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Abstract

Enteropathogenic Escherichia coli (EPEC) are important diarrheal pathogens of infants and young 

children. Since the availability of molecular diagnosis methods, we now have new insights into the 

incidence and prevalence of these infections. Recent epidemiological studies indicate that atypical 

EPEC (aEPEC) are seen more frequently than typical EPEC (tEPEC) worldwide, including in 

both endemic diarrhea and diarrhea outbreaks. Therefore, it is important to further characterize 

the pathogenicity of these emerging strains. The virulence mechanisms and pathophysiology of 

the attaching and effacing lesion (A/E) and the type-three-secretion-system (T3SS) are complex 

but well-studied. A/E strains use their pool of locus of enterocyte effacement (LEE)-encoded 

and non-LEE-encoded effector proteins to subvert and modulate cellular and barrier properties 

of the host. However, the exact mechanisms of diarrhea in EPEC infection are not completely 

understood. From the clinical perspective, there is a need for fast, easy, and inexpensive diagnostic 

methods to define optimal treatment and prevention for children in endemic areas. In this article, 

we present a review of the classification of EPEC, epidemiology, pathogenesis of the disease 

caused by these bacteria, determinants of virulence, alterations in signaling, determinants of 

colonization vs. those of disease, and the limited information we have on the pathophysiology of 

EPEC-induced diarrhea. This article combines peer-reviewed evidence from our own studies and 

the results of an extensive literature search in the databases PubMed, EMBASE, and Scopus.
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Introduction

Escherichia coli (E. coli) is the predominant facultative anaerobic species in the intestine. 

Most strains are non-pathogenic and play an important role in maintaining intestinal 

physiology.1,2 This organism was first described by German pediatrician Theobald 

Escherich in 1885, under the name “Bacterium coli commune” as a short rod that had 

initially been isolated from normal infant feces.3 The current classification systems of E. coli 
consider many strains (Flowchart 1).4

Enteropathogenic E. coli (EPEC) is a major cause of infantile diarrhea in developing 

countries.5 EPEC strains were epidemiologically associated with outbreaks in 1940s and 

1950s and were first described in 1955.6 These strains currently account for 1.3 million 

deaths every year.7 The incidence is now being noted more accurately since the development 

of molecular diagnostic methods. In this study, we have reviewed the epidemiology of 

EPEC infections in infants and children and our studies in animal models to understand the 

pathophysiology of EPEC-associated diarrhea.

Epidemiology of EPEC Infections

Although most strains of E. coli are avirulent commensals in the gastrointestinal tract, many 

can cause diarrhea, urinary tract infection, and sepsis/meningitis. Several E. coli pathogens 

have been implicated in public health problems worldwide.8 The incidence of EPEC-related 

disease seems to have decreased over the last several decades. It is unclear if this reduced 

incidence is due to interventions such as the promotion of breastfeeding, or whether earlier 

studies based on O:H-serotyping overestimated the relative contribution of these organisms 

compared to newer molecular methods and/ or adherence assays.7

Enteropathogenic E. coli was the first strain of E. coli identified as the cause of infantile 

diarrhea in the 1940s and 1950s. These outbreaks of “summer diarrhea” were frequent in 

developed countries until the 1950s and had high mortality.6 EPEC strains were first shown 

to be pathogenic in human volunteer studies carried out by Levine et al.9 in 1978. They 

tested classic EPEC strains (O127 and O142) associated with infant diarrhea that had been 

stored for 7–9 years. These isolated strains did not express LT and ST enterotoxins or 

show invasiveness. Enteral administration to healthy young adult volunteers caused a notable 

diarrheal illness.

In a systematic review of 266 studies published between 1990 and 2002, EPEC was 

identified with a median prevalence of 8.8% (inter-quartile range, IQR of 6.6–13.2) in 

the community setting, 9.1% (IQR 4.5–19.4) in the outpatient setting, and 15.6% (IQR 8.3–

27.5) in the inpatient setting. Enteropathogenic E. coli may be the second most frequently 

seen cause of diarrhea after rotavirus (25.4%) in the inpatient setting. However, there are 

important regional and temporal variations.10 Investigators from Peru combined data on six 

different diarrheagenic strains of E. coli from eight different studies of children <3 years 

of age. Multiplex real-time PCR showed that the average EPEC prevalence in diarrheal 

stool samples (n = 4,243) was 8.5% (95% CI: 7.6–9.3), second only to enteroaggregative 

E. coli (EAEC; 9.9%). Enteropathogenic E. coli prevalence increased with age; these strains 

were found in 3% of diarrheal samples in children <6 months, in 11% of children 6–12 
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months, and in 16% of children 13–24 months. In these cohorts, exclusive breastfeeding was 

more frequent than in other studies (>80% for infants younger than 6 months), and hence 

young infants may have been protected from symptomatic infection. Among asymptomatic 

controls (n = 3,760), EPEC was detected in 10.9% (95% CI: 9.4–11.4).11–13 Similarly, in 

a recent study in India, EPECs were identified in 3.2% of 648 children <5 years of age 

who were hospitalized for diarrhea.14 In another study, EPEC has been noted to be the most 

prevalent pathotype with an average prevalence of 10.9% (95% CI: 9.4–11.4), followed by 

