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Abstract: Suicidegene therapy is considered a promising approach for the treatment of uterine
leiomyoma (UL), a benign tumor in women characterized by precise localization. In this study,
we investigate the efficiency of αvβ3 integrin-targeted arginine-rich peptide carrier R6p-cRGD
electrostatically bound to magnetic nanoparticles (MNPs) for targeted DNA delivery into the UL
cells. The physico–chemical and cytotoxic properties, transfection efficiency, and specificity of R6p-
cRGD/DNA/MNPs polyplexes were evaluated. The addition of MNPs resulted in a decrease in
the time needed for successful transfection with simultaneous increase in efficiency. We revealed a
therapeutic effect on primary UL cells after delivery of plasmid encoding the herpes simplex virus
type 1 (HSV-1) thymidine kinase gene. Treatment with ganciclovir resulted in 20% efficiency of
suicide gene therapy in UL cells transfected with the pPTK-1 plasmid. Based on these results, we
conclude that the use of cationic peptide carriers with MNPs can be promising for the development
of modular non-viral carriers for suicide gene delivery to UL cells.

Keywords: DNA delivery; peptide-based carriers; gene therapy; magnetic nanoparticles; thymidine kinase;
uterine leiomyoma; integrins

1. Introduction

Uterine leiomyomas (ULs) occupy the second place in the structure of gynaecological
pathology and are the most common tumor of the female reproductive tract [1]. Accord-
ing to statistical data, the frequency of ULs is from 35 to 70% among reproductive-aged
women [2]. Despite being benign, these tumors can cause severe symptoms such as exces-
sive uterine bleeding, pelvic pain, menorrhagia, infertility, and pregnancy loss [3]. These
clinical complications affect women’s health and quality of life and are also the most
common reasons for hysterectomy [4]. In addition to hysterectomy, various minimally
invasive surgeries are used, e.g., laparoscopy and minimally invasive myomectomy, but the
re-appearance of new tumors remains a significant problem. In addition, drug treatments,
such as the use of GnRH antagonists and aromatase inhibitors, have been developed;
however, hypoestrogenic side-effects, such as bone loss, occur [5]. Thus, the development
of new approaches to treatment is still required. The absence of metastasis, the precise
localization of leiomyoma nodes detected by ultrasound, and the availability of various
endoscopic techniques make UL an ideal target for gene therapy in situ.

Gene therapy is a type of therapy that involves various strategies to deliver nucleic
acids and their derivatives into the cell in achieving therapeutic benefits. It has proven
to be a promising therapeutic strategy that circumvents the limitations of pharmacolog-
ical treatments and can be applied to both inherited and acquired diseases. Significant
advancements in development of gene therapy have recently been made and several new
drugs have been approved by the FDA [6]. Since UL are hormone-dependent tumors,
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gene therapy focused on influencing the metabolism of estrogen and progesterone, seems
to be the most promising. Research devoted to the delivery of the dominant-negative
estrogen receptor (DNER) gene into UL cells has demonstrated a significant decrease in
tumor size and development [7]. DNER is a form of estrogen receptor (ER) that is unable
to activate transcription. In addition, DNER molecules form dimers with native ER and
inhibit their activity [8].

Another approach to UL gene therapy that is actively studied is suicide gene therapy.
Suicide gene therapy is a frequently applied method based on the delivery of enzyme genes,
usually bacterial or viral, which transforms non-toxic pro-drugs into a toxic form [9]. The
most common system used in suicide gene therapy is the herpes simplex virus 1 thymidine
kinase gene (HSV1-TK) transfer followed by delivery of a guanosine analogue, aciclovir
(ACV) or ganciclovir (GCV) [10]. The delivery of the HSV1-TK gene with subsequent ACV
or GCV treatment leads to decrease inthe proliferative activity of UL cells and the size
of tumors [11].

The ongoing problem of UL gene therapy is the development of efficient carriers for ge-
netic constructs’ delivery into the fibroids tissue. Most of the previously done research was
held using viral vectors, in particular, Ad vectors and their different modifications [12,13].
However, despite the high efficacy of transduction, usage of viral vectors in clinical practice
is limited due to their immunogenicity and toxicity. Non-viral carrier systems are promis-
ing for gene delivery. They are non-toxic and biodegradable, and their application is not
limited by severe immunogenicity and inflammation problems. Besides, gene delivery into
UL is challenging because of dense cell arrangement and excessive extracellular matrix
(ECM), which is one of the key features of the disease [14]. In order to overcome these
barriers and successfully deliver therapeutic genes into deep layers of the tumor, vectors
are modified with ligands and additional components, such as magnetic nanoparticles [15].

