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Abstract

Background: Entry of human immunodeficiency virus type 1 (HIV-1) into the host cell involves interactions
between the viral envelope glycoproteins (Env) and the cellular receptor CD4 as well as a coreceptor molecule
(most importantly CCR5 or CXCR4). Viral preference for a specific coreceptor (tropism) is in particular determined by
the third variable loop (V3) of the Env glycoprotein gp120. The approval and use of a coreceptor antagonist for
antiretroviral therapy make detailed understanding of tropism and its accurate prediction from patient derived virus
isolates essential. The aim of the present study is the development of an extended description of the HIV entry
phenotype reflecting its co-dependence on several key determinants as the basis for a more accurate prediction of
HIV-1 entry phenotype from genotypic data.

Results: Here, we established a new protocol of quantitation and computational analysis of the dependence of HIV
entry efficiency on receptor and coreceptor cell surface levels as well as viral V3 loop sequence and the presence of
two prototypic coreceptor antagonists in varying concentrations. Based on data collected at the single-cell level, we
constructed regression models of the HIV-1 entry phenotype integrating the measured determinants. We
developed a multivariate phenotype descriptor, termed phenotype vector, which facilitates a more detailed
characterization of HIV entry phenotypes than currently used binary tropism classifications. For some of the tested
virus variants, the multivariant phenotype vector revealed substantial divergences from existing tropism predictions.
We also developed methods for computational prediction of the entry phenotypes based on the V3 sequence and
performed an extrapolating calculation of the effectiveness of this computational procedure.

Conclusions: Our study of the HIV cell entry phenotype and the novel multivariate representation developed here

contributes to a more detailed understanding of this phenotype and offers potential for future application in the
effective administration of entry inhibitors in antiretroviral therapies.

Background

Human immunodeficiency virus (HIV) entry into host
cells is initiated by binding of the viral envelope (Env)
glycoprotein gp120 to the primary cellular receptor CD4
[1,2]. CD4 binding induces conformational changes in
the gp120 glycoprotein [3], resulting in formation of a
binding site for specific chemokine receptors, most im-
portantly CCR5 and CXCR4 for HIV type 1 (HIV-1),
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which serve as coreceptors for HIV entry [4-6]. The
interaction of gp120 with the coreceptor induces a series
of further conformational rearrangements in the viral
Env glycoproteins that ultimately result in fusion of the
virus envelope with the host cell membrane [1].

It has been shown that viruses using CCR5 (R5-tropic
viruses) are almost exclusively present during the early
asymptomatic stage of the infection whereas CXCR4-
using viruses (X4-tropic viruses) emerge in later phases
of the infection in about 50% of cases and are associated
with a CD4" T-cell decline and progression towards
AIDS [7,8]. The finding that individuals lacking CCR5
expression due to a homozygous deletion in the ccrS
gene (CCR5/A32) are resistant to HIV-1 infection with-
out suffering from adverse effects [9] stimulated the
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search for HIV inhibitory CCR5 antagonists, which cul-
minated in the approval of the compound Maraviroc
(MVC) [10] for clinical use. The correlation of viral
tropism with disease progression and its significance for
treatment strategies specifically targeting R5 viruses
underscore the clinical relevance of accurate monitoring
of coreceptor usage.

The principal viral determinant of HIV coreceptor speci-
ficity is the third variable (V3) loop of gp120 [11-13]. This
is supported by several studies on the power of genotypic
prediction based on the sequence of the V3 loop (see, e.g.
[14-16]). Those methods have been developed as an alter-
native to time-consuming and expensive phenotypic assays
for surveying HIV coreceptor usage of viral populations
from patient’s samples. They aim at computationally pre-
dicting viral tropism based on the V3 loop sequence
[11,12,17-20] and on its structure [21,22]. The straightfor-
ward accessibility of computational prediction methods and
the comparatively low cost of genotyping represent major
advantages of sequence-based computational approaches for
predicting coreceptor usage. Due to these advantages geno-
typic tropism testing has entered clinical practice in Europe
and has been acknowledged by the European expert guide-
lines on tropism testing [23]. Currently used approaches
classify virus isolates into either R5- or X4-tropic based on
their V3 loop sequence. The limited accuracy of current pre-
diction methods [20] advocates the development of
expanded mathematical models of virus phenotype integrat-
ing environmental and host molecular factors that are
known to play a role in HIV entry in addition to the viral en-
velope sequence. Such models will not only contribute to
our understanding of the HIV entry process, but also provide
a basis for more effective therapeutic use of HIV entry
inhibitors.

Numerous factors determine the efficiency of the HIV
membrane fusion process. Major determinants are the
amino acid sequence of the viral Env protein and the
availability, and concentration of CD4, and the two
major coreceptors on the cell surface. Furthermore, the
presence and concentration of compounds blocking HIV
coreceptors can influence virus cell entry [24]. AMD-3100
(AMD), a drug blocking CXCR4, was the first coreceptor
antagonist described for HIV-1 [25], but was never
approved for clinical use in HIV infected patients due to se-
vere adverse effects [26]. In contrast, several CCR5 antago-
nists have entered clinical trials [27], with Maraviroc
approved for patient treatment [28]. Since this drug is only
effective in patients harbouring R5-tropic virus variants,
viral tropism testing at the start of treatment is
mandatory for prognosis of MVC therapy outcome.
MVC resistance has been shown to evolve under
therapy, not only through a switch of the viral popu-
lation to X4-tropic variants, but also by mutations in
the V3 loop enhancing the affinity of gp120 to MVC-
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bound coreceptor molecules, which facilitate efficient
entry mediated by CCR5 in the presence of the drug
[29,30]. Nevertheless, with an increasing number of
patients under MVC treatment a better understanding of
the evolution of the virus under coreceptor antagonist
drug pressure as well as the development of algorithms ac-
curately predicting the efficacy of entry inhibitors are
highly important.

HIV entry efficiency and its sensitivity towards coreceptor
antagonists are complex phenotypes simultaneously de-
pending on multiple determinants. In this study we aimed
at a more comprehensive description of this multi-variant
phenotype than what is reflected in current phenotype ana-
lyses, to provide a basis for an improved prediction of HIV
entry phenotypes. We present a model reflecting the multi-
dimensional HIV entry phenotype based on a comprehen-
sive experimental analysis of HIV cell entry efficiency
dependent on its main determinants V3 loop sequence, cell
surface CD4, CCR5 and CXCR4 expression levels, as well
as on the presence of two prototypic coreceptor antagonists
(MVC and AMD). Our analysis is based on an experimen-
tal assay in which natural molecular variation of the recep-
tor and coreceptor expression on the surface of a T-cell line
and its effect on viral cell entry are quantified at the single-
cell level. In this system we tested a panel of isogenic
viruses differing only in the sequence of the V3 loop to limit
the number of biological variables and developed regression
models based on the single-cell data describing HIV cell
entry dependence on the measured parameters. The mod-
els provide a comprehensive representation of the viral
phenotype, including effects of multiple important host and
drug determinants on HIV entry and, in this way, raising
tropism classification based on virus genotype to a new
level of detail. Our approach offers an improved capacity of
identifying X4 viruses over existing sequence-based meth-
ods for tropism prediction. It additionally allows for recog-
nizing a spectrum of virus phenotypes extending beyond
binary R5/X4 tropism classification. Given a sufficient
number of variants characterized in our assay, the multi-
variate phenotype descriptor incorporating virus suscepti-
bility to MVC can be inferred from V3 sequence, which is
of high interest for practical use of our approach in patient
treatment with coreceptor antagonists.

