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Poly(A) capture full length cDNA 
sequencing improves the accuracy 
and detection ability of transcript 
quantification and alternative 
splicing events
Hiroki Ura1,2*, Sumihito Togi1,2 & Yo Niida1,2

The full-length double-strand cDNA sequencing, one of the RNA-Seq methods, is a powerful method 
used to investigate the transcriptome status of a gene of interest, such as its transcription level 
and alternative splicing variants. Furthermore, full-length double-strand cDNA sequencing has the 
advantage that it can create a library from a small amount of sample and the library can be applied 
to long-read sequencers in addition to short-read sequencers. Nevertheless, one of our previous 
studies indicated that the full-length double-strand cDNA sequencing yields non-specific genomic 
DNA amplification, affecting transcriptome analysis, such as transcript quantification and alternative 
splicing analysis. In this study, it was confirmed that it is possible to produce the RNA-Seq library from 
only genomic DNA and that the full-length double-strand cDNA sequencing of genomic DNA yielded 
non-specific genomic DNA amplification. To avoid non-specific genomic DNA amplification, two 
methods were examined, which are the DNase I-treated full-length double-strand cDNA sequencing 
and poly(A) capture full-length double-strand cDNA sequencing. Contrary to expectations, the 
non-specific genomic DNA amplification was increased and the number of the detected expressing 
genes was reduced in DNase I-treated full-length double-strand cDNA sequencing. On the other 
hand, in the poly(A) capture full-length double-strand cDNA sequencing, the non-specific genomic 
DNA amplification was significantly reduced, accordingly the accuracy and the number of detected 
expressing genes and splicing events were increased. The expression pattern and percentage spliced in 
index of splicing events were highly correlated. Our results indicate that the poly(A) capture full-length 
double-strand cDNA sequencing improves transcript quantification accuracy and the detection ability 
of alternative splicing events. It is also expected to contribute to the determination of the significance 
of DNA variants to splicing events.

The large majority of human genes are processed at several levels, including transcriptional and post-transcrip-
tional regulation. Alternative splicing of pre-mRNAs that include exons and introns is one of the essential regu-
latory mechanisms at post-transcriptional regulation1,2. Alternative splicing plays an important role in normal 
cellular and pathogenic processes caused by diverse diseases3,4. It has been reported that several alternative 
splicing events, including alternative 5’ or 3’ splicing site usage, exon skipping, intron retention, and mutually 
exclusive exons, occur in abnormal cells in various diseases and normal cells5–7. These alternative splicing events 
produce assorted mRNA that translates to different protein isoforms with different coding sequences. In normal 
cells, these alternative splicing events are controlled in an appropriate expression pattern8–10. Alternatively, an 
inappropriate expression pattern occurs in some human diseases, including cancers11–13. Therefore, it is impor-
tant to accurately analyze the state of the repertoire of mRNA splicing variants and its changes associated with 
the pathological condition.
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Next-generation sequencing (NGS) is a powerful technology used in the clinical field for genetic diagnosis14–16. 
The use of NGS technologies in the clinical field has led to an unprecedented increase in variants identified in 
different patients harboring genetic disorders. The 48% of all variants listed on ClinVar are asserted to the variant 
of uncertain significance (VUS) variants17. The current genetic counseling practice almost considers variants 
that directly affect protein structure. However, the VUS can affect RNA splicing, which causes protein damage. 
RNA splicing is expected to be disrupted by approximately 62% of all pathogenic variants18. It is also reported 
that aberrant RNA splicing affects the transcription level19. Thus, it is also needed to accurately measure RNA 
splicing and transcription level in precise genetic diagnosis.