Biocompatible magnetic nanoparticles have been developed to increase the efficiency
of the gene delivery, especially in the field of non-viral delivery. Presently the efficiency
of the method often referred to as “magnetofection” has been confirmed in various cell
cultures. The fundamental principle of magnetofection is the binding of transfection
reagents or viruses to magnetic nanoparticles (MNPs), forming molecular polyplexes.

Covalent or non-covalent binding of magnetic nanoparticles with genetic vectors
makes it possible to concentrate polyplexes, thereby allowing a reduction in the dose of
the vector used. This is crucial in the case of the use of viral vectors, unsuitable doses
of which can cause an immune response [16]. The action of an external magnetic field
allows targeting and accelerating the delivery of genetic constructs, facilitating cellular
absorption [17]. Association of MNPs with non-viral carriers allows increasing the efficiency
of delivery significantly. Thus, binding of DNA-polyplexes formed with cell-penetrated
peptides to magnetic nanoparticles showed high efficiency of gene delivery into the cells,
while reducing the time required to achieve cell membranes [18]. Magnetofection with
adenoviral delivery was successfully applied in research devoted to uterine fibroids and
fibroid-associated tumor stem cells. However, no studies on magnetically enhanced non-
viral transfer to UL cells have been carried out. Further studies of this approach can lead to
the prevention of the re-occurrence of the tumors [19].

In previous reports, we demonstrated that Arg-rich peptide carriers modified with
αvβ3 ligand can effectively deliver DNA into the αvβ3-expressing tumor cells, including
UL cells [20,21].This work aimed to explore whether the use of MNPs together with R6p-
cRGD-polyplexes can improve the delivery rate and become a promising tool for the
development of UL gene therapy.

2. Materials and Methods
2.1. Cell Lines

The human pancreatic (PANC-1) cell line was obtained from the Cell Collection of the
Institute of Cytology RAS (Saint-Petersburg, Russia). The PANC-1 cells were cultured in
Dulbecco’s Modified Eagle Media (DMEM; Biolot) with the addition of 10% FBS and 0.3%
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gentamicin. Primary UL cells were isolated from UL nodes after myomectomy at the D.O.
Ott Research Institute of Obstetrics, Gynecology and Reproductology (Saint-Petersburg,
Russia), as previously reported [22,23]. The UL cells were cultured in AmnioMAX C-
100 Complete Medium (Thermo Fisher Scientific, Carlsbad, CA, USA) and transfection
experiments were held in DMEM-F12 (Thermo Fisher Scientific) supplemented with 10%
FBS (Thermo Fisher Scientific) and 0.3% gentamicin.

2.2. Peptide Carrier, Expression Plasmids and Magnetic Nanoparticles

Monomers of peptide carrier R6p-cRGD were synthesized in NPF Verta, LLC (Saint-
Petersburg, Russia) and stored as a dry powder at −20 ◦C. R6p-cRGD carrier was obtained
by polycondensation reaction, as described previously [21]. As a control carrier, branched
polyethyleneimine (PEI) with molecular weight of 25 kDa (Sigma Aldrich, St. Louis, MO,
USA) was used. Magnetic nanoparticles combiMAG were purchased from Chemicell
(Berlin, Germany).

The pCMV-lacZ plasmid carrying the β-galactosidase gene was giftedby Professor B.
Sholte (Erasmus University, Rotterdam, The Netherlands). The pPTK-1 plasmid encoding
the HSV1 herpes virus thymidine kinase gene was kindly provided by Dr S.V.Orlov (Insti-
tute of Experimental Medicine, Saint-Petersburg, Russia). The plasmids were purified using
a Qiagen Plasmid Giga kit (Qiagen, Hilden, Germany) under endotoxin-free conditions,
diluted in water to 0.5–1 mg/mL, and stored at −20 ◦C.