EAEC (10.4%).7 A study reported that more than 20% of all episodes of persistent diarrhea 

in the pediatric population; aged >14 days are mainly caused by diarrheagenic E. coli 
such as aEPEC. Another study identified specific E. coli strains from patients of infantile 

gastroenteritis. This study reported that serogroups O111 and/or O55 were more putative in 

causing diarrhea in recipients, and disease outcome in terms of severity of symptoms was 

largely dependent on the size of the dose.15–17

Enteropathogenic E. coli is known to be an important cause of infantile diarrhea in Brazil, 

Chile, Peru, and Iran.18 Studies in Brazil, Mexico, South Africa, and Bangladesh have 

shown that EPEC infections cause 30–40% of infant diarrhea with high mortality rates.19–23 

In several studies conducted in Latin America, tEPEC was found to be the main cause 

of endemic diarrhea in children < 1 year of age. The frequency of tEPEC infection drops 

with an increase in age group, and adults rarely experience tEPEC episodes.18 This may 

be due to development of immunity or the loss of receptors interacting with some specific 

adhesins. Although tEPEC were major agents of acute diarrhea in infants until the 1990s, a 

clear decline in many of these countries was seen in the global enteric multicenter study, a 

population-based case–control study including seven countries in Africa and Asia with the 

goal to identify the etiology, burden, and mortality of acute moderate-to-severe pediatric 

diarrhea.24,25 The reasons for the decline are unclear but may be linked to improved 

public health with active interventions, therapy, sanitary conditions, and control of hospital 

infections.24,26 However, tEPEC infections remain associated with a 2.8-fold higher risk of 

death among infants aged 0–11 months.25

Atypical EPEC continues to be frequently detected in various parts of the world.7 Thirteen 

studies from peri-equatorial/tropical countries showed aEPEC isolates in 78% (131/169) of 

all EPEC cases in children.18 Wheeler et al.27,28 reported the identification of 142 aEPEC 

strains with only one tEPEC in 2774 samples from symptomatic children from the UK. 

A study from Australia identified 61 EPEC strains from a stool samples of symptomatic 

patients and highlighted the higher frequency of aEPEC at 95.1% (58/61).29 In 2009, the 

aEPEC strain O76 was reportedly responsible for a nursery outbreak in Finland.30

In another study, Sakkejha et al.31 detected 109 EPEC isolates in England from 2010 

to 2012, with 93% of the patients with diarrhea; aEPEC were seen more frequently 

than tEPEC. Overall, according to 266 studies published between 1990 and 2002, EPEC 

remains major pediatric pathogen.7 As such, in 2014 a European, multicenter, prospective 

quarterly point-prevalence study of community-acquired diarrhea (EUCODI) showed a high 

frequency of EPEC.32
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For unknown reasons, EPEC disease is becoming less frequent in infants in developed 

countries in developed/temperate climate zones of the world. However, day care centers 

and pediatric wards of hospitals are still prime breeding grounds for EPEC outbreaks.33–35 

Globally, EPEC is responsible for infantile diarrhea in underdeveloped nations with nearly 

30% mortality.36

Even though EPEC is strongly associated with infant diarrhea, many studies have also 

found EPEC, particularly aEPEC, in asymptomatic controls.18 There may be multiple 

possible reasons for this apparent anomaly: (a) host susceptibility.37 There may be genetic 

variability in specific mucosal receptors, including proteins and carbohydrate moieties; (b) 

individual variability in non-specific host barriers such as the gut microbiome, mucus layer, 

and epithelium. The variability in the strength of these barriers may influence bacterial 

overgrowth and susceptibility to disease.38 (c) Immune status of the host, which may limit 

bacterial flora to colonization but not cross numerical thresholds needed to cause disease.39 

In addition, secretory immunoglobulin A (sIgA) in the intestine and in human milk can 

limit/prevent enterocyte colonization/mucosal invasion by enteropathogens.40 Human milk 

also contains other non-specific defense factors such as lactoferrin and enterotoxin-binding 

oligosaccharides. In endemic areas, colostrum contains specific sIgA against EPEC.41 In 

addition, children may acquire natural immunity with age. Opintan et al.42 showed that 

EPEC carriage, not disease, is frequently seen in healthy children in endemic areas after 2 

years of age. Bacterial factors are also important in asymptomatic carriage of EPEC. Some 

strains are more likely to not cause symptoms, such as those with the phylogenetic marker 

gene yhaA. Children without diarrhea frequently carried aEPEC strains that were OI-122 

efa1/lifA-negative and yhaA-positive. There is considerable variability in the severity of 

disease between individual strains.43

The variability in diagnostic tests also needs attention. In this regard, the bacterial load is an 

important consideration. Barletta et al.44 compared children with diarrhea vs. asymptomatic 

controls. When a quantitative real-time PCR assay was used, the bacterial load was 

significantly higher in the symptomatic infants than in age-matched controls. Other factors 

may also need consideration. For instance, the collection of control samples and sample size 

are pivotal factors.45 The transmission of EPEC from controls to other patients needs further 

consideration. Finally, environmental factors such as poor hygiene and fecal contamination 

may also increase the bacterial load in control groups.7

EPEC Definition and Classification

Escherichia coli serotypes were first classified based on the Kauffmann system in the 1940s. 