RNA sequencing (RNA-Seq) is a powerful technology that can be used to measure not only transcriptional 
levels but also alternative splicing repertoire20. However, so far, RNA-Seq is primarily used to measure the 
expression level of transcripts but rarely used to detect alternative splicing variants21,22. Presently, RNA-Seq is 
almost performed using short-read sequencers, such as the Illumina NGS. Although RNA-Seq by short-read 
sequencer can detect alternative splicing events between two exons, short-read RNA-Seq cannot detect the full-
length transcript information, including all alternative splicing events. Recently, third-generation sequencers, 
such as Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), can be facilitated for alternative 
splicing analysis of the full-length transcript due to the production of long sequencing reads (> 10 kb)23. When 
creating a library in traditional RNA-Seq, because the captured mRNAs using oligo dT magnet beads are sheared 
randomly into fragments, then reverse transcribed into cDNAs, it is impossible to apply the library for analysing 
the full-length transcripts. Alternatively, due to no fragmentation, full-length double-stranded cDNA library can 
adapt to long-read sequencer for analysing the full-length transcript24. In addition, since the full-length cDNA 
is yielded by PCR amplification, a library can be prepared from a small amount of sample, even as a single cell 
(Fig. 1A). In principle, novel splicing variants caused by the DNA variants of non-coding regions can be directly 
clarified, if a DNA sequencing including non-coding regions such as a whole genome sequencing and a full-
length cDNA sequencing are performed at the same time. Nevertheless, one of our previous studies indicated 
that the full-length double-strand cDNA sequencing resulted in non-specific genomic DNA amplification, which 
affects precise transcriptome analysis, such as alternative splicing and transcript quantification analysis25. For 
that reason, it is needed to eliminate genomic DNA noise when creating a full-length double-stranded cDNA 
library for more precise mRNA analysis.

Figure 1.   Library preparation workflow. (A) Workflow for Total RNA Sequencing. (B) Workflow for DNase 
I-treated Sequencing. (C) Workflow for Poly(A) capture Sequencing.
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To avoid contamination of genome DNA in Total RNA, we tried two possible methods and compared their 
efficiencies. One method (DNase I-treated full-length double-strand cDNA sequencing) is that genome DNA in 
Total RNA solution is digested enzymatically using DNase I enzyme26 (Fig. 1B). Other method (poly(A) capture 
full-length double-strand cDNA sequencing) is that only messenger RNA which have Poly(A) tail are physically 
captured using magnetic Oligo(dT) beads27 (Fig. 1C). It was investigated that the performance of these two 
methods in transcriptome analysis, such as transcript quantification analysis and alternative splicing analysis.

Methods
Cell culture.  The human induced pluripotent stem cell-line (hiPSC), strain 1383D6, which was provided 
by RIKEN BioResource Research Center were cultured on iMatrix 511 (Takara)-coated plates (0.5 ug/cm2) in 
StemFit medium (REPROCELL) at 37 °C in 5% CO2

28. The cells were passaged as clump with TrypLE Select (Life 
Technologies) at a ratio of 1:6 every 4–5 days.

Genomic DNA extraction.  The genomic DNA sample used in this study was extracted from the whole 
peripheral blood using a rapid extraction method29. The DNA amount and optical density (A260/280 ratio) were 
measured using Nanodrop (Thermo Fisher Scientific, Waltham, MA, USA).

Total RNA extraction.  The total RNA was extracted from hiPSCs with TRIzol reagent (Thermo Fisher 
Scientific) following the manufacturer’s instructions, as described previously30,31. RNA concentration and purity 
were measured spectrophotometrically (Nanodrop, Thermo Fisher Scientific). The RNA integrity number was 
determined using a TapeStation 4200 with High Sensitivity RNA ScreenTape (Agilent Technologies, Santa Clara, 
CA, USA).

Total RNA library synthesis.  Total RNA Library was synthesized from total RNA using a SMART-Seq 
HT kit (Takara Bio USA, Mountain View, CA, USA) and the Nextera XT DNA Library Kit (Illumina, San Diego, 
CA, USA), following the manufacturer’s standard protocol. The library quality was further evaluated using the 
TapeStation 4200 with High Sensitivity D1000 ScreenTape (Agilent Technologies, Santa Clara, CA). The library 
was quantified using the HS Qubit dsDNA assay (Thermo Fisher Scientific, Waltham, MA, USA).

Genomic DNA library synthesis.  Genomic DNA Library was synthesized from genomic DNA using a 
SMART-Seq HT kit (Takara Bio USA, Mountain View, CA, USA) and the Nextera XT DNA Library Kit (Illu-
mina, San Diego, CA, USA), following the manufacturer’s standard protocol. The library quality was further 
evaluated using the TapeStation 4200 with High Sensitivity D1000 ScreenTape (Agilent Technologies, Santa 
Clara, CA). The library was quantified using the HS Qubit dsDNA assay (Thermo Fisher Scientific, Waltham, 
MA, USA).