2.3. Formation of R6p-cRGD/DNA/MNPs Polyplexes

Nucleopeptide polyplexes were formed by electrostatic binding of positively charged
carrier R6p-cRGD and negatively charged expression plasmids (pCMV-lacZ, pPTK-1).
To form nucleopeptide polyplexes, plasmid DNA and peptide carrier R6p-cRGD were
first dissolved separately in HBM buffer (0.27 M mannitol, 5 мM HEPES, NaOH, pH 7.5)
and water, respectively, and then mixed at a 1:1 volume ratio. Nucleopeptide polyplexes
were allowed to self-assemble for 30 min at room temperature. Then, combiMAG MNPs
were added to the DNA/peptide complex suspension according to the manufacturer’s
recommendations and the suspension was incubated for 15 min at room temperature. DNA
binding was evaluated by ethidium bromide displacement [24].

2.4. DNA Binding and DNAse I Protection Assay

The stability of nucleopeptide polyplexes of DNA with R6p-cRGD after addition of
magnetic nanoparticles was analyzed using the ethidium bromide (EtBr) fluorescence
quenching method of Wallac 1420D scanning multilabel counter (PerkinElmer Wallac
Oy, Turku, Finland) at 590 nm emission (540 nm excitation) with an exposure time of
5 s. The EtBr displacement assay was performed in 96-well flat-bottom plates (Medpoly-
mer, Saint-Petersburg, Russia). The efficiency of EtBr displacement was calculated as
(F − Ff)/(Fb − Ff), where Ff and Fb are the EtBr fluorescence values in the absence and
presence of DNA, respectively [24]. For each DNA/carrier ratio, the intensity of fluores-
cence (F) was measured three times.

The DNAse I protection assay requires 10 µL of the peptide/DNA/MNPs polyplexes
prepared with different amounts of MNPs and incubated with 0.5 units of DNase I (Ambion,
Austin, TX, USA) for 30 min at 37 ◦C followed by 2 min of DNAse I activation, as described
previously [22]. DNA was released from polyplexes with overnight 0.1% trypsin incubation
at 37 ◦C. The DNA integrity was analyzed by 1% agarose gel electrophoresis.

2.5. Relaxation of Carrier/DNA Polyplexes by Dextran-Sulfate and DTT Destabilization

Dextran-sulfate (DS; Sigma, St. Louis, MO, USA) was added to the prepared polyplexes
with MNPs at three-fold charge excess relative to the peptide. At 0 min and after 1 h,
6 h, and 24 h of incubation, EtBr fluorescence was measured on Wallac 1420D scanning
multilabel counter and dye displacement was evaluated.
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For study of DTT destabilization, the peptide/DNA/MNPs polyplexes were prepared
with the addition of 1× SYBR-Green (Amresco, Ohio, OH, USA), followed by incubation
with 200 mM dithiothreitol (DTT) for 1 h at 37 ◦C. The fluorescence was measured, and
SYBR-Green displacement calculated as (F − Ff)/(Fb − Ff), where Ff and Fb are the
fluorescence intensities of SYBR-Green in the absence and presence of DNA.

2.6. Size and z-Potential Measurement of Peptide/DNA/MNPs Complexes

The size and zeta potential of the polyplexes with MNPs were determined using dy-
namic light scattering and microelectrophoresis, respectively. The measurements were per-
formed using zetasizer NANO ZS (Malvern instruments, Malvern, UK) three times independently.

2.7. Transmission Electronic Microscopy

Micrographs of the R6p-cRGD/DNA polyplexes at 8/1 and 12/1 N/P charge ratios
bound to MNPs in DNA:MNPs quantity ratio of 1:0.5 were obtained using a transmission
electron microscope Jeol JEM-1400 (JEOL Ltd., Tokyo, Japan). A method of negative staining
with a 1% aqueous solution of uranyl acetate was used to obtain electron micrographs.

2.8. Transfection of PANC-1 Cells with DNA/Peptide Polyplexes with MNPs

PANC-1 cells were seeded in 48-well cultural plates at a density of 65,000 cells per
well in 500 µL of the standard culturing medium, grown for 24 h, and washed with
DMEM, with the subsequent addition of 500 µL of serum-free DMEM into each well.
R6p-cRGD/DNA/MNPs polyplexes in HBM buffer were added at a rate of 2 µg of DNA
per well. The plate was incubated on a magnet (IBA GmbH, Gottingen, Germany) in a
temperature-controlled chamber at 37 ◦C with 5% CO2 for 10 min and washed with DMEM.
Then, 500 µL of the standard cultural medium was applied to each well, the plate incubated
at 37 ◦C with 5% CO2 for 48 h, and reporter gene expression analyzed.