Results

Experimental and computational setup for acquisition
and analysis of single-cell data

In this study we established a flow cytometry based assay
for simultaneous measurement of the efficiency of HIV-1
cell entry and cell surface receptor and coreceptor ex-
pression at the single-cell level (Figure 1). We
designed the experimental setup in a way intended to
limit the variation of parameters which were not considered
in the data collection and the subsequent modelling steps.
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Figure 1 Data acquisition and analysis. The flow chart depicts the
experimental and computational pipeline employed in this study.
Steps of the experimental procedure are shown in the orange part
of the plot; computational steps are shown in the blue part of the
plot.

Since primary T-cells derived from peripheral blood mono-
nuclear cells (PBMCs) would introduce unpredictable
donor specific variations beyond the level of CD4 and core-
ceptors on the cell surface, we employed a characterized T-
cell line (SupT1/CCR5) expressing both coreceptors,
CXCR4 and CCR5, as host cells. Receptor and coreceptor
levels on this cell line were compared to those on primary
T-cells derived from different blood donors (Additional file
1: Figure S1). Quantitative flow cytometry analysis revealed
that SupT1/CCR5 cells displayed approximately two- to
three-fold higher amounts of CXCR4 and CD4, respect-
ively, on the cell surface compared to primary T-cells. This
was balanced by a larger cell size of the SupT1/CCR5 cells
(approximately two-fold higher volume as estimated from
FSC/SSC parameters [31]), rendering the differences in
CD4 and CXCR4 surface concentrations negligible. Levels
of CCR5 on SupT1/CCR5 cells were approximately 6-fold
higher than on PBMCs due to exogenous expression of this
chemokine receptor in the cell line. Even though individual
cells from this cell line are more homogeneous than pri-
mary cells isolated from different donor samples, cell-
to-cell variations in CD4, CCR5 and CXCR4 levels within
the population of SupT1/CCR5 covered a sufficiently wide
range, enabling us to measure the effect of their expression
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variation on the efficiency of virus entry. Within the set of
experiments used in this study, the expression levels of
CD4, CCR5 and CXCR4 on the SupT1/CCR5 cell line ran-
ged between 3,300-45,000, 700-12,000 and 3,000-44,400
molecules per cell, respectively (Additional file 1: Figure S2
and Additional file 1: Table S1). In order to correlate HIV
entry efficiency with the density of CD4, CCR5 and CXCR4
on the cell surface, virus entry into individual cells was
assessed in parallel with receptor- and coreceptor immuno-
fluorescence measurements. This was done using a
B-lactamase virion fusion assay based on fluorescence
cytometry (BlaM assay; [32]). In this setup, P-lactamase
packaged in the reporter viruses and released into
the cytoplasm upon virus entry cleaves the fluoro-
genic dye CCEF-2 that has been loaded into the host
cells, leading to a shift from green to blue fluores-
cence emission.

The variability of tested virus variants was restricted to
the amino acid sequence of the V3 loop. This loop has
been described as the main predictor for viral tropism
by numerous studies [11-13]. While sequences outside
of the V3 region have been found also to contribute to
HIV tropism [16], a high concordance between predic-
tions based on bulk V3 sequencing of clinical samples
and phenotypic tropism testing by Enhanced Sensitivity
Trofile Assay (ESTA; a validated phenotypic assay) have
been described [33-35] suggesting genotypic analysis of
the V3 loop sequence alone as an accepted analysis
method for clinical purposes [23,36]. Therefore, our ana-
lysis was performed on a panel of isogenic reporter
viruses differing only in the amino acid sequence of the
V3 loop.

We selected a set of 16 diverse patient-derived, and
five lab-adapted V3 loop variants [37-40] based on their
predicted tropism as determined by three tropism pre-
diction tools [11,12,17,20] and sequence similarity to
other V3 loops (compare Methods section; Additional
file 1: Table S2). We used the X4-tropic lab-adapted
strain NL4-3 [41] and its R5-tropic derivative NL4-3 R5
(kindly provided by S. Pohlmann), differing by seven
point mutations within the V3 loop as reference X4 and
R5 viruses, respectively. Among the selected patient-
derived sequences two were predicted as R5-tropic, 11
as X4-tropic and three showed ambiguous results in the
sequence analysis (ambiguous variants). Among the lab-
adapted strains, four were predicted as R5-tropic and
one as X4-tropic (Additional file 1: Table S2). Analysis
of the V3 sequences revealed that all sequences assigned
as R5, as well as one ambiguous variant (924), were
closely related to other R5 sequences as indicated by
short branch lengths of the respective clades in the
phylogenetic tree (Additional file 1: Figure S3). The
reference X4 sequence, one lab-adapted X4 sequence
(HxB2), and one of the patient-derived sequences
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predicted as X4 (286), belonged to the clades comprising
predominantly X4 sequences. Among the remaining
sequences, four (252, 381, 315 and 376) formed a closely
related, seemingly dual-tropic group. Other sequences
were located in parts of the tree occupied by both R5
and X4 sequences showing intermediate branch lengths.
Detailed characterization of the sequences is provided in
the Supplementary Information.

To ensure appropriate expression levels of the modified
Env proteins, we introduced a gene segment encoding for
the respective V3 loop into the NL4-3 proviral backbone.
Reporter viruses carrying a Vpr-BlaM fusion protein were
prepared from the tissue culture supernatant of transfected
293T cells and used to infect target cells at conditions
yielding 20 to 30% entry positive cells. Infected cells were
stained for BlaM activity as well as immunostained for cell
surface expression of CD4, CXCR4 and CCR5. All para-
meters were subsequently assessed in parallel on the
single-cell level by multicolour flow cytometry.

An automated data analysis procedure was developed in
order to process large amounts of data sets and eliminate
investigator bias through manual gating of flow cytometry
data. This included automated gating of the major live cell
population based on forward scatter (FSC) and side scatter
(SSC) flow cytometry values (Additional file 1: Figure S4),
followed by binary classification into entry positive and
entry negative using a computationally established decision
boundary based on control measurements performed in
parallel on uninfected cells (Methods; Additional file 1:
Figure S5). This procedure was validated by manual gating
of a subset of measurements (R”=0.997; Additional file 1:
Figure S6).