The three antigen systems included the somatic O, flagellar H, and the capsular K surface 

antigens.46,47 In 1955, the term EPEC was coined to describe strains that were primary 

intestinal pathogens but were rarely encountered in the feces of healthy individuals and in 

infections other than diarrheal diseases.4 Formally, 187 O serotypes were documented, but 

currently 176 are considered as true O serotypes. Six (O31, O47, O67, O72, O94, and O122) 

are no longer considered as O serotypes, some being duplicate names for an O antigen and 

others were in organisms that were reclassified into other genera and three (O34, O89, and 

O144) strains are also removed from this classification which are incapable of producing O 
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antigens and are removed from these O serotypes. For O serotypes, the most variable cell 

component is O antigen because of existence of variations in sugar moieties and the linkages 

present within as well as between O units. Due to the existence of these variations, there 

is diversity of various clones in the species. Each expresses different surface antigen on the 

cell surface which offers selective advantages in varied environments. The O antigen is one 

of main virulence factors and its loss can severely impair the pathogenicity and virulence. 

O antigens play vital roles, including protection against phagocytosis and clearance via 

neutrophils and monocytes, as well as have inhibitory effects on the bactericidal activity of 

lysozyme, a key player in host innate immunity.48 The major O serogroups, including O55, 

O86, O111, O119, O125, O126, O127, O128ab, and O142, are considered to contain EPEC 

serotypes.49,50 The variability in O surface antigen provides basis for typing of the bacterial 

species for taxonomical as well as epidemiological purposes. It is most widely utilized to 

signify the presence of enteropathogens and considered as a basic tool for bacterial outbreak 

investigations and surveillance.48 O55 serotype is most rarely found in healthy individuals. 

However, varied pathogenicity levels are exhibited within O serotypes as all serotypes are 

not equally pathogenic, and only a limited number of H serotypes are incriminated within O 

serotypes.49 Another antigen, H (flagellar) is also expressed by EPEC strains. H2 and H6 are 

predominantly expressed flagellar antigens, and the least frequent ones include H7, H8, H9, 

H12, H21, H27, H25, and H34. However, some EPEC strains lack H flagellar antigens and 

are, therefore, classified as H-negative. These strains are non-motile.51

Several EPEC serogroups may share characteristics with the Shiga toxin-producing E. coli 
(STEC).52,53 Both can induce attaching-and-effacing (A/E) lesions on intestinal epithelial 

cells (IECs), and the bacteria attach to IECs and efface the microvilli on the cell surface 

(Fig. 1).54 There is a need to identify specific virulence genes to distinguish between the 

two bacterial genera as these differ in pathogenicity. EPEC pathotypes do not produce the 

Shiga toxin (stx−), but some aEPEC strains such as the O55:H7 resemble the LEE-positive 

Shiga toxin-producing E. coli such as the STEC O157:H7 in their genetic and virulence 

characteristics.4 Most tEPEC and aEPEC strains may differ in adherence patterns; tEPEC 

strains show localized adherence (LA) patterns, but the aEPEC can produce a localized-like 

adherence, a diffuse adherence (DA), or an aggregative adherence (AA) pattern.24

Enteropathogenic E. coli binds IECs by an outer membrane protein called intimin, which 

is encoded by the gene eae. The genetic elements needed to produce the A/E lesions 

are encoded on a genomic pathogenicity island, the locus of enterocyte effacement 

(LEE).55,56 Another pathogenicity factor is the plasmid E. coli adherence factor (pEAF).4,57 

Enteropathogenic E. coli is classified as typical or atypical based on the presence of pEAF, 

which contains two important operons.24 These include a type IV bundle-forming pilus (bfp) 

and a plasmid-encoded regulator (per). The bfp promotes bacterial adherence and formation 

of compact microcolonies. Bfp and per are important transcriptional activators for LEE 

pathogenicity island.4,58

The plasmid pEAF imparts important characteristics to EPECs. Three subgroups can be 

seen:
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1. Typical EPECs (tEPECs) are eae+ bfpA+ stx−. Most belong to classical O:H 

serotypes and express bfp to show the localized adherence (LA) phenotype.59 

The expression of EPEC virulence genes on classical EPEC serogroups is not 

universal. However, tEPEC strains are more homogeneous in their virulence 

traits than aEPEC. Most of the typical strains produce the virulence factors 

encoded by the LEE region and EAF plasmid.24

2. Atypical E. coli (aEPEC) strains lack the EAF plasmid and hence are bfpA 

negative and are defined as eae+ bfpA− stx−. The lack of Bfp, makes atypical 

EPEC strains exhibit localized-like (LAL) pattern, which is mainly characterized 

by the presence of bacterial microcolonies. LAL is the most common pattern, but 

atypical EPEC strains also exhibit diffuse (DA) or aggregative adherence (AA) 

patterns.58,60 LAL+ aEPECs show pili and other known adhesins. Some aEPECs 

express the enteroaggregative heat-stable toxin (EAST1) and other potential 

virulence factors not encoded in the LEE, such as a hemolysin.60–62

3. Non-typeable EPECs, which are identified among aEPECs and do not belong to 

classical EPEC serogroups. There are >200 of these strains.63,64

Virulence Factors and Signaling

For successful infection and formation of an A/E lesion, two major virulence factors are 

needed, the type IV bundle-forming pilus (BFP) and LEE.