2.9. Cytotoxicity Assay

The cytotoxicity of R6p-cRGD/DNA/MNPs polyplexes was rated on PANC-1 cells
using Alamar Blue reagent (BioSources International, San Diego, CA, USA) after 10, 20,
and 30 min of incubation with it, as described previously [25]. Fluorescence was measured
on Wallac 1420D scanning multilabel counter (excitation 544 nm, emission 590 nm) and the
relative fluorescence intensity was calculated.

2.10. Suicide Gene Therapy of Primary UL Cells

Primary leiomyoma cells were seeded onto 96-well plates at a density of 20,000 cells
per well in 100 µL of AmnioMAX C-100 (Thermo Fisher Scientific) and cultured for 24 h.
Transfections were performed in a serum-free DMEM-F12 with 0.35 µg of DNA per well.
The plates were incubated for 30 min on the magnet and the medium was changed to
DMEM-F12 with FBS (Thermo Fisher Scientific) for the next 24 h. After that, the medium
was changed to DMEM-F12 with FBS containing ganciclovir (5 µg per well) and the plate
was left for 96 h.

For proliferation activity measurement 96 h later, the medium was replaced with a
fresh one containing 10% Alamar Blue solution, and the plate was incubated for another 2 h.
Fluorescence intensity was measured using a Wallac 1420D scanning multilabel counter at a
wavelength of 530/590 nm. The relative fluorescence was calculated as (F − Ff)/(Fb − Ff),
where Fb and Ff are the fluorescence intensities in the untreated control and without
cells, respectively.

Photographs of cells were obtained by microscope MIBR (LOMO, Saint-Petersburg,
Russia) at 200× magnification.

To count living cells, the Trypan blue dye staining method was used. After 96 h
of incubation, the cells were harvested with Trypsin-EDTA (Thermo Fisher Scientific,
Carlsbad, CA, USA) 0.25%, followed by the addition of 0.4% Trypan blue solution (Sigma-
Aldrich, Munich, Germany) at a 1:1 volume ratio. The unstained cells were counted
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using a hemocytometer (MiniMedProm, Dyatkovo, Russia). Effects ofsuicide gene therapy
were evaluated by normalizing live cell numbers in the treated wells to those in the
untreated ones.

2.11. Data Analysis and Statistical Comparisons

Statistical analyses were performed using Prism 6 (Graphpad, La Jolla, CA, USA).
Measurements were taken from distinct samples, and no data were excluded. The distri-
bution of values in all experiments was evaluated by the Shapiro–Wilk normality test. In
case the values were not normally distributed the nonparametric test (Kruskal–Wallis with
Dunn’s multiple comparison test) was used for statistical comparisons. If the datasets were
normally distributed the parametric test (ANOVA with Sidak’s multiple comparison test)
was used for statistical comparisons. All the statistical tests were two-sided and conducted
at 5% statistical significance.

3. Results
3.1. Evaluation of R6p-cRGD/DNA Polyplexes Stability and Protecting Properties after
Non-Covalent Bindingwith MNPs

The DNA condensation within the polyplexes with R6p-cRGD at different peptide
NH3+/DNA PO4−(N/P) ratios (including 8/1 and 12/1 N/P ratios) has been reported
previously [21]. To evaluate whether the addition of MNPs leads to the release of DNA
from the polyplexes, ethidium bromide (EtBr) exclusion assay was used. Fluorescence
of ethidium bromide bound to plasmid DNA in the absence of the carrier was taken as
100%. Different quantity ratios of R6p-cRGD/DNA and MNPs (µg DNA/µLMNPs) were
tested. As shown in Figure 1, the increasing of MNPs content (0.05–4) does not lead to
EtBr intercalation and an increase of fluorescence as seen at ratios of 1/0.05 to 1/4 for
R6p-cRGD/DNA/MNPs. These results demonstrate that the addition of MNPs to the
nucleopeptide polyplexes does not influence the nucleopeptide polyplexes density and
DNA binding ability of peptide carrier R6p-cRGD.
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DNA integrity in polyplexes with R6p-cRGD and MNPs was studied using DNAse I
protection assay. DNA binding by polycations is manifested in protection from nucleases [26].
As can be seen in Figure 2, the naked DNA is completely degraded by incubation with
DNase I (lines 8). As was shown previously, DNA binding with R6p-cRGD remains stable
after its release from polyplexes [21]. The addition of MNPs does not lead to a decrease in
fluorescence for polyplexes at both N/P ratios (8/1 and 12/1, data not shown).
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3.2. DNA Release after DTT and DS Treatment of the Polyplexes