Analysis of multivariate data sets and comparison to
binary sequence classification results

The measurements on the single-cell level and their auto-
mated classification resulted in data sets comprising infor-
mation on relative CD4, CXCR4 and CCR5 expression
levels for each individual cell, in conjunction with the bin-
ary information whether reporter virus had entered the re-
spective cell. Analogous data sets were collected in the
presence of varying concentrations of AMD and MVC.
This set of measurements was performed for each virus
variant. Figure 2 illustrates the multi-dimensionality of the
phenotype measured in this study. Panels A depicts the
entry efficiency of the reference X4 and R5 variants and
one exemplary variant with a patient-derived V3 loop
(685), respectively, dependent on different expression levels
of all receptor and coreceptor combinations in the absence
of drugs. Entry of the reference X4 virus NL4-3 depended
predominantly on the expression level of CXCR4 as
reflected by the gradient of the diagram depicting entry ef-
ficiency in dependence of both coreceptors (Figure 2A i).
In contrast, the reference R5 virus NL4-3 R5 showed
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dependence predominantly on the expression level of
CCR5 (Figure 2A ii), and virus 685 on the expression levels
of both CCR5 and CXCR4 coreceptors (Figure 2A iii). For
a better understanding of these complex dependencies, the
entry efficiency in dependence of either one of the corecep-
tors at various CD4 expression levels is depicted on the
remaining plots of this panel (Figure 2A iv-ix). Analysis of
entry efficiency in dependence of CXCR4 and CD4 showed
a clear R5 tropic phenotype of the NL4-3 R5 variant with
no apparent dependence on CXCR4 (Figure 2A viii). In
contrast, virus 685 did display dependence on both CCR5
and CXCR4 (Figure 2A vi and ix). These visualizations re-
veal the degree of molecular variability within a cell popu-
lation considered to be homogeneous, and its effect on
virus cell entry which is masked in bulk analyses. Figure 2B
illustrates the dependence of viral entry efficiency on both
coreceptor antagonists MVC and AMD present at different
concentrations. Sensitivity of the reference viruses NL4-3
and NL4-3 R5 towards the CCR5 and CXCR4 antagonists,
respectively, was in accordance with their coreceptor de-
pendence. Virus 685 displayed a more complex phenotype,
showing reduced sensitivity towards AMD and complete
inhibition only in presence of both coreceptor antagonists
(Figure 2B, right panel).

Initial visual inspection of the experimental data of all
tested virus variants allowed us to distinguish X4, R5 and
dual-tropic viruses in our dataset (Figure 3). Among 11 V3
loop sequences classified as X4 based on the sequence ana-
lysis, only four showed a clear X4-tropic phenotype in our
phenotypic analysis, as demonstrated by sensitivity towards
AMD and dependence on CXCR4 expression levels. Three
of the remaining seven viruses displayed an R5-tropic
phenotype characterized by sensitivity to MVC and de-
pendence on CCR5 expression, and the four remaining
viruses showed a dual tropic phenotype characterized by
dependence on the levels of both coreceptors and response
to combinations of coreceptor antagonists. In contrast,
none of the variants classified as R5-tropic showed an X4-
tropic phenotype in our assay. From three viruses initially
classified as ambiguous, two showed R5- and one X4-tropic
characteristics. Notably, the incorrectly predicted variants
showed stronger response to MVC, even at low drug con-
centrations, than viruses initially classified as R5-tropic. In
summary, from 19 clearly classified V3 sequences, only 11
were confirmed in their predicted tropism, two showed an
opposite tropism and four displayed dual tropism. Three
variants classified as ambiguous displayed clear R5- or X4-
tropic phenotypes in our assay (Figure 3). Taken together,
these results reflect a higher accuracy of detection of X4
phenotypes by our multi-parameter phenotypic assay as
compared to the NSI/SI phenotypic and genotypic classifi-
cation methods used traditionally to characterize the V3
sequences, and allowed characterization of complex pheno-
types for which these tools proved insufficient.
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Figure 2 Exemplary illustrations of the dependence of viral entry efficiency on various tested parameters. The figure shows a graphical
representation of exemplary data collected for the two reference clones (NL4-3 and NL4-3 R5) and one dual-tropic clone (685). Dependence of
the entry efficiency on the surface expression levels of all receptor/coreceptor combinations (A) and on concentrations of two entry inhibitors (B)
from representative experiments are shown. Concentrations of AMD and MVC are shown in ng/ml and nM, respectively. Planes traced with
dashed lines were fitted using linear regression and indicate the direction of the decrease of the entry efficiency with the increase of each drug
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Data sets collected on the single-cell level were used to
construct regression models reflecting dependence of the
virus cell entry efficiency on the measured parameters. In
these models, CD4, CCR5 and CXCR4 surface levels as
well as MVC and AMD concentrations were used as input
variables, while virus entry into a cell, as determined by the
BlaM assay, was used as the output variable. Prior to model
training, the single-cell data obtained with each of the var-
iants were combined into a multidimensional grid defined
on values representing CD4, CCR5 and CXCR4 expression
levels aggregated into value segments and on all tested
drug concentrations. Virus cell entry information was aver-
aged over the cells within each bin of the grid. Model selec-
tion was performed on a variety of model classes
(Additional file 1: Table S3) defined on the five input