Type IV Bundle-forming Pilus (BFP)

Type IV BFP is a dynamic fibrillar organelle responsible for the initiation of initial 

non-intimate attachment of EPEC to the host IECs. Further, BFP recruits individual 

EPEC together as aggregates and leads to the formation of microcolony on the host cell 

membranes, typically known as a localized adherence (LA) phenotype. The ~80 kb plasmid 

(pEAF) encodes 14 genes, which are required for the biogenesis of BFP and consequently in 

the formation of the EPEC adherence factor (EAF). The strains lacking pEAF are incapable 

of forming typical LA phenotype.57,65,66 Activation of BfpA is mediated by the plasmid-

encoded regulator A (PerA). The activated form is a major pilus subunit and is called 

pre-bundlin. Further, pre-bundlin is acted upon by the prepilin peptidase, BfpP, and is then 

converted to the mature forms.67,68

Two nucleotide-binding proteins, BfpD and BfpF, further mediate the extension of the 

pilus and retraction, respectively. Aggregation of EPEC is promoted by BfpD, whereas 

BfpF facilitates the separation of EPEC from cellular aggregates that are maintaining a 

constant supply of bacterial cells for further infectious steps. BfpF-mediated dissociation 

of bacterial cell aggregates permits the intimate attachment of individual EPEC to the gut 

epithelium, resulting in efficient activation of T3SS and successful translocation of effector 

molecules into the host cells (Fig. 2).65 In addition to filamentous actin, cytoskeletal proteins 

such as α-actinin, talin, ezrin, myosin-light chain, vasodilator-stimulated phosphoprotein 

(VASP), the Wiskott–Aldrich syndrome protein (WASP), and the actin-related protein 2/3 

(Arp2/3) complex are also observed in EPEC-induced A/E lesions. Additionally, many 

proteins involved in focal adhesion such as α-actinin and vinculin were found to be recruited 
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to sites of A/E lesions.69–73 After EPEC attachment to the host surface, kinases encoded 

by Ab1/Arg, Src, and Tec families lead to phosphorylation of tyrosine residues in the 

cytoplasmic domain of translocated intimin receptor (Tir). Phosphorylated Tir interacts with 

two adaptor proteins (Nck1 and Nck2). This interaction results in the recruitment of actin 

nucleation-promoting factor, N-WASP, which further activates the Arp2/3 complex that 

assembles actin beneath EPEC (Fig. 2). These signaling events lead to the formation of 

actin-rich pedestals on host cell luminal membrane, along with inflammatory response and 

diarrhea.65

Locus of Enterocyte Effacement

Once the bacterial aggregates dissociate from the host cell membranes via BfpF, EPEC 

expresses the LEE for further intimate attachment to intestinal epithelial cells (Fig. 2). 

Enteropathogenic Escherichia coli contains a 35,624 base pair LEE pathogenicity island 

(LPI), which contains 41 open reading frames (ORFs) of more than 50 amino acids arranged 

in five major polycistronic operons (LEE1 to LEE5).74,75 Locus of enterocyte effacement 

pathogenicity island encodes for the majority of EPEC effector proteins. Locus of enterocyte 

effacement encodes for the T3SS machinery (Esc and Sep proteins), outer membrane 

adhesin (intimin), translocators (EspA, EspB, and EspD), chaperones (Ces proteins), effector 

proteins (EspF, EspG, EspH, Map, and EspZ), translocated intimin receptor (Tir), regulatory 

proteins Ler (LEE-encoded regulator), repressors including GrlR (global regulator of LEE 

proteins), and activators such as GrlA (global regulator of LEE proteins).76 Various factors 

influence the regulation of LEE, including Ler, GrlR, and GrlA; and E. coli global regulators 

such as the H+NS, IHF, and FIS.77,78 These genes are separated into three functional 

domains – a region encoding intimate adherence (Tir and intimin), a region encoding 

the EPEC-secreted proteins (including espA, espB, espD, and espF) and their putative 

chaperones, and the region encoding a type III secretion system.79

LEE1, LEE2, and LEE3 encode for the genes involved in the production, assembly, and 

regulation of T3SS. Locus of enterocyte effacement-encoded structures are comprised of 

three vital components: (a) outer membrane needle complex (EscC, EscD, EscF, EscI, and 

EscJ); (b) inner membrane, which contains an export apparatus (EscRST, EscU, and EscV); 

and (c) a cytoplasmic sorting platform (EscA, EscK, EscL, EscN, and EscQ). The gene 

of translocation apparatus, the extracellularly secreted proteins of T3SS are encoded via 

LEE4 genes (EspA, EspB, and EspD). The role of EspB is implicated in the effacement 

of microvilli on the intestinal surface. The EspABD translocon apparatus of T3SS is 

responsible for the translocation of six LEE-encoded effectors (Tir, Map, EspF, EspG, EspZ, 

and EspH). These effectors are involved in the sequential events during EPEC infection 

which include disruption of tight junctions, mitochondrial dysfunction, and formation of 

filopodia in host intestinal epithelial cells. The genes for adhesin (intimin), 94 kDa outer 

membrane protein of EPEC, and its translocation receptor (Tir) are encoded via LEE5.65 

The gene encoding for intimin, eae (E. coli attaching-and-effacing), is comprised of four 

distinct intimin subtypes (α, β, γ, and δ).80 Different intimin subtypes are expressed in 

different tissues; the small intestinal mucosal layer expresses intimin-α clones, and the 

Peyer’s patches exhibit expression of intimin-γ.81 Different intimin types could bind to 

the host cell protein nucleolin, which then colocalizes with adherent bacteria.82 Chaperone 
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proteins have also been discovered in T3SS in EPEC and are essential for secretion of espD, 

espA, and espB.76

Effectors encoded outside the LEE pathogenicity island have been described in all A/E-

producing pathogens.24 Scattered across the whole genome, six pathogenicity islands harbor 

the clusters of non-LEE-encoded (Nle) effectors.75,83 These Nle effectors include NleA-H, 