To prove the disulphide bonds role in the formation of R6p-cRGD/DNA in MNPs-
containing polyplexes, we applied dithiotreitol (DTT) as a reducible agent. DTT treatment
was performed for MNPs-polyplexes at a 1:0.05 w/v ratio of DNA (µg) to MNPs (µL)
(Figure 3a). We observed no destabilization of DNA condensation for all the tested MNPs-
polyplexes before DTT treatment. After 1 h incubation of the MNPs-polyplexes with DTT,
a fractional DNA release from polyplexes was detected. The addition of DTT resulted
in a 2.5–5-fold increase in fluorescence intensity, reflecting the release of DNA from the
polyplexes with MNPs. The values of the relative fluorescence after incubation with DTT
compared to free DNA (100%, not shown) indicate a mild effect of disulfide bonds on
the stability of polyplexes, in comparison with electrostatic forces associated with the
tight DNA packaging by oligoarginine [27]. Additional experiments on the stability of
MNPs-polyplexes were conducted with dextran–sulfate treatment (Figure 3b).

The interaction of polyplexes with negatively-charged GAGs (heparan sulfate, chon-
droitin sulfates B and C, etc.) may be tricky. On one hand, these interactions may in-
fluence the compactization of DNA in polyplexes, leading to a decrease in transfection
efficiency [28]. On the contrary, DNA release from the polyplexes inside the cells is a
crucial step toward transgene expression and depends on interactions between mRNAs
and polyplexes [29]. In addition, the presence of some sulfated GAGs on the cell surface
may also augment gene delivery [30]. Previously we showed that the R6p-cRGD/DNA
polyplexes are susceptible to dextran-sulfate and easily relaxed by three-fold charge excess
of DS [21]. Herein, compared to that data, the addition of MNPs does not lead to an increase
in polyplexes stability (Figure 3b).
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3.3. Size and ü-Potential of the Carrier/DNA/MNP Polyplexes

One of the key features determining the internalization into the cells is the size of
polyplexes. The optimal size of DNA/peptide complexes for successful transfection is
considered to be <200 nm [31]. The addition of MNPs to the R6p-cRGD/DNA complexes
leads to a sharp increase in size (Table 1). There are also dramatic changes in ü-potential of
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MNPs-polyplexes, which can be explained by the anionic coating of MNPs and positive
charge neutralization via electrostatic interaction between R6p-cRGD/DNA complexes
and MNPs. In fact, a decrease of ü-potential of MNPs polyplexes to nearly neutral numbers
causes a decrease of the repulsion between the polyplexes and an increase of hydrodynamic
size. However, according to electronic micrographs, the size of the MNPs-containing
polyplexes does not correspond to data obtained using dynamic light scattering, and can be
determined in the range of 80–120 nm. As can be seen in TEM images, the MNPs-containing
polyplexes tend to form loosely aggregates, but in most cases have a sharp form (Figure 4).

Table 1. Size and ü-potential of the R6p-cRGD/DNA/MNPs polyplexes.