variables and based on the data grids of the two reference
viruses (NL4-3, NL4-3 R5). The best models were chosen
according to two criteria: (i) the model fit to the data and
(ii) the model separation between the X4 and R5 reference
models (NL4-3 and N4-3 R5, respectively). Since in this
study models of cell entry efficiency were used as a descrip-
tion of a complex virus phenotype rather than for predict-
ing the entry efficiency for a specific virus, we minimized
the training error rather than the test error that quantifies
model predictive power. Among 192 analyzed model classes
two models were selected as the best representation of the
experimental data obtained for both reference viruses (Add-
itional file 1: Figure S8). These models differ in the scale of
the MVC and AMD input variables, with a logarithmic
scale offering the better model fit (R*~ 0.62 vs. 0.49) and a
linear scale offering the better model separation (R5-X4
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clone sequence Sl gen:::;eno po1s1i:i205ns (S LS Ao observed
phenotype (prediction) (prediction) [nM] [ng/ml] phenotype
220 CTRPNNNTIKGISIGPGRAVIATRKIIGDIRQAHC Sl 0.700 (X4) GK (X4) 1 n.a. R5
252 CTRPNNNTRKRITMGPGRVYYTTGDIIGDVRRAHC SI 0.970 (X4) RD (X4) n.a. n.a. dual
286 CTRPHNNIKRHRIHIGPGRSFHTTKGITGNIRQAHC Sl 0.967 (X4) RG (X4) n.a. >1000 X4
308 CTRPNNNTIKSIRVGTGRIVYATGKIIGDIRQAHC Si 0.798 (X4) SK (X4) n.a. 280 X4
i Lo} CTRPNNYTRKRISIGPGRAFYTTRQIIGDIRQAHC Sl 0.974 (X4) RQ (X4) n.a. n.a. X4
376 CTRPNNNTRKRISIGPGRSFYTTRQIIGDIRQAHC Sl 0.914 (X4) RQ (X4) 8 n.a. R5
381 CTRPNNNTRKRITMGPGRVFYTTGQIIGDIRRAHC Sl 0.950 (X4) RQ (X4) incomplete n.a. R5
391 CTRPNNYTMRRVFIGPGRAFYAKRRIIGDIRQAHC Si 0.990 (X4) RR (X4) n.a. n.a. X4
468 CTRPSNKTRTSISMGPGRAFVATRQIIGNIRQAHC Sl 0.658 (X4) SQ (R5) n.a. 166 X4
541 CIRPNNNTRKGIYIGPGRAVYTTGRIIGDIRKAHC Si 0.856 (X4) GR (X4) <1 n.a. R5
631 CIRPNNNTRQRLSIGPGRAFYATRTIVGDIRQAHC Sl 0.964 (X4) RT (X4) n.a. n.a. dual
651 CTRPNNNTRKSVRIGPGDIFITTDIGNIRQAHC Sl 0.170 (R5) SD (R5) 5 n.a. R5
685 CTRPNNNIMRRIHIGPGRAFYATRKIIGNIRQAHC Sl 0.983 (X4) RK (X4) 25 n.a. dual
822 CTRPNNNTRRSIHIAPGRAFYTTGQIIGDIRQAHC NSI 0.055 (R5) SQ (R5) 65 n.a. R5
838 CTRPNNNTRKSIHIGPGKAFYTTGEIIGDIRQAHC NSI 0.082 (R5) SE (R5) 44 n.a. R5
924 CFRPNNNTRKGIHIGPGRAFYTTGEIGDIRRAYC NSI 0.316 (X4) GE (R5) n.a. n.a. R5
BalL CTRPNNNTRKSIHIGPGRALYTTGEIIGDIRQAHC n.d. 0.058 (R5) SE (R5) 35 n.a. R5
HxB2 CTRPNNNTRKRIRIQRGPGRAFVTIGKIGNMRQAHC n.d. 1.000 (X4) RK (X4) n.a. >1000 X4
JRFL CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRQAHC n.d. 0.092 (R5) SE (R5) 30 n.a. R5
SF162 CTRPNNNTRKSITIGPGRAFYATGDIIGDIRQAHC n.d. 0.067 (R5) SD (R5) 20 n.a. R5
YU-2 CTRPNNNTRKSINIGPGRALYTTGEIIGDIRQAHC n.d. 0.040 (R5) SE (R5) 40 n.a. R5
NL4-3 CTRPNNNTRKSIRIQRGPGRAFVTIGKIGNMRQAHC n.d. 0.928 (X4) SK (X4) n.a. 250 X4
NL4-3 RS CTRPNNNTRKGIHIGPGRAFYTTGEIIGDIRQAHC n.d. 0.104 (R5) GE (R5) 50 n.a. R5
Figure 3 Characterization of V3 sequences of clones tested in this study. Column “phenotype” indicates syncytium (SI) or non-syncytium
(NSI) inducing phenotype as determined on PBMC cells; n.d., not determined. Columns “geno2pheno score” and “11/25 positions” indicate the
prediction score of geno2pheno[coreceptor] method [20] and 11 and 25 residues [11,12], and the tropism predicted based on these two
methods, respectively. A false positive rate of 5% was selected as the decision cut-off for geno2pheno prediction. The colour indicates the
predicted phenotype: blue- clearly R5, red — clearly X4, magenta — ambiguous. To obtain ICs values, entry efficiency was determined by bulk
analysis in presence of serial dilutions of the respective coreceptor antagonist as described in Methods. Dose response curves were fitted using
GraphPad Prism software. Mean values of three independent experiments are depicted. n.d., not determined in our analysis; n.a, not applicable
(no dose response curve could be fitted to the data due to lacking inhibition by the respective drug); incomplete, steep dose response curve
with reduced maximum inhibition. “Observed phenotype” indicates the clone phenotype observed in our assay based on the sensitivity to AMD
and MVC and entry dependency on the two coreceptors.

model distance of about 1.94 vs. 1.74) (Additional file 1:  mostly in the respective drug and coreceptor coefficients and
Table S5) and were termed logarithmic model and linear ~ showed comparable CD4 dependence of both virus tropisms
model respectively. Since the linear model produced a better  as reflected in comparable input variable coefficients for this
separation of the reference models, we focused on results parameter.

based on the linear model in the following parts of this study. The Euclidean distance between the phenotype vectors
Details of the model selection and the comparison of the R5  of the tested variants and that of each of the two reference
and X4 models are provided in the Supplementary Informa-  phenotypes was used as a measure of similarity to both
tion (Additional file 1: Table S3, Additional file 1: Table S4, reference phenotypes. Thus, each variant was represented
Additional file 1: Table S5 and Additional file 1: Figure S8). by two values expressing its similarity to the R5- and X4-
Next, the selected model was trained on the data grids of all ~ tropic phenotype, respectively. This representation allows
tested viruses separately. The vector of parameter coefficients  for visualizing the phenotype in convenient 2D plots,
of each virus model was extracted and used as a multivariate  termed here phenotype maps (Figure 5). The proximity of
descriptor of the phenotype, termed here phenotype vector.  variants in the phenotype maps to the reference viruses
The phenotype vectors of the reference viruses NL4-3 and  reflects similarity of entry efficiency phenotypes (Figure 5).
NL4-3 R5 represent reference X4 and R5 phenotypes, re-  Viruses located in proximity of the R5 reference model
spectively. The magnitude and sign of the respective param-  showed dependence on CCR5 expression and sensitivity to
eter coefficient describe the phenotype of a virus variant in ~ MVC, viruses located close to the X4 reference model
terms of its receptor and coreceptor usage and its suscepti-  showed dependence on CXCR4 expression and sensitivity
bility to the two coreceptor antagonists (Figure 4). Input vari-  to AMD. Viruses 685, 252 and 631 showed a dual-tropic
able coefficients describing the reference models varied phenotype in our assay and were located in the central area
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Figure 5 Phenotype maps. (A) Clone phenotypes are represented by dots; reference phenotypes are marked with larger red (X4) and blue (R5)
dots. (B) Phenotype maps coloured according to the MVC (left-hand panel) and AMD (right-hand panel) coefficients. In the left-hand panel the
colour ranging from blue to black indicates the size of the MVC coefficient with a small coefficient indicating susceptibility to MVC coloured in
blue. In the right-hand panel, the colour ranging from red to black indicates the size of the AMD coefficient with a small coefficient indicating
susceptibility to AMD coloured in red. Phenotype maps shown in this figure are based on the linear phenotype model, see Supplementary
Information (Additional file 1: Figure S9) for the phenotype map based on the logarithmic model.
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of the map, distant from the two reference models. The
different degrees of similarity of the variant phenotypes to
the reference phenotypes are reflected by their dispersed
position on the map illustrating how our approach allows
to differentiate a spectrum of virus phenotypes which is
only partially captured by binary tropism classification.