EspG2/Orf3, Cif, EspJ, and EspL. NleA (also called EspI) suppresses protein secretion; 

EspJ inhibits phagocytosis; and NleE and NleH activate innate immune responses. A/E E. 
coli strains utilize both LEE-encoded and non-LEE-encoded effector proteins to subvert 

and modulate cellular and barrier properties of the host for successful infection in a well-

controlled manner.7

Pathogenesis

Enteropathogenic E. coli is generally considered to be a noninvasive pathogen but can cause 

subclinical to fatal diarrhea.4 Studies with adult volunteers reported that 12–24 hours post 

infection with tEPEC (109–1010 of bacterial inoculum) can induce diarrhea.9 As discussed 

before, EPEC strains attach to IECs in two different patterns – localized adherence (LA) 

in which bacteria adhere in discrete microcolonies and diffuse adherence (DA) in which 

bacteria adhere uniformly over the cell surface. Localized adherence was highly correlated 

with specific EPEC serogroups in strains isolated from patients with diarrhea.66 The BFP 

is usually seen as the initial EPEC attachment factor.84 The major pilin subunit of BFP is 

identified as the bfpA. Bundle-forming pilus is encoded by a cluster of 14 genes on the EAF 

plasmid and mediates LA phenotype, which is further responsible for antigenicity, biofilm 

formation, autoaggregation, and compact microcolony formation.51,57,85 Genes external to 

the bfp gene cluster were also necessary for full expression of BFP. This included the global 

regulator element of EPEC pathogenesis perABC (bfpTVW) and the chromosomal dsbA 

gene encoding for a disulfide isomerase.86

The BFP-mediated interbacterial interactions may allow the dispersal of individual bacteria 

from autoaggregates and colonization to other epithelial sites, contributing to the spread of 

infection within the gut. In addition to BFP, additional fimbrial structures have also been 

characterized and could have roles in EPEC-host cell adhesion. There may be rod-like 

fimbriae and fibrillae, suggesting that the bacterial–host cell interaction is a multifactorial 

process. More recently, flagella have been implicated in EPEC adherence to IECs.87 

However, there is some uncertainty because a flagellated strain that lacked BFP, intimin and 

EspA failed to adhere to IECs in ex vivo studies. The term EPEC adherence factor (EAF) 

refers to the plasmid-mediated adhesion. Escherichia coli strains isolated from outbreaks 

of infantile gastroenteritis almost invariably possess the EAF plasmid.88 EPEC adherence 

factor plasmid generally promotes non-intimate cell adhesion. For A/E lesion formation, 

chromosomally encoded factors were required for the A/E phenotype, and the genes on 

the plasmid may play a secondary role.89 Localized adherence (LA) pattern is exhibited 

by various EPEC serogroups including O55, O86, O111ab, O119, O125, O128ab, and 

O142.90 The existence of 60 MDa plasmid (denoted as pMAR2) is responsible for localized 

adherence pattern exhibited by EPEC strain E2348/69 (O127:H6).91
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Mucosal adhesion by EPEC may involve two distinct stages: (a) initial attachment of EPEC 

promoted by plasmid-encoded adhesins; and (b) effacement of brush border microvilli 

leading to intimate EPEC attachment. Although the second stage could occur without 

the first, the presence of plasmid-encoded adhesin enhanced mucosal colonization.89 A/E 

lesions exhibit association of bacterial cells to IECs followed by extensive disruption, loss 

of brush borders and microvilli, alterations in F actin rearrangements, and ultimately cup 

and pedestal formations.7 These structures may provide a strong attachment of EPEC to 

the cell surface, preventing dislodgement in the ensuing diarrheal response. Many affected 

bowel segments show depletion of glycocalyx. Some areas show a mucous pseudomembrane 

coating on the mucosal surface. There are characteristic cytoskeletal alterations with 

disruption of the brush border cytoskeleton and proliferation of filamentous actin beneath 

the foci where bacteria adhered to the host cell surface. There are at least three prominent 

changes: (a) adherence to IECs; (b) delivery of 25–50 virulence factors into the host cell 

using a type III secretion system (T3SS)51; and finally, (c) firm adherence to the cell surface 

with the formation of pedestals (Fig. 2).86 The T3SS is one of the five most important 

secretion systems utilized by Gram-negative bacteria, besides the T4SS, T5SS, T6SS, and 

T7SS, to inject effector proteins into the host cells to promote colonization and virulence. It 

is important because it is exclusively involved in virulence.92,93

The T3SS, intimin, and the translocated intimin receptor (tir) are all essential virulence 

determinants of the intimate adherence, a process that requires the T3SS to inject tir into the 

host cell. Tir acts as a receptor for bacterial binding via tir–intimin interaction. These trigger 

many signaling cascades such as phosphorylation of a host phospholipase and recruitment 

of cytoskeletal proteins beneath the adherent bacteria. Intimin can also subvert cellular 

processes independently of tir.86 Mitochondrial-associated protein (Map) targets host cell 

mitochondria and also contributes to the disruption of the epithelial barrier.94

The hallmark of EPEC infection is A/E lesion which marks the intimate attachment of 

the bacteria to the host enterocytes and results in the effacement of the microvilli. The 

IEC membrane in these foci can also be raised locally in a characteristic pedestal shape 

that may extend up to 10 μm outwards from the cell to form pseudopod-like structures.95 