Carrier Charge Ratio Size (nm) ± S.D. ü-Potential (mV) ± S.D. References

R6p-cRGD 8/1 104.5 ± 0.15 32 ± 1.2 Adapted from ref. [21]
12/1 178.4 ± 24.3 31.5 ± 0.6

R6p-cRGD/MNPs 8/1 1814.7 ± 175.5 −5.3 ± 4.2 Current study
12/1 1481.0 ± 182.6 4.0 ± 0.96
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3.4. Cytotoxicity Evaluation of R6p-cRGD/DNA/MNPs Polyplexes

Possible toxic effects will have a strong impact on the safety of the carrier used; thus,
the absence of cytotoxicity is a crucial characteristic in carrier development. The cytotoxicity
of R6p-cRGD/DNA/MNPs polyplexes to PANC-1 cells was studied using Alamar Blue
(resazurin) fluorescence dye. PANC-1 cells were transfected with R6p-cRGD/DNA/MNPs
polyplexes with different incubation time (10, 20, and 30 min). The fluorescence intensity
of the Alamar Blue dye added to the untreated cells was taken as 100%. Naked DNA and
DNA/PEI treated wells were used as a control (Figure 5).
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Figure 5. Survival rate of PANC-1 cells (%) after transfection with R6p-cRGD/DNA/MNPs poly-
plexes. DNA:MNP quantity ratio is 1:0.05. The threshold indicates the acceptable level of cell
survival (80%).

According to previous research devoted to the cytotoxicity of PEI [32], the threshold
for this experiment was set at the cell survival rate of 80%. It has been demonstrated that
increasing the incubation time of R6p-cRGD/DNA/MNPs with cells leads to an increase
in toxic effects. The survival rate of PANC-1 cells transfected with polyplexes with MNPs
is markedly reduced, compared to control cells when the incubation time was more than
10 min (Figure 5). It has been shown that the addition of MNPs affects mostly cytotoxicity of
R6p-cRGD/DNA polyplexes compared to DNA/PEI polyplexes. This can be explained by
the presence of various ways of penetration of polyplexes with the developed peptide car-
rier into cells. Binding of the polyplexes with MNPs can promote interactions of molecules
with the cell membrane [16] and the capture of more R6p-cRGD/DNA/MNPs polyplexes.

Alamar Blue assay demonstrated that the incubation of R6p-cRGD/DNA/MNPs
polyplexes with cells for 10 min did not show significant cytotoxicity, indicating that this
incubation time is the most optimal for successful non-toxic DNA delivery.

3.5. Evaluation of Magnetofection Efficacy Using R6p-cRGD/DNA/MNPs Polyplexes

The ability of R6p-cRGD/DNA/MNPs polyplexes to transfect cells was studied using
pCMV-lacZ plasmid delivery and subsequent β-galactosidase activity evaluation. The
assay was performed in PANC-1 cells.DNA packaged in a polyethyleneimine (PEI) carrier
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at a N/P ratio of 8/1 was used as a positive control. The efficiency of transfection was
calculated by normalizing β-galactosidase activity of transfected cells to those in untreated
wells. Transfection was carried out in the presence of a magnet; the incubation time of
nucleopeptide polyplexes with MNPs with cells was 10 min. The results of transfection
with polyplexes with the R6p-cRGD carrier and MNPs are shown in Figure 6.
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Figure 6. Activity of β-galactosidase in PANC-1 cells after transfection with pCMV-lacZ poly-
plexes with MNPs. The results are presented as mean and S.E.M. Cells transfected with R6p-
cRGD/DNA/MNPs were compared to unpacked DNA; statistical significance was assessed by
ordinary one-way ANOVA with Sidak’s multiple comparisons test (n = 9; ** 0.01, **** 0.0001).

Based on the results, the highest transfection efficiency was achieved using R6p-
cRGD/pCMV-lacZ/MNPs polyplexes with a DNA:MNPs ratio of 1:0.5. The polyplexes
without MNPs showed a low level of transfection efficiency due to the insufficient incuba-
tion time of the polyplexes with cells. In cells transfected with nucleopeptide polyplexes
with a DNA:MNPs ratio of 1:1, dramatically reduced activity of the β-galactosidase en-
zyme was also observed in comparison with the cells transfected with polyplexes with
DNA:MNPs ratio of 1:0.5. This observation can be associated with the increasing toxicity of
a large number of MNPs for the PANC-1 cells.