Information on the sensitivity of virus derivatives to-
wards coreceptor antagonists is included in the pheno-
type vector and can be visualized on the phenotype
maps. Colours on the phenotype maps in Figure 5B il-
lustrate the strength of the inhibition by MVC and
AMD. Shades of blue represent sensitivity to MVC,
shades of red represent sensitivity to AMD. Black colour
on both plots indicates lack of sensitivity to either of the
receptor antagonists tested. Two groups of variants can
be distinguished on the map, variants responsive to
MVC and variants responsive to AMD, respectively
(coloured in different shades of blue and red, respect-
ively). The colouring of variants 685, 631 and 252 indi-
cates either lower sensitivity (685 and 631) or no
response (252) to both of the drugs. These three variants
are also positioned between the two groups of R5 and
X4 viruses on the map, variants 252 and 631 closer to
R5-, variant 685 closer to X4-tropic viruses. This illus-
trates how the position in the map reflects the sensitivity
of the variant to coreceptor antagonists and where a po-
tential boundary between phenotypes can be located.
The phenotype maps can therefore be used for visual
display of the sensitivity to MVC treatment. In this way,
phenotype vectors represent the large and multi-
parameter single-cell data set in a quantitative and con-
cise manner.

Prediction of the phenotype vector

The phenotype vector provides an insightful characterization
of the virus phenotype including coreceptor usage, sensitivity
to drugs and its location in the spectrum of phenotypes be-
tween R5 and X4 reference phenotypes. Given the cost and
duration of experimental testing of individual variants, com-
putational prediction of virus phenotype from sequence is
crucial for the practical use of the presented approach in a
clinical setting. Therefore, we developed computational
methods for predicting the multivariate phenotype vector
based on the V3 loop sequence. Since the small number of
variants presents a major limitation for the development of
an accurate prediction method, we extrapolated the effect of
the size of the experimentally characterized variants in the
training set on prediction accuracy.

Prediction models were trained on the binary sequence
encoding of the variants” V3 sequences with the respect-
ive phenotype vectors as the output variables. To con-
struct prediction models, we used shrinkage methods
that allow for reducing the high number of dimensions
of the sequence data in the presence of a low number of
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observations: the 23 variants tested in our study exhib-
ited 88 positions that differed among the variants in the
binary sequence encoding of their V3 loop. Among the
statistical modelling approaches that we tested ([42,43];
Methods), Lasso regression [43] yielded the highest accur-
acy and was used in the following steps of this analysis
(Additional file 1: Figure S10).

The prediction error of the phenotype vectors was esti-
mated in terms of the Euclidean distance between ob-
served and predicted phenotype vectors in a leave-one-out
cross validation (LOOCYV) on the set of tested viruses
(Figure 6A). On average, X4-tropic variants showed a
slightly, but not significantly, higher error than R5-tropic
variants (0.562 vs. 0.525 respectively, p ~ 0.5). The highest
average error was observed for dual-tropic variants
(0.666), reflecting the difficulty of predicting this
phenotype. Three variants (308, 220, 651) showed a
markedly elevated prediction error compared to the
other variants in the dataset. Notably two of these
(220, 651) displayed a phenotype in our assay that was
inconsistent with tropism prediction by common geno-
typic methods — both showed an R5 phenotype in the
assay despite being previously classified as X4 (220) or
ambiguous (651). V3 loop sequences of these variants
were located in a sparse cluster of both R5 and X4
sequences (Additional file 1: Figure S3) suggesting that
the sequences of these V3 loops represent boundary
cases between two tropisms which contributes to the
difficulty in their tropism prediction.

We next performed a simulation test aimed at infer-
ring the relationship between the size of the training set
and the accuracy of phenotype prediction. For each of
the variants we fitted a polynomial error function
f(x) = ax®, reflecting the decrease of the prediction error
with the increasing size of the training set sampled from
the remaining variants in the dataset (Additional file 1:
Figure S11). Three of the tested variants — 220, 651 and
308 — showed an increasing error function (b > 0) sug-
gesting that an accurate prediction of their phenotype is
not possible based on the current set of tested variants.
Notably these three variants showed the highest prediction
error in the LOOCYV test (Figure 6A) and appeared to be
located in regions of V3 sequence space that are sparsely
populated with sequences tested in our assay (Additional
file 1: Figure S3). This indicates that they represent out-
liers in the sequence-phenotype pairings in our dataset,
which resulted in poor accuracy of their phenotype predic-
tion. We excluded these three variants from further error
estimation tests, noting that the averaged error and the in-
ferred training set size might be underestimated due to
their exclusion. We provide a quantitative characterization
of these three variants with respect to their location in se-
quence space in the Supplementary Information
(Additional file 1: Table S6; Additional file 1: Figure S12).
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Figure 6 Extrapolation of data volume needed for prediction of the phenotype vector from V3 sequence. (A) Error of the predicted
phenotype vectors. Predictions are calculated via LOOCV, error is estimated by the Euclidean distance between the predicted and observed
phenotype vectors. Blue and red bars mark R5 and X4 reference clones, respectively. (B) Estimation of the training set size effect on the
prediction error. Error functions were fitted to simulated training set sizes (2-22) for all tested clones (thick black line), and for the subsets of X4
(dashed red line) and R5 (dashed blue line) clones, respectively. Thin black lines represent the top and bottom 0.25 quantiles of the averaged
error function for all clones with two vertical gray lines indicating the distance between the quantiles. Dashed horizontal lines represent cut-offs
for recognizing R5/X4 (black) and dual-tropic (magenta) viruses, respectively. The training set size of the averaged function at two cut-offs are

pointed to by arrows and indicated in the legend.

The parameter b of the functions of the remaining
variants was located in the range (-0.454, -0.059) with a
mean of -0.244. The mean was comparable for the R5 and
X4 variants (-0.256 and -0.261, respectively), suggesting that
our prediction approach allows for achieving comparable
sensitivity and specificity of prediction on both kinds of
variants.