This near-complete destruction and extensive loss of intestinal epithelial surface with 

villus atrophy and thinning of the mucosal layer is frequently seen during severe EPEC 

infections.96 The extensive loss of microvilli on the infected IECs alters the expression and 

function of ion transporters, channels, and tight junctions. The pathogenesis of microvillus 

effacement is seen as a 2-step process that requires synergistic action of three effectors 

(Map, EspF, and Tir) on intimin, and retention of the detached microvillar material. Other 

studies have focused on the type III secretion system and its effectors including tir, map, 

espF, and espG.65 Enteropathogenic E. coli also rapidly inactivates the sodium-D-glucose 

cotransporter (SGLT-1) by multiple mechanisms. SGLT-1 plays a crucial role in the daily 

uptake of fluids from the intestinal lumen.97 Calcium signaling may also be important; 

it may activate actin-severing proteins, resulting in cytoskeletal rearrangement and brush 

border effacement. However, all these possibilities need further confirmation.98,99 Some 

aEPEC is strongly associated with acute disease, whereas others have been noted in 

persistent diarrhea.100 Clinically, aEPEC outbreaks may cause mild but prolonged non-
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dehydrating, non-inflammatory diarrhea. There is usually no fever, vomiting, or abdominal 

pain.

Pathophysiology of Diarrhea

We now understand EPEC pathogenesis at cellular and genetic levels, but the 

pathophysiology of the resulting diarrhea remains elusive. The extensive loss of microvillus 

and subsequent reduction in absorptive surface certainly contributes to diarrhea. However, 

the rapid onset of diarrhea remains unexplained and appears to be multifactorial in nature. 

Enteropathogenic E. coli can alter epithelial permeability by activating signaling cascades 

that phosphorylate Ser/Thr residues on the myosin light chains.101 This might contribute 

to diarrhea through increased permeability and disruption of tight junction integrity (Fig. 

3). Recently, another EPEC effector molecule, the espF, was shown to be translocated by 

the T3SS into host cells, where it disrupts host IEC tight junctions and could contribute 

to diarrhea.102 Enteropathogenic E. coli can also activate NF-κB in host cells and induce 

host inflammatory responses, which, in turn, could increase paracellular permeability and 

cause tissue damage.103 The stimulatory effects of EPEC infection have been implicated on 

NF-κB activation and downstream enhancement of Cl secretion and fluid accumulation in 

the colon.104,105

Prolonged EPEC infection leads to inflammation and disruption of structure and 

barrier function of tight junctions (Fig. 3).5,106,107 Enhanced paracellular permeability, 

inflammation, and disruption of tight junctions have been implicated in EPEC-mediated 

chronic diarrhea.108 Studies have highlighted the downstream effects of prolonged 

inflammation in terms of increased influx of neutrophils, resulting in the release of 5-AMP 

that is further converted into secretagogue adenosine.109,110

Enteropathogens such as EPEC likely cause diarrhea by altering electrolyte transport.111 

Impairment of ion and solute transport may directly or indirectly influence the fluid 

transport processes and barrier integrity in gut epithelial cells.112 Recent advances 

indicate that EPEC infection can directly influence ion transport mechanisms involving 

Cl−/HCO3
−/OH− exchange, Na+/H+ exchange, serotonin transporter, and short-chain fatty 

acids transporters. The following section will review the potential mechanism(s) involved 

in the regulation/alteration of ion and nutrient transporters on the gut epithelial cells during 

EPEC-induced diarrhea.

(a) Effect of EPEC Infection on Na+/H+ Exchanger Type 3 (NHE3)—Diarrhea 

caused by enteric pathogens may involve decreased NaCl absorption, enhanced Cl– 

secretion, or both.5 In early onset diarrhea, decreased intestinal NaCl may be 

pathophysiologically more important than the rise in Cl− secretion.113,114 The effector 

proteins of EPEC namely, NleA and Map, interact with Na+/H+ exchanger regulatory factor 

2 (NHERF2) and alter its function and ultimately leading to decreased Na+ uptake.115 In 

intestinal epithelial cells, the expression of NHE2 and NHE3 is restricted to the apical 

surface, whereas NHE1 is expressed on the basolateral membranes. Our group has shown 

that EPEC infection in in vitro models activated NHE2 but inhibited the NHE3, the key Na+ 

absorbing transporter (Fig. 4).116 In in vitro models, EPEC infection leads to inhibition of 
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the Cl−/HCO3
−/OH−/exchange activity critical for intestinal chloride absorption.116 Also, as 

stated above the activity of NHE3, which is a major Na+ absorbing isoform, is inhibited.114 

These findings may be a source of uncertainty in the relative pathophysiological importance 

of NHE2 vs. NHE3; NHE3 here could very well be the more important of these two as a 

regulator of Na+ absorption and determinant of the onset of diarrhea.114 Also, prolonged 

EPEC infection contributes to inflammation and disruption of the structure and barrier 

function integrity of tight junctions and could contribute to diarrhea.117

(b) Effect of EPEC Infection on Downregulated in Adenoma (DRA/SLC26A3)
—Intestinal epithelial cells express an integral membrane Cl−/HCO3

− transporter, the 

downregulated in adenoma (DRA/SLC26A3).115 EPEC suppresses the function and apical 

expression of DRA/ SLC26A3, and may thus contribute to the pathophysiology of diarrhea. 