DNase I‑treated full‑length double‑stranded cDNA.  According to the manufacturer’s instruction, 
the genomic DNA contained in total RNA was digested using TURBO DNA-free Kit (Thermo Fisher Scientific). 
The RNA integrity number of DNase I-treated total RNA was determined using a TapeStation 4200 with High 
Sensitivity RNA ScreenTape (Agilent Technologies, Santa Clara, CA, USA). According to the manufacturer’s 
standard protocol, full-length double-stranded cDNA was synthesized from DNase I-treated total RNA using a 
SMART-Seq HT kit (Takara Bio USA, Mountain View, CA, USA).

Poly(A) capture full‑length double‑stranded cDNA.  According to the manufacturer’s instruction, the 
mRNA was captured from total RNA with NEBNext Poly(A) mRNA Magnetic Isolation Module (New England 
BioLabs). Briefly, the mRNA was captured using NEBNext Magnetic Oligo d(T)25 Beads and washed. The cap-
tured mRNA was resuspended with RNA binding buffer and was denatured at 65 °C for 5 min. Then, captured 
mRNA was eluted at 80 °C for 2 min. According to the manufacturer’s standard protocol, full-length double-
stranded cDNA was synthesized from eluted mRNA using a SMART-Seq HT kit (Takara Bio USA, Mountain 
View, CA, USA).

Library preparation and next‑generation sequencing.  The DNase I-treated or Poly(A) capture 
full-length double-stranded sequencing libraries were prepared using the Nextera XT DNA Library Kit (Illu-
mina, San Diego, CA, USA) for Illumina sequencing following the manufacturer’s instructions, as described 
previously32. The library quality was further analyzed using the TapeStation 4200 with High Sensitivity D1000 
ScreenTape (Agilent Technologies, Santa Clara, CA, USA). All libraries were quantified using the HS Qubit 
dsDNA assay (Thermo Fisher Scientific, Waltham, MA, USA). All libraries were sequenced (2 × 75 bp) using 
Illumina NextSeq 500 (Illumina, San Diego, CA, USA). The FASTQ files were generated using the bcl2fastq 
software (Illumina, San Diego, CA, USA). The FASTQ data (GSE192928) are deposited in the Gene Expression 
Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​geo/).

Data analysis.  The FASTQ files were sampled with the same number of reads using Seqkit (version 0.13.2)33. 
The sampled FASTQ files were aligned to the reference human genome (hg38) using HISAT2 (version 2.1.0) and 
SAMtools (v.1.9)34,35. The StringTie algorithm (v.1.3.4d) was then used to assemble RNA-Seq alignment into 
annotated transcripts to quantify their expression36. The transcript expression was normalized using the tran-
script per million (TPM) algorithm. For differential expression analysis, the R package (edgeR) was used37. The 

https://www.ncbi.nlm.nih.gov/geo/
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mapping rate was measured using HISAT2. For alternative splicing analysis, we used SplAdder software (v.2.4.2) 
and RSeQC (v.3.0.1)38,39.

Ethical approval.  The study was conducted according to the guidelines of the Declaration of Helsinki, 
and the Institutional Review Board of Kanazawa Medical University (No. G111, approved November 10, 2015) 
approved this study. Written informed consent was obtained by Y.N., and the ethics review board of Kanazawa 
Medical University approved the study design (G111).

Results
Confirmation of Non‑specific Genomic DNA Amplification from Genomic DNA.  First, the full-
length double-stranded cDNA library was generated from only the genomic DNA to verify that non-specific 
amplifications are yielded from genomic DNA. The library was generated from only the genomic DNA and to be 
sequenced the same as the library was generated from total RNA. Comparing to Total RNA sequencing (original 
SMART-Seq library), the reads of genomic DNA sequencing were randomly mapped to the genomic areas in 
(Fig. 2A,B and Supplementary Table S1). Although, the mapped reads in intron were also seen in Total RNA 
sequencing as well as genome DNA sequencing (Figs. 1B and 2A , black arrows). Next, the distribution charac-
teristics of mapped reads were investigated (Fig. 2C and Supplementary Table S1). The distribution of coding 
sequence exons (CDS Exons) was enriched in Total RNA sequencing. In Total RNA sequencing, almost all reads 
(94.6%) were mapped to exons (CDS, 5’UTR or 3’UTR exons). On the other hand, non-coding regions (Introns, 