Next, the fitted functions were used to approximate
the prediction error of models constructed on training
sets of sizes exceeding the 23 virus derivatives tested in
this study. Figure 6B shows averaged error functions of
all variants (thick black line), of R5-tropic variants
(dashed blue line), and of X4-tropic variants (dashed red
line) plotted in the range of training set size of (0, 1250]
virus variants. To define the extrapolation cut-off, we
introduced the notion of a borderline phenotype. A bor-
derline phenotype is derived from the observed pheno-
type by setting the coefficients characterizing the given
phenotype to zero. For an R5 virus these coefficients are
associated with CCR5 and MVC levels, for an X4 virus
with CXCR4 and AMD levels, for a dual-tropic virus
with MVC and AMD levels. Borderline phenotypes
derived in this way are located in the region between
R5- and X4- tropic viruses on the phenotype map
(Additional file 1: Figure S13) and represent the min-
imal change in a virus phenotype vector that produces

misclassification in terms of virus tropism and drug re-
sponse. The vector distance between the observed pheno-
types and respective borderline phenotypes represents an
upper bound on the permitted prediction error that pro-
duces a reliable prediction of viral tropism. We defined
two cut-offs: the minimal distance to their borderline
phenotype for the variants with an X4 or R5 phenotype
(R5/X4 cut-off) and the minimal distance to their border-
line phenotype for dual-tropic variants (dual-tropic cut-
off). Dual-tropic variants are located between the R5 and
X4 phenotypes in the phenotype map, the difference be-
tween their observed and borderline phenotypes is there-
fore small, and using it as an upper bound for prediction
error represents a conservative criterion. R5 and X4 var-
iants differ more substantially from their borderline pheno-
types. Thus the error margin admissible for their correct
tropism prediction is larger. The R5/X4 cut-off, therefore,
represents a less stringent criterion than the dual-tropic
cut-off, that might result in an incorrect prediction of the
dual-tropic variants. R5/X4 and dual-tropic cut-offs are
represented by dashed horizontal lines coloured in black
and magenta, respectively, in Figure 6B. The averaged error
function intersects the R5/X4 cut-off at the training set size
of 50 and the dual-tropic cut-off at the training set size of
360. The upper 0.25-quantile of the fitted functions (black
thin line in Figure 6) intersects the R5/X4 cut-off at the
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training set size 290. These results indicate that a training
set of less than 100 variants allows for accurate prediction
of R5 and X4 phenotypes. To achieve a reliable prediction
of dual-tropic phenotypes the experimentally validated
training set would have to be expanded to 300-400
variants.

Discussion

The difficulty of predicting the outcome of MVC therapy
in HIV-1 infected patients [29,30,44], the flexibility of
the virus to use other coreceptors than CCR5 or CXCR4
[45] and the high variability of V3 loop sequences indi-
cate that the HIV-1 cell entry phenotype is more com-
plex than what is reflected in the binary classification of
CCR5/CXCR4: coreceptor usage. In this study we ad-
dress the shortcomings of current sequence-based meth-
ods of HIV tropism classification and the need for more
accurate recognition of X4-tropic viruses and for better
virus characterization for the effective use of coreceptor
antagonists.

The study is based on multivariate datasets acquired at
the single-cell level. The analysis at the single-cell level
affords higher level of detail than the approach based on
averaged measurements of entire cell populations [46] and
provides additional information used for construction of
an expanded representation of the viral phenotype. Fur-
thermore, the integration of individual cells covering a
wide range of receptor and coreceptor surface levels results
in robustness of the model, making it applicable to target
cell populations with different average expression levels of
these proteins (Additional file 1: Figure S14). Novel meth-
ods for analysis and visualization of the large and multi-
parameter single-cell data as well as for constructing
comprehensive models of HIV cell entry phenotypes were
developed. Our experimental and analytical approach has a
higher capacity of detecting X4-tropic viruses than com-
mon sequence-based prediction methods. Several variants
classified as X4-tropic or of dubious tropism based on
genotypic and phenotypic tropism prediction methods
showed an R5 phenotype in our assay. We observe a stron-
ger response to MVC even at low drug concentrations of
these incorrectly predicted variants than of the viruses cor-
rectly classified as R5-tropic. Thus, a weaker binding affin-
ity to the CCR5 coreceptor might be a reason for the
misclassification of these variants in the available assays
used for tropism prediction.

We propose a novel representation of the HIV entry
phenotype in the form of a multivariate phenotype vector
expressing virus dependence on several molecular and en-
vironmental determinants. The phenotype vector and its
position in the phenotype map provide a more detailed
characterization of viral tropism than the binary classifica-
tion. The phenotype map (Figure 5) represents a conveni-
ent visual display of virus phenotypes grouping phenotypes
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of similar response to coreceptor antagonists. Dual-tropic
variants (252, 631 and 685) are located in the central part
of the phenotype map between R5- and X4-tropic variants.
Populating the map with a larger number of dual-tropic
viruses will allow for establishing a boundary between the
phenotypes and discriminating between viruses susceptible
to either CCR5 or CXCR4 antagonists.

The experimental procedures for multi-parameter pheno-
typic testing for entry efficiency are costly and time-
consuming and thus not applicable in a clinical setting.
Therefore, one aim of this study was to explore the per-
spectives of virtualizing the phenotype vector by providing
a computational procedure that estimates the phenotype
vector based on the V3 loop sequence of the virus (see also
[47]). We developed a method for predicting the phenotype
vector that is based on the V3 loop sequence. The method
shows comparable performance on R5- and on X4-tropic
viruses suggesting that, despite the high variability of X4
sequences [48], a method of comparable sensitivity and spe-
cificity for both R5- and X4-tropic viruses can be obtained.
The accurate prediction of both the X4 phenotype and the
virus response to MVC, being a part of the phenotype vec-
tor, are of high interest for successful application of therap-
ies based on coreceptor antagonists. An accurate prediction
method relies on virological data describing a sufficiently
large number of tested variants. We extrapolated the num-
ber of variants necessary to be tested for the derivation of
accurate models for phenotype vector prediction. Our ana-
lysis indicates that fewer than 100 variants are sufficient for
a reliable phenotype prediction of R5 and X4 viruses and
we are currently generating data sets to accomplish this
aim. Increasing the training set size to data sets experimen-
tally determined for 300—-400 variants would allow for ac-
curate prediction of dual-tropic viruses.

Conclusions

This study represents a step towards constructing a com-
prehensive computational phenotype of the HIV cell entry
incorporating the strength of the effect of several molecu-
lar and environmental factors on the virus cell entry be-
yond binary classification of its coreceptor usage. Given
the limitations of sequence-based methods of virus tropism
classification, expanding models with other than sequence
molecular information represents a potentially promising
avenue for improving our understanding of the phenotype
and its prediction.

Methods

Variant selection

Viral variants were selected for experimental testing from a
set of 94 V3 sequences of therapy-naive patients. Viruses
from the blood samples from the Bonn hemophiliac HIV
cohort [49] were cultivated in PBMCs for one month and
their NSI/SI phenotype was determined by light
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microscopy as described in [50]. Viral RNA was isolated
and sequenced as described in [51]. The obtained V3
loop sequences were characterized with respect to their
location in V3 sequence space [48], NSI/SI phenotype
and tropism predicted by three computational methods:
geno2phenolcoreceptor] [20], WebPSSM [17] and the
11/25 rule [11,12].