Studies from our group demonstrated an increased endocytosis and decreased apical 

expression of DRA/SLC26A3 in EPEC-infected cells (Fig. 4).118 Other studies suggest 

that reduced exocytosis may also play a role. The virulence factors EspG1 and EspG2 may 

alter DRA/SLC26A3 expression on epithelial cells via mechanisms involving microtubule 

disruption.118

(c) Effect of EPEC Infection on Absorption of Short-chain Fatty Acids (SCFAs)
—Short-chain fatty acids play a significant role in sustaining colonocyte health and 

metabolism, integrity of epithelial lining, and in the maintenance of colonic fluid and 

electrolyte balance. Butyrate, a key SCFA, has been shown to play an important role in fluid 

balance by enhancing electroneutral NaCl absorption119 and reducing Cl− secretion.120 Our 

group has shown that EPEC infection can significantly reduce butyrate uptake by intestinal 

epithelial cell lines (Fig. 4).117 EPEC infection reduced the expression of monocarboxylate 

transporter 1 (MCT1), the primary SCFA transporter in gut epithelial cells. Butyrate also 

plays an anti-inflammatory role,121 and decreased availability of butyrate has been noted 

both in acute and chronic inflammatory conditions.122

(d) Effect of EPEC Infection on Apical Sodium-dependent Bile Acid 
Transporter (ASBT)—Apical sodium-dependent bile acid transporter (ASBT) is a 

putative transporter responsible for stimulating the intestinal absorption of bile acids. 

Reduced ASBT expression/function has been implicated in the pathogenesis of diarrhea. 

Annaba et al.123 have shown the negative impact of EPEC infection on ileal ASBT 

expression/function in various in vitro models.

(e) Effect of EPEC Infection on the Serotonin Transporter (SERT)—Serotonin 

transporter is a key regulator of the extracellular availability of serotonin (5-HT), and 

its function was inhibited in response to EPEC infection in intestinal epithelial cells. 

Serotonin transporter activity is reduced via activation of the Src-homology-2 (SH2) 

domain containing protein tyrosine phosphatase (PTPase). In the absence of SERT, 5-HT 

circulates in the extracellular milieu resulting in the activation/sensitization of its cognate 

receptors.124 In this study, SHP2 is associated with SERT during EPEC infection due to 

dephosphorylation at tyrosine residues and thereby inhibiting its function and activity. High 
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luminal serotonin levels (due to inhibition of SERT) have been linked to fluid accumulation 

in the gut lumen.

(f) Effect of EPEC Infection on Sodium D-glucose Transporter (SGLT-1)—In 

addition to SERT and other transporters outlined above, EPEC has also been shown 

to inhibit the function of the sodium-D-glucose transporter (SGLT1), which is a major 

contributor of fluid uptake in the small intestine112 and hence could contribute to diarrhea.

Effect of EPEC Infection on Tight Junctions

Enteropathogenic E. coli-mediated disruption of the gut epithelial barrier also contributes 

to the onset of diarrhea. Epithelial cells are normally bound together by a network of 

tight junctions. The membrane barrier is selectively permeable for the passage of ions 

and solutes across the paracellular space. It also serves as a boundary that prevents the 

coalescence of apical and basal plasma membrane proteins to maintain the polarity of the 

epithelial cells and prevents the backflow of fluids into the lumen.115 The cell–cell adhesion 

is maintained by the transmembrane proteins which are associated with the cytoskeleton 

via the adaptor proteins. The members of claudin family and the transmembrane proteins 

of the marvel-domain containing protein families, such as occludin, tricellulin/marvelD2, 

and marvelD3, are key regulators of paracellular permeability. Tight junction-associated 

exchange factors for Rho GTPases also modulate the actin cytoskeleton and membrane 

permeability.115,125–127 During EPEC-induced diarrhea, leakages are observed in the tight 

junctions; studies suggest the potential role(s) of effector proteins EspF, Map, EspG1/G2, 

and NleA in disrupting the host cell tight junctions.128–130 The N-terminus of EspF contains 

mitochondrial- and nucleolus-targeting sequences that can alter the function of these 

organelles. The C-terminus of EspF contains three proline-rich repeats that interact with 

the eukaryotic sorting nexin 9 (SNX9) and neuronal Wiskott–Aldrich syndrome protein (N-

WASP), and are ultimately involved in the activation of the Arp2/3 complex and regulation 

of actin polymerization.128–132 EspF may recruit zonula occludens (ZO-1 and ZO-2) into 

actin pedestals.133 In murine models, EspF can disrupt tight junctions via internalization of 

claudin-1, 3, and 5.115

Another EPEC effector protein, Map, interacts with EspF and is involved in the disruption 

of tight junctions. Similar to EspF, Map is recruited to mitochondria where it modulates the 

mitochondrial processes and functions. Map acts as a guanine-nucleotide exchange factor 

(GEF) for Cdc42 GTPase and promotes its activation leading to the formation of transient 

filopodia. A Thr-Arg-Leu motif is present at the C-terminus of Map, which interacts with the 

Na+/H+ exchanger regulatory factor 1 (NHERF1). This complex links with ezrin and then 

promotes the interaction between Map and actin cytoskeleton.128,134,135 The tight junction 

proteins, the zonula occludens-1 and occludin, are disrupted by NleA leading to increased 

paracellular permeability.130

conclusions

Studies show aEPEC to be more prevalent than tEPEC worldwide. Therefore, it is important 

to further characterize the pathogenicity of these strains, virulence mechanisms, and the 

pathophysiology of these infections. While there is strong evidence showing that EPEC-
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induced diarrhea is multifactorial in nature and involves compromised gut barrier integrity 

and decreased absorption of fluid, which is contributed by decreased NaCl and solute 

absorption. However, the exact mechanisms of diarrhea in EPEC infection are still evolving. 