Figure 2.   Confirmation of non-specific genomic DNA amplification from genomic DNA. (A and B) Integrative 
genomic viewer (IGV) of the TP53 and POU5F1 Locus mapped reads. Black arrows show non-specific genomic 
DNA amplification. (C) The percentage in each region (CDS Exons, 5’UTR Exons, 3’UTR Exons, Introns, TSS 
upstream (TSS up) and TES downstream (TES down)). (D) Pie chart of each splicing junction. The percentage 
of splicing events were calculated by RSeQC.
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TSS upstream and TES downstream) in genomic DNA sequencing were higher than Total RNA sequencing, 
indicating that non-specific amplification from genomic DNA occurred. Alternatively, the distribution of each 
region (CDS Exons, 5’UTR Exons, 3’UTR Exons, Introns) was almost the same in genomic DNA sequenc-
ing, indicating that non-specific amplification from genomic DNA randomly occurred and was independent 
of sequence. The splicing junctions in Total RNA sequencing and genomic DNA sequencing were analyzed 
by RSeQC to assess the effect of non-specific amplification of genome DNA for alternative splicing analysis 
(Fig. 2D). In genomic DNA sequencing, the junctions were almost complete novel junctions (99%), showing 
that non-specific amplification of genome DNA may affect the detection of alternative splicing events. Although 
the complete novel junction in Total RNA sequencing was not as many as genome DNA sequencing (20%), the 
effect of non-specific amplification of genome DNA is also possible. These results suggested that it is needed to 
avoid contamination of genomic DNA for alternative splicing analysis.

Comparison between total RNA, DNase I‑treated, and Poly(A) capture sequencing for splicing 
detection accuracy.  To evaluate the performance of Total RNA sequencing, DNase I-treated and Poly(A) 
capture full-length double-stranded cDNA Sequencing, their accuracy of splicing event detection was com-
pared. The quality of DNase I-treated total RNA was the same as DNase I-untreated total RNA (Fig. 3A). The 
percentage of mapping rate of Poly(A) capture sequencing was slightly higher than that of Total RNA sequencing 
(Fig. 3B and Supplementary Table S1). In Poly(A) capture sequencing, almost all reads (99.1%) were mapped to 
exons. The mapping percentage of DNase I-treated sequencing was significantly lower than that of Total RNA 
sequencing, indicating that non-specific genomic DNA amplification in DNase I-treated sequencing affected 
mapping efficiency. The distribution of CDS Exons in Poly(A) capture sequencing was also slightly higher than 
that of Total RNA sequencing (Fig. 3C and Supplementary Table S1). The distribution of CDS Exons in DNase 
I-treated sequencing was lower than that in Total RNA sequencing. The distribution of 5’UTR Exons and 3’UTR 

Figure 3.   Comparison between Total RNA, DNase I-treated, and Poly(A) capture sequencing for splicing 
detection accuracy. (A) RNA quality in TapeStation. (B) Percentage of mapped reads. (C) The percentage in 
each region (CDS Exons, 5’UTR Exons, 3’UTR Exons). (D) The percentage in the genomic region (introns, TSS 
up, and TES down). (E) Pie chart of each splicing junction. The percentage of splicing events were calculated by 
RSeQC.
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Exons were almost the same between Total RNA, DNase I, and Poly(A) capture sequencing. The distribution 
of genomic DNA regions (introns, TSS up, and TES down) in Poly(A) capture sequencing was significantly 
lower than that in Total RNA sequencing (Fig. 3D). Unexpectedly, genomic DNA regions’ distribution in DNase 
I-treated sequencing was higher than in Total RNA sequencing. The ratio of complete novel splicing junctions 
of DNase I-treated sequencing (28%) was higher than that of Total RNA sequencing (20%); the ratio in Poly(A) 
sequencing (5%) was lower than in Total RNA sequencing (Fig. 2D, 3E). These results suggested that Poly(A) 
capture sequencing improves the accuracy of splicing event detection by removing contamination of genomic 
DNA amplification from the library, but not DNase I treatment.

