throughput for scoring of micronuclei (Di Bucchianico et al.,
2017; Lebedová et al., 2018). In addition, the Chromosomal
Aberration Assay (OECD TG478) is applicable to nanoparticles
(Elespuru et al., 2018). Other standardized assays include a
variety of mammalian cell mutation assays; the thymidine kinase
(TK) assay (OECD TG 490), the Hprt (hypoxanthine-guanine
phosphoribosyltransferase) assay (OECD TG 476), and the cII
loci assay (FE1-MML) (Jacobsen et al., 2007, 2008a; Decan et al.,
2016; Åkerlund et al., 2018; Kohl et al., 2020). These have all been
anchored with KE3 in the putative AOP (Figure 1A).

Assessment of Increased Cell Proliferation and

Carcinogenicity
Finally, assessment of cell transformation and increased cell
proliferation, as a result of the upstream events, is coupled to cell
morphological changes, as shown for e.g., cobalt nanoparticles
(Ponti et al., 2009), or the ability of exposed cells to grow in soft
agar (Kohl et al., 2020). This is a carcinogenic feature of cells that
may be particularly relevant after low dose long-term studies, as
suggested for e.g., TiO2 nanoparticles, and thus anchored with
KE4 (Figure 1A) (Vales et al., 2015). The latest developments of
advanced organotypic and 3D models can also be expected to
support assessment of the carcinogenic potential of nanoparticles
in line with the AO (Kohl et al., 2020).

DISCUSSION

Assessment of carcinogenicity is coupled to a well-developed
set of standardized in vitro-based genotoxicity and mutagenicity
alternatives that enable assessment of direct-acting carcinogens
(Corvi and Madia, 2017). Some of these assays have been or
are being evaluated and modified accordingly to be applicable
to nanomaterial testing (Karlsson et al., 2014; Nelson et al.,
2017). Nevertheless, challenges remain regarding assessment of
e.g., secondary genotoxicity MoAs induced by nanoparticles. In
addition, there is a need to improve the applicability of new
mechanism-focused methods for genotoxicity testing in safety
assessment practices. This perspective provides an overview of a
putative AOP describing deposition and retention of nanosized
foreign matter leading to lung cancer, building on knowledge,
and understanding of carcinogenesis induced by diesel exhaust,
carbon black, and TiO2 nanoparticles. The AOP is aligned with
a selected set of in silico- and in vitro-based standard and new
assays which support integrated assessment and interpretation
of the putative MIEs and KEs, based on currently available
data on nanoparticles (Halappanavar et al., 2020b). Overall, the
putative AOP presented here extends on a recently proposed
AOP operative for assessment of TiO2 carcinogenicity in rats,
and opens for the possibility to iteratively build further on the
KE descriptions (Braakhuis et al., 2020).

The nanosafety community has over the past decade focused
extensively on enabling harmonized data management of the
widely diverse data types generated within the field, and has
recently led to the establishment of the Nanosafety Data
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Interface (https://search.data.enanomapper.net/) which provides
findable, accessible, interoperable, and reusable (FAIR) data from
several European projects (Jeliazkova et al., 2015, in press).
Such available data support recently proposed data integration
strategies allowing for validation and threshold estimation of the
KEs as well as further development of KERs in the suggested AOP
(Nymark et al., 2018b; Halappanavar et al., 2021). Eventually,
the added value brought by the AOP is particularly coupled to
the essentiality and causality between the modules in the chain
of events, as well as the AOP-Wiki platform allowing for broad
collaborative efforts to gather and store information available for
reuse and refinement.

In addition to iterative implementation of knowledge
surrounding specific case study stressors, such as here covered
by nanosized particles, the development of AOPs also benefits
from efforts within other fields, even if challenges remain
regarding how to adapt cross-field information to nanoparticles.
For example, a recent effort to translate classical genotoxicity
MoAs into the AOP framework can be expected to support
refinement of the proposed AOP (Sasaki et al., 2020). The
work was mainly focused on chemical-induced genotoxic MoAs,
however, one of the preliminary AOPs describe the chain of KEs
from “increased ROS leading to increases in gene mutations and
chromosomal breaks/rearrangement” which is directly in line
with KE1C, KE2, and KE3 in the putative AOP suggested here.
In addition, the potential for genotoxic agents leaching from
nanoparticles and leading to alternative parallel AOPs related
to the formation of DNA adducts is supported by these efforts,
and it provides a robust basis for further development and
branching of AOP networks covering the various carcinogenic
MoAs of nanoparticles. Finally, insight from the field of cancer
research may provide clues through e.g., the 10 proposed key
characteristics of carcinogens and the well-established hallmarks
of cancer (Hanahan and Weinberg Robert, 2011; Smith et al.,
2016).

Overall, the putative AOP, in its current form, supports
systematic and structured integration and evaluation of
mechanistic data derived from alternative ways of assessing
primary and secondary genotoxicity, supporting safety
assessments and prioritization of nanoparticles in need of

further testing (Nymark et al., 2020; Sasaki et al., 2020). The
evidence gained from systematic application of data derived
from these alternative testing approaches may provide insight
into further research needs, as well as a robust basis needed
for the shift toward safety assessment relying on non-animal
methods-driven integrated testing strategies.
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