From the clinical perspective, there is a need for fast, easy, and inexpensive diagnostic 

methods to define optimal treatment and prevention for children in endemic areas.
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Key Points

• Enteropathogenic Escherichia coli (EPEC) is a leading cause of infantile 

diarrhea worldwide and particularly in developing countries.

• Global prevalence of atypical EPEC (aEPEC) is higher than typical EPEC 

(tEPEC).

• Enteropathogenic E. coli strains adhere to intestinal epithelial cells (IECs) 

in two patterns; the first one is of localized adherence (LA), where bacteria 

adhere in discrete microcolonies, and the second one is of diffuse adherence 

in which bacteria adhere uniformly over the cell surface.

• Enteropathogenic E. coli employs its type III secretion system and effector 

proteins to modulate cellular and barrier properties of the host intestinal 

milieu.

• Enteropathogenic E. coli infection leads to extensive disruption of microvilli 

on IECs and consequent loss of absorptive surfaces and altered electrolyte 

transport that may be secondary to both altered expression of ion/solute 

transporters and the loss of mucosal surface area.
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Fig. 1: 
Attachment of EPEC to the host epithelial cells results in the formation of cup and 

pedestal structures in the A/E lesion. A/E lesions exhibit intimate bacterial adherence 

to intestinal epithelial cells, extensive disruption of microvilli and enterocyte borders, 

and alterations in F-actin arrangement with accumulation of cytoskeletal proteins beneath 

adherent microcolonies resulting in the formation of a typical cup and pedestal-like structure

Kaur and Dudeja Page 22

Newborn (Clarksville). Author manuscript; available in PMC 2023 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Schematic representation of localization of virulence factors type IV BFP and LEE of EPEC 

on the small intestine and other interacting proteins involved during A/E lesion formation: 

Stage 1: Initial adherence and microcolony formation of EPEC on intestinal epithelial cells 

induced via type IV BFP and its activator Per. Stage 2: Effacement of microvilli mediated 

by activation of LEE operons via EspABD complex and translocation of T3SS effector 

proteins into intestinal epithelial cells. EPEC utilizes a type III secretion system (T3SS) to 

inject bacterial virulence factors directly into host cells. The T3SS apparatus is composed of 

several key protein components, including EspA, EspB, and EspD. EspA forms a needle-like 

channel and EspB and EspD cap this structure to form a pore that allows direct translocation 

of secreted effector molecules known as E. coli secreted proteins, EspF, EspG, EspH, Tir, 

and Map into the host cytosol. Translocated intimin receptor (Tir) is inserted into the plasma 

membrane, where it serves as a receptor for intimin, with Tir-intimin interaction triggering 

signaling events leading to pedestal formation. Stage 3: Intimate attachment of EPEC on 

the surface of host epithelial cells mediated by the interaction of adhesin intimin with 

Tir. This is followed by phosphorylation of Tir and recruitment of host cellular proteins 

and other adaptor proteins (Nck, N-WASP, and Arp2/3 complex) resulting in induction of 

actin polymerization beneath attached EPEC (BFP, bundle forming pilus; LEE, locus of 

enterocyte effacement; Tir, translocated receptor; EPEC, Enteropathogenic Escherichia coli; 
EAF, EPEC adherence factor; PER, plasmid-encoded regulator; A/E, attaching and effacing; 

Nck, Non-catalytic tyrosine kinase; WASP, Wiskott–Aldrich syndrome protein and Arp2/3, 

actin-related protein 2/3 complex)
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Fig. 3: 
EPEC infection induces inflammation and disrupts the epithelial barrier resulting in 

leaky tight junctions. Bacterial overgrowth, cytokine expression, biofilms, and leukocyte 

infiltration all create positive-feedback loops of inflammatory changes. Cytokines such as 

interleukin (IL)-1β and chemokines such as IL-8 activate regulatory factors such as the 

nuclear factor-κB and progressively enhance the inflammatory changes and dysfunction of 

the epithelial barrier
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Fig. 4: 
Schematic representation of transporters affected during EPEC infection. EPEC infection 

affects intestinal epithelial barrier and leads to reduced expression/function of ion and solute 

transporters and results in the development of diarrhea. Type III secretion system of EPEC 

is responsible for the release of E. coli-secreted proteins (Esps) into the infected host 

cells. EspF exhibits inhibitory impact on Na+/H+ exchange isoform 3 and EspG disrupts 

the microtubules, which further leads to decreased apical expression of DRA resulting in 

reduction of apical Cl−/ OH− (HCO3
−) exchange activity and inhibition of electroneutral 

NaCl absorption in the intestinal milieu. EPEC inhibits butyrate absorption by reducing 

the plasma membrane expression of monocarboxylate transporter 1 (MCT-1). EPEC also 

inhibits the function of serotonin transporter (SERT) and increases 5-HT availability by 

activating protein tyrosine phosphatases (PTPases), which can further modulate the ion 

absorption and contribute to the onset of diarrhea. EPEC-induced inhibition of SGLT-1 also 

promotes fluid accumulation with similar effects. (NHE3, Na+/H+ exchanger type 3; DRA, 

downregulated in adenoma; MCT-1, Monocarboxylate transporter 1; ASBT, Apical sodium-

dependent bile acid transporter; BA, Bile acid; SERT, Serotonin transporter; SGLT-1, D-

glucose transporter)
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Flowchart 1: 
Categorization of pathogenic E. coli
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