Comparison between total RNA, DNase I‑treated, and Poly(A) capture sequencing for quan-
tification analysis.  To evaluate the performance of Total RNA, DNase I-treated, and Poly(A) capture 
sequencing, their accuracies of gene detection and expression patterns were compared. The number of detected 
expressing genes in Poly(A) capture sequencing was slightly higher than that in Total RNA sequencing (Fig. 4A). 
Alternatively, the number in DNase I-treated sequencing was lower than that in the other two sequencings. How-
ever, about 90% of detected expressing genes were commonly detected (Fig. 4B). The expression pattern between 
these three sequencings showed a relatively high correlation (Fig.  4C). Also, differentially expressed genes 
(DEG) (FDR < 0.05) were only 90 genes, showing that the expression pattern was highly correlated (Fig. 4D). 
The hierarchical clustering analysis indicated that the expression pattern of DEG in Total RNA sequencing was 
more similar to that in DNase I-treated sequencing than that in Poly(A) capture sequencing, indicating that non-
specific genomic DNA amplification affected quantification of expressed genes (Fig. 4D). The genes in cluster 1 
were more highly expressed in Total RNA and DNase I-treated sequencings than in Poly(A) capture sequencing. 
The genes in cluster 2 were vice versa. Although the cluster 2 genes were almost coding genes, cluster 1 genes 
were almost non-coding genes that do not have poly(A) tail (Fig. 4E). Moreover, the cluster 1 genes contained 
histone genes, such as HIST1H3C, which also do not have poly(A) tail. It seems that cluster 1 genes represent 
non-specific genomic DNA amplification. Although cluster 2 genes contain non-coding genes, these genes exist 
in the intragenic regions of another genes, which may represent intron retention of mRNA of another genes. 
These results suggested that Poly(A) sequencing improves gene detection accuracy and expression patterns.

Comparison between total RNA, DNase I‑treated, and Poly(A) capture sequencing for alterna-
tive splicing analysis.  Next, for alternative splicing analysis, we used SplAdder software, which has been 
indicated to be superior to some other software such as rMATs, SpliceGrapher and JuncBase, to detect alternative 
splicing events38. To evaluate the performance of Total RNA, DNase I-treated, and Poly(A) capture sequenc-
ing, we compared the number and accuracy of the alternative splicing events between these three sequencings. 
The number of alternative 5’ splicing sites, alternative 3’ splicing sites, and Exon skipping in Poly(A) capture 
sequencing was slightly higher than that in Total RNA sequencing (Fig. 5A). Alternatively, the number in DNase 
I-treated sequencing was fewer than Total RNA sequencing. The number of mutually exclusive exons and multi-
exon skip was almost the same between these three sequencings. The number of intron retention in Poly(A) 
capture sequencing was relatively more than the other two sequencings (Fig. 5B). The intron retention on the 
SNHG7 gene was detected using only Poly(A) capture sequencing (Fig. 5C). The percentage spliced in the index 
(PSI) of the splicing event, which was commonly detected, highly correlated between these three sequencings, 
indicating that there is no significant difference in the alternative splicing events detected by these three meth-
ods as overall transcriptome (Fig. 5D). These results suggested that Poly(A) sequencing enhances the detection 
number and accuracy of minor alternative splicing events especially in the sense of detecting intron retention.

Discussion
Fluctuations and regulation of mRNA splicing repertoire are associated with all aspects of biological activity. 
It will be more important to accurately analyze the state of the repertoire of mRNA splicing variants and its 
changes associated with the pathological condition to understand gene functions and life system. Next genera-
tion sequencing (NGS) is an analytical technology that can make this possible.

NGS-based applications for clinical laboratories also have been adopted as a gold standard for diagnos-
tics of Mendelian-inherited diseases and cancers because of its analytic accuracy, high throughput, and cost-
effectiveness. The VUS variants are half of all variants on Clinvar17, and its pathological significance should be 
determined. Presently, most NGS -based applications in clinical diagnosis target only coding regions, such as 
whole-exome and gene targeting panel sequencing. Nevertheless, the variants in the intron region, sometimes 
even in coding region, affect RNA splicing which causes protein damage. Although variants that may change RNA 
splicing can be computationally predicted, it is difficult to apply to clinical diagnosis because of an incomplete 
understanding of alternative splicing and normal transcriptome across tissues4. For this reason, in addition to 
the information of the traditional coding regions, it is necessary to determine whether an intron variant alters 
RNA splicing directly to confirm its pathogenicity in clinical situations, such as an analysis for undiagnosed 
inherited disease or cancer gene panel.