Plasmids and cell lines

The V3 loop coding sequence was amplified by PCR from
the RT-PCR products of patient samples or by PCR from
plasmids comprising env sequences of lab-adapted strains,
respectively. Primers used for amplification introduced
Pyull (5 21 bp upstream of V3 loop sequence) and Xbal
(3: 6 bp downstream of V3 loop sequence) restriction sites,
respectively. For some of the constructs, synthetic gene
fragments encoding V3 loops with the respective flanking
sites were used (GeneArt AG, Germany). Fragments were
subcloned into pCAGGS.NL4-3-Xba, an Envyps.3 expres-
sion construct derived from pCAGGS.NL4-3 (kindly pro-
vided by S. Pohlmann) harbouring unique Xbal and Pvull
restriction sites flanking the V3 loop encoding sequence.
The silent mutation generating an Xbal site was introduced
by overlap PCR using primers introducing an A to T and a
G to C conversion at positions 994 and 995 of the env cod-
ing sequence, respectively. To yield the respective pCHIV
derivatives, a Stul/Xhol fragment (comprising part of env
including the V3 loop) was transferred into pCHIVAStu, a
derivative of pCHIV [52], carrying a unique Stul site within
the env gene. pCHIV derivatives encode for a non-
infectious proviral NL4-3-based clone which expresses all
viral proteins except the accessory protein Nef. A variant of
pCHIV harbouring a frameshift mutation in the beginning
of the env gene (pCHIV.Env-) [52] was used to produce
isogenic viruses lacking the Env protein on their sur-
face (Env-).

The coding sequence of an optimized version of a
B-lactamase was amplified from pJH_SSbla_Bla-
FL_UDG_S1-1 [53] by PCR with primers introducing Kpnl
and EcoRlI restriction sites. The resulting fragment was sub-
cloned into pMM310 [54] to yield pBlaM.opt, encoding for
a fusion protein including the HIV-1 accessory protein Vpr
and p-lactamase, separated by a recognition site for the
HIV-1 protease.

293T [55], cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM GlutaMAX; Invitrogen) sup-
plemented with 100 U/ml penicillin, 100 pg/ml
streptomycin and 10% fetal calf serum (FCS) at 37°
C, 5% CO,. SupT1/CCR5 cells [56] were kept in
RPMI1640 GlutaMAX™ supplemented with 100 U/ml
penicillin, 100 pg/ml streptomycin and 10% FCS.
Transfections were carried out using polyethylenei-
mine according to standard procedures.
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B-lactamase virion fusion assay

Entry efficiency was determined by a previously described
HIV fusion assay [32]. Briefly, viral reporter particles were
prepared from 293T cells co-transfected with the respective
pCHIV derivative and pBlaM.opt (plasmid ratio 15:1). At
44 h post transfection, tissue culture supernatants were pre-
cleared by filtration through a 0.45 pm nitrocellulose filter
and virions were purified by ultracentrifugation through a
20% (w/v) sucrose cushion. Proteins from pelleted particles
were separated by SDS-PAGE (acrylamide:bisacrylamide
200:1, 17.5% acrylamide) and transferred to a nitrocellulose
membrane by semi-dry blotting. Membranes were probed
with polyclonal antisera raised against HIV-1 CA. Bound
antibodies were detected by quantitative immunoblot using
a LiCor Odyssey system and particle concentration was
determined by comparison to purified CA protein analyzed
in parallel. Adjusted amounts of virus that yielded about
30% of infection (as determined by titration experiments
for each virus batch) were used to infect 1x10°
SupT1/CCR5 cells seeded in V-bottom 96-wells. For
experiments including coreceptor antagonists, cells were
preincubated with varying concentrations of drugs for 1 h
at 37°C before virus was added. Following incubation with
virus at 37°C for 6 h, supernatant was removed and cells
were incubated with the B-lactamase cleavable dye CCF2-
AM (GeneBLAZER, Invitrogen) in staining medium
according to the manufacturer’s instructions for 16 h at
room temperature. Cells were fixed with 3% PFA/PBS for 1
h at room temperature and stained for receptor and core-
ceptor surface levels with monoclonal antibodies directly
coupled to three different fluorophors (aCD4-APC-H7,
clone RPT-4, aCD184-APC, clone 12G5 and «CD195-PE,
clone 2D7/CCR5; BD Biosciences, Germany) for 1 h at
room temperature. 100'000 cells per sample were analysed
by flow cytometry on a BD FACS Cantoll machine using
FACSDiva Software. FCS2.0 files including the appropriate
values for compensation (as determined by single-stained
controls) were exported and subjected to computational
analysis. To establish the entry positive gate, mock infec-
tions (no virus) were carried out in parallel for each experi-
mental condition. In addition, viruses lacking the Env
protein on their surface (Env-) were used in parallel to con-
trol for background signal independent of Env-receptor
interactions.

Automated gating

In an initial step of data preprocessing, cell populations
were filtered according to the FSC and SSC parameters
(gating) to identify the major cell population and filter out
cells not belonging to the major population as potentially
defunct or of a different cell type. In order to address the
shortcomings of the classical manual gating procedure and
to obtain reproducible results efficiently, we developed an
automated gating procedure. Cell populations are
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commonly represented by 2D scatter plots with FSC along
the x-axis and SSC along the y-axis. In the automated gat-
ing procedure cells were first filtered through a user-
defined square window defined on the FSC and SSC values.
Here, we used a filter of 300 < FCS <1200 and 0 < SSC < 900
based on visual inspection. Next, a 2D grid of FSC and SSC
values was defined and the numbers of cells in each bin of
this grid were calculated, which can be presented in form
of a heat map (Additional file 1: Figure S4). Each bin of the
grid had width and height 5, a value that was chosen among
several others based on its gating agreement with the man-
ual method. Next, for each of the values x; on the x-axis
(FSC) a grid bin position (x;,y;) was found that contained
the maximum number of cells among all bins at the given
x;. For each such bin position (x;, y;) the minimum distance
d; was determined such that no cells were found in the bins
at equidistant positions (x;,y; — d;) and (x;,y; + d; ). The
positions (x;,y:1) = (x;,9: — d;) and (x;,yn) = (x;,y; + d;)
were termed surrounding points. Next, to produce a
smooth gating line, the y-coordinates of the surrounding
points were averaged: y;x was replaced by the mean value
of itself and two neighbouring surrounding points
1 v=it1

3 Zj:ifly/k )
repeated along the y-axis. A gate was defined as the min-
imal contiguous area on the FSC-SSC grid encircled by the
line connecting consecutive surrounding points. Example
results of the automated gating procedure are shown in
Additional file 1: Figure S4. The mock infection measure-
ment no virus was used as the control for establishing the
gate. All measurements in the same experiment were gated
accordingly. For reading the FCS2.0 files the R package
prada was used, a part of Bioconductor [57].

for k€ {1,2}. The same procedure was

BlaM classification

A classical approach to BlaM-based entry classification
entails a manually established decision boundary estab-
lished based on the “no virus” control. The decision
boundary is determined based on the plot of the intensity
of blue (x-axis) against green (y-axis) CCF2 signal of the
cells in the control measurement. It delineates the region
of uninfected cells as a minimal region cells such
that y > x and ~0.01% of the control cells are located out-
side of this region. Measurements of cells incubated with
virus variants are classified according to this control-based
decision boundary.