For magnetofection efficiency evaluation, we performed transfection experiments on
PANC-1 cells in the presence and absence of a magnet. We used R6p-cRGD/pCMV-
lacZ polyplexes at 8/1 and 12/1 N/P ratios bound to MNPs at 1/0.5 quantity ratio
of DNA:MNPs. Based on previous transfection experiments data, the incubation time
of 10 min was chosen. The results demonstrated that the transfection efficacy of R6p-
cRGD/pCMV-lacZ/MNPs in the presence of the magnet was significantly higher than
that of the same polyplexes in the absence of the magnet (Figure 7a). Previously we
demonstrated that R6p-cRGD as a carrier is able to successfully transfer DNA into the
cells [21]. The decreased efficiency of polyplexes without the magnet can be explained by
inappropriate incubation time of polyplexes with the cells. Besides, this testifies to the fact
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that MNPs themselves do not improve the transfection ability of R6p-cRGD but also do not
inhibit its properties as a DNA carrier.
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To evaluate whether the internalization of nucleopeptide polyplexes with MNPs
occurs predominantly by receptor-mediated endocytosis due to RGD ligand in R6p-cRGD
carrier, the inhibitory effect of free competing cyclic RGD (c(RGDfK)) was studied in cell
transfection experiments. Competitive transfection was carried out in PANC-1 cells with
R6p-cRGD/DNA polyplexes at N/P ratios of 8/1 and 12/1 and MNPs at DNA:MNPs
quantitative ratio of 1/0.5in the presence of a 10-fold excess of free c(RGDfK) peptide. The
magnetofection of cells with R6p-cRGD/DNA/MNPs polyplexes was held for 10 min.

The results showed a slight decrease in the efficiency of transfection in the presence of
free c(RGDfK) ligand, which indicates the contribution of receptor-mediated endocytosis in
the process of complex penetration into the PANC-1 cells (Figure 7b). However, despite the
fact that no statistically significant differences were found, we showed that there is a ten-
dency in decreasing in β-galactosidase activity of cells treated with c(RGDfK). The absence
of a significant decrease in β-galactosidase activity of cells treated with c(RGDfK) can be
explained by the presence of other internalization mechanisms. Thus, as was mentioned
previously, nucleopeptide polyplexes can bind cellular membranes due to electrostatic
interactions with GAGs and it can result in uptake through nonspecific endocytosis [31].
Another possible way of R6p-cRGD/DNA/MNPs internalization is macropinocytosis, that
contributes to successful transfection and is not affected by the inhibiting of receptors.

3.6. The Therapeutic Effect of pPTK-1/R6p-cRGD/MNPs Polyplexes after Ganciclovir (GCV) Treatment

Previous research has shown that transfection with R6p-cRGD/pPTK-1 polyplexes
followed by GCV treatment efficiently induces apoptosis of human UL cells [21]. To
evaluate whether the use of MNPs can increase transfection efficiency of UL cells, the
R6p-cRGD/pPTK-1/MNPs polyplexes were studied. We estimated the effect of sui-
cide gene therapy by means of R6p-cRGD/pPTK-1/MNPs polyplexes after four days
of GCV treatment.

The cell viability after suicide gene therapy by magnetofection with R6p-cRGD/pPTK-
1/MNPs (N/P 8/1) polyplexes was decreased by 33%, compared to the control pCMV-lacZ
polyplexes. The UL cells proliferative activity after magnetofection with R6p-cRGD/pPTK-
1/MNPs (N/P 12/1) was 1.2-fold lower, compared to R6p-cRGD/pCMV-lacZ/MNPs
(Figure 8a).

The cytotoxicity caused by R6p-cRGD/pCMV-lacZ polyplexes did not exceed that of
PEI-polyplexes. Moreover, PEI-polyplexes showed high cytotoxicity, and all the detected
decrease in UL cell survival seems to be associated with the innate toxicity of PEI. It should
be taken into account that cell survival rate of the cells transfected with PEI/pCMV-lacZ is
two-fold lower than the cell survival rate for cells transfected with R6p-cRGD/pCMV-lacZ
(N/P = 12/1). This observation allows us to suggest that PEI is cytotoxic for the UL cells
and cannot be used as a potential carrier for gene therapy of this disease. Similar results
were obtained after Trypan blue staining, allowing dead cells’ exclusion from the counting
(Figure 8b). The number of living cells after transfection by pCMV-lacZ-polyplexes did
not differ from that of the control cells. The number of viable UL cells transfected with
R6p-cRGD/pPTK-1/MNPs polyplexes was significantly decreased up to 30%, compared
to pCMV-lacZ polyplexes. Importantly, the effects of suicide gene therapy were more
pronounced using Trypan blue staining rather than Alamar Blue assay.