Current short-read sequencer-based transcriptome analysis cannot characterize the full-length transcripts 
because of the limitations of read length. Recently, long-read sequencers, such as Oxford Nanopore Technolo-
gies (ONT) and Pacific Biosciences (PacBio), have advanced and are gradually used because of their ability to 
overcome the limitations of read length40–43. Although the standard RNA-Seq method for short-read sequencers 
has been well-established, the standard RNA-Seq method is unavailable for long-read sequencers due to frag-
mentation at the library preparation step. On the other hand, the full-length double-strand cDNA sequencing 
method is available for long-read sequencing. Given these points, in order to clarify how DNA variants in deep 
intron or intragenic regions affect mRNA splicing, it seems useful to perform a DNA sequencing including 
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non-coding regions and a full-length cDNA sequencing simultaneously with the same sample. Nevertheless, a 
previous study indicated that nonspecific genomic amplifications are yielded at the library preparation step and 
affect transcriptome analysis, such as transcript quantification and alternative splicing analysis25. This study also 
showed that the same results and non-specific genome amplification were yielded from only the genomic DNA. 
It is needed to eliminate contamination of genomic DNA for precise transcriptome analysis.

In this study, two methods were employed, which are the DNase I-treated full-length double-strand cDNA 
sequencing and poly(A) capture full-length double-strand cDNA sequencing to avoid non-specific genomic 

Figure 4.   Comparison between Total RNA, DNase I-treated, and Poly(A) capture sequencing for quantification 
analysis. (A) The total number of expressed genes identified by these three methods. (B) Venn graph of 
expressed genes. (C) Scatter plot (log2 TPM (Transcripts per million)) of comparing each two methods. (D) 
Heat map of hierarchical clustering between total RNA, DNase I-treated, and Poly(A) capture sequencings. (E) 
The percentage of coding and non-coding genes in cluster 1 and 2.
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DNA amplification. Unexpectedly, non-specific genomic DNA amplification increased in the DNase I-treated 
sequencing than original Total RNA sequencing despite DNase I treatment. These non-specific genomic DNA 
amplifications affected quantification analysis and alternative splicing analysis. These non-specific genomic DNA 
amplifications might probably yield from the genome DNA that could not be completely digested in the DNase 
I-treated sequencing. It is possible that the efficiency of non-specific PCR amplification during double-strand 
cDNA synthesis in the SMARTer method was increased by digesting genomic DNA by DNase I and decreasing 
its molecular size. Alternatively, non-specific genomic DNA amplification was significantly reduced in poly(A) 
capture sequencing. The genes that are not actually detected, such as non-coding RNA, which does not have 
poly(A) tail, were detected in total RNA and DNase I-treated sequencings due to non-specific amplification noise. 
On the other hand, non-coding RNAs were undetected correctly in poly(A) capture sequencing. Complete novel 
splicing junctions were dramatically reduced in Poly(A) capture sequencing (Fig. 3E) comparing to the original 
Total RNA sequencing (Fig. 2D). That is, it was shown that many of the novel splicing variants detected in the 
total RNA sequence are artifacts. Moreover, alternative splicing events including intron retentions were more 
accurate and more prevalent in poly(A) capture sequencing.

Our poly(A) capture full-length double-strand cDNA sequencing improves the accuracy and detection ability 
of transcript quantification and alternative splicing events owing to the elimination of non-specific amplification 
noise from genomic DNA. Poly (A) capture sequences could be able to more accurately detect minor splicing 
events that occur in certain genes associated with cell differentiation or pathogenicity. Also, Poly(A) capture 
sequencing will provide information on all splice events in full-length transcripts because a highly accurate 
library created by this method can be applied to long-read sequencings, such as ONT and PacBio. Moreover, by 

Figure 5.   Comparison between Total RNA, DNase I-treated, and Poly(A) capture sequencings for alternative 
splicing analysis using SplAdder. The splicing event number per event patterns (alternative 5’ splicing site, 
alternative 3’ splicing site, Exon skipping, mutually exclusive exons, and multi-exon skip). (B) The number of 
intron retention. (C) The mapped reads at SNHG7 locus in the integrative genomic viewer (IGV). Black arrow 
indicated intron retention). (D) Scatter plot of the percent splicing index (PSI). The PSI of the splicing events 
were calculated by SplAdder. The p-value were calculated by t-test.
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combining with whole genome sequencing, this method will contribute to determine the VUS variants’ patho-
logical significance that affects splicing events in clinical diagnosis.

Data availability
The datasets have been deposited in the Gene Expression Omnibus (GEO) database. (GSE192928).
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