In order to efficiently classify the large number of flow
cytometry measurements and to obtain reproducible results
we established an automated method of BlaM classification.
Our approach is based on a linear function y = ax + b fit-
ted to the blue (x) against green (y) CCF2 signal intensities
of the cells of two merged controls — no virus and un-
stained. For each point on the fitted line (x;,7;), where
¥i = ax;+b and x; = 1..1200, data point (x,,,y,,) was
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found such that y,, < x, that is the most distant from
(x:,9:), located on the line perpendicular to the fitted line
that intersects the fitted line at (x;, y;):y = —1x + b;, where
b; = yi + Lx;. Points (xy,,y,,) represent cells showing the
highest shift in the blue signal relative to the green signal
among the cells of the control measurements. Next, the
distances of these points from the fitted line were smoothed
using a sliding window approach by averaging the values
within each window and adding of one standard deviation
of the values within that window. The added standard devi-
ation represents a margin beyond the control cells that
ensures the required low proportion of false positives in the
control measurement (~0.01%). A window size of 30 was
selected as the size resulting in the best classification per-
formance. The smoothed points projected back onto the
plot of green and blue signals defined the cut-off decision
line — cells represented by data points located in the part of
the plot below the decision line were classified as entry
positive, those located above the line were classified as entry
negative (Additional file 1: Figure S5). The method design
and the choice of parameters were guided by the compari-
son with manual classification with the goal of achieving
the highest agreement on a large number of measurements
(Additional file 1: Figure S6). Classification based on this
procedure termed here binary classification assigns a binary
value to each cell, O representing entry negative and 1 entry
positive cells. To compensate for differences between
the automated binary and manual classification, we
additionally developed an alternative margin classifica-
tion (Supplementary Information; Additional file 1:
Figure S7). However, use of this classification method
did not affect accuracy of regression models of the
virus entry efficiency, and binary classification was
chosen as the less complex approach throughout this
study. An example of classification of virus measure-
ment using both methods is depicted in Additional
file 1: Figure S7. The steps of the classification pro-
cedure are described and illustrated in detail in the
Supplementary Information.

Visualization methods

The experimental results were depicted as 3D plots of
virus entry efficiency in dependence on two chosen
parameters. Colours of the plots represent the pre-
dicted phenotype of a variant — red for X4, blue for
R5, magenta for variants of questionable tropism. In-
dividual cells were localized in a 30x30 grid of values
spanning the ranges of values of the two parameters.
Virus entry efficiency was calculated as the fraction of
infected cells (assigned using binary classification)
within each bin of the grid. Prior to plotting, the grid
was smoothed by averaging values from neighbouring
bins of the grid. In order to account for the differing



Bozek et al. Retrovirology 2012, 9:60
http://www.retrovirology.com/content/9/1/60

numbers of cells that show a given combination of
parameter values, parts of the grid that contained less
than a selected minimum number of cells are col-
oured in gray. The selected minimum number of cells
is 10% of the expected number of cells assuming an
even distribution of cells over the grid.

Merging the data

To compensate for potential noise in the measurement
at the single-cell level, the data was aggregated into a
multidimensional grid defined on aggregated values of
CD4, CCR5 and CXCR4 and on all measured drug con-
centration levels. CD4, CCR5 and CXCR4 expression
levels were first scaled to standard normal distribution
and cells in the top and bottom 2.5% tails of the distri-
bution were removed. Next, a five-dimensional grid was
defined — spanning all tested concentration levels of
AMD and MVC and a predefined number of values of
the CD4, CCR5 and CXCR4 expression levels, separating
their range of expression into bins of equal size. We
tested four bin sizes — 5, 10, 20, 50 — for the quality of
the resulting models. Values of binary classification of
individual cells were averaged in each grid bin.

Data grids of cell entry measurements of each tested
virus constructed in this way were merged across the in-
dividual experiments resulting in a multidimensional
data grid describing each virus’ cell entry efficiency com-
prehensively across all experiments.

Model selection

The selection criteria for model quality comprised two
aspects: accuracy of model fit to the data and separation
of the X4 and R5 phenotype vector. The first criterion —
accuracy of model fit to the data — was based on the R*
measure estimated as:

SSerr

R*=1- ,
SStot

where

S8Serr = Zi(yi _ﬁ)z

is the sum of squared residuals with y; being observed
and f; estimated output, and

SStor = Zi('yi -7)

is the total sum of squares proportional to the sample
variance with y = 137"y; being the sample mean. R* was
used as a measure of agreement between the observed
and modelled values with higher values representing a
better agreement.

The second criterion — separation of the R5 and X4
phenotype vector — was used to obtain models capable of
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distinguishing between the two contrasting phenotypes. To
measure the separation of the R5 and X4 models we used
the Euclidean vector distance of the coefficient vectors of
the two models. The model was selected for which the
phenotype vectors of the R5 and X4 reference strains are
most distant.

Prediction of phenotype vectors

For prediction we used binary sequence encoding in which
each amino acid is represented by a binary vector of the
length 20 with a single value 1 at the position indicating
the present amino acid. The V3 loops of the 23 tested var-
iants in this study include 88 positions that vary among the
variants. We used two methods that involve shrinkage pro-
cedures for linear regression: Ridge regression [42] and
Lasso [43]. These methods were trained on the binary se-
quence encoding of the V3 sequences of the viruses with
the respective phenotype vectors as output variables. For
each position of the phenotype vector representing a separ-
ate output variable for the prediction method the penalty
parameter A resulting in minimal prediction error in
LOOCYV was chosen from a sequence of 100 values. The
chosen A values were used in further phenotype prediction.
In addition to Ridge regression and Lasso, we tested the
performance of linear regression based on a reduced num-
ber of input variables. The input variables were reduced to
those showing significant (p<0.01) Pearson correlation
with any of the output variables (positions of the pheno-
type vector). Significance was calculated in 1000 permuta-
tion tests. The reduction procedure resulted in 26 and 17
input variables in the logarithmic and linear models of
phenotype vectors, respectively.

Optimal training set size

Each variant’s phenotype was predicted based on a sampled
training set of varying size increasing from 2 to 22. Train-
ing sets of each size were sampled multiple times; the pre-
diction error of each clone was averaged for each size of
the training set. Next, a polynomial function f(x) = ax’
termed error function was fitted to the relationship be-
tween the size of the training set and the prediction error.
See Additional file 1: Figure S11 for examples of error
functions.

Additional file

Additional file 1: “Supplementary Information” including 13
Supplementary Figures and 6 Supplementary Tables as well as
additional Methods and References.
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