In addition to the Trypan blue staining test and Alamar Blue assay, micrographs of UL
cells after suicide gene therapy were taken (Figure 9).
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Figure 8. Relative number of UL cells (%) (a) accessed by Alamar Blue test and amount of liv-
ing UL cells (b)accessed by Trypan blue staining after suicidal gene therapy by transfection with
pPTK-1-bearing polyplexes with MNPs and subsequent incubation with ganciclovir. Statistical sig-
nificance was determined using One-way ANOVA with Sidak’s multiple comparisons test (n = 9,
* 0.05, **** 0.0001).



Bioengineering 2022, 9, 112 14 of 17

Bioengineering 2022, 9, x FOR PEER REVIEW 14 of 18 
 

disease. Similar results were obtained after Trypan blue staining, allowing dead cells’ 

exclusion from the counting (Figure 8b). The number of living cells after transfection by 

pCMV-lacZ-polyplexes did not differ from that of the control cells. The number of viable 

UL cells transfected with R6p-cRGD/pPTK-1/MNPs polyplexes was significantly de-

creased up to 30%, compared to pCMV-lacZ polyplexes. Importantly, the effects of sui-

cide gene therapy were more pronounced using Trypan blue staining rather than Alamar 

Blue assay. 

In addition to the Trypan blue staining test and Alamar Blue assay, micrographs of 

UL cells after suicide gene therapy were taken (Figure 9). 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 9. Typical micrographs in bright field conducted 96 h after GCV treatment. The UL cells were
transfected with R6p-cRGD/pCMV-lacZ/MNPs polyplexes at N/P ratios of (a) 8/1, (c) 12/1; and
with pPTK1/R6p-cRGD/MNPs polyplexes at (b) 8/1, (d) 12/1 charge ratio. Control wells contained
(e) GCV-treated cells.

4. Discussion

Peptide-based carriers have demonstrated great potential for gene therapy applications
in numerous in vitro and in vivo studies. They have also been used as nucleic acid delivery
systems for gynaecological diseases such as endometriosis and UL [20,22,33]. Peptide
carriers are non-toxic, biodegradable, and easy-to-modify polymers, making them the
perfect alternative to viral vectors.

Despite various techniques applied for UL treatment, the re-appearance of tumors
remains the main reason for the development of new approaches. Since gene therapy is
on the upswing and the fact that precise localization makes UL a perfect target for thera-
peutic gene delivery in situ, this strategy began to be actively developed. In 1998, Niu and
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colleagues demonstrated that suicide gene therapy using non-viral vectors is applicable
as a potential strategy for UL treatment [34]. After that, Salama and colleagues pointed
out that the delivery of naked plasmid DNA has low efficacy in experiments in vivo. They
suggested the adenoviral vector can increase the rate of delivery and successfully apply
suicide gene therapy of uterine fibroids in nude mice [35]. However, the authors noted two
important issues, namely the dense intercellular environment and potential cytotoxicity
of gene delivery using Ad vector. These observations encouraged researchers to find a
way of modification of the delivery constructs to increase the efficacy and safety of its
application in vivo. Thus, one of the strategies was the binding of magnetic nanoparticles to
DNA-carrying polyplexes. Magnetofection combined with adenovirus carrying herpes sim-
plex thymidine kinase gene significantly improved the therapeutic effect after ganciclovir
treatment and also allowed to decrease the viral dose and, therefore, increased safety [19].

In this work, we demonstrated that combining MNPs with R6p-cRGD complexes
does not lead to their destabilization and DNA release. It allows us to consider that R6p-
cRGD/DNA/MNPs polyplexes are stable at all studied quantity ratios of DNA to MNPs.
However, the biocompatibility and chemical stability of MNPs are needed to be enhanced.
One of the strategies to handle this is surface coating development [36].

However, despite the efficiency of magnetofection being quite high, compared with
those for other non-viral carriers, its clinical use remains questionable to a certain extent.
The great issue on the way to the implementation of magnetofection as an everyday tool
of gene therapy is the possibility of toxic effects for the cells. After cell internalization, in
late endosomes, MNPs may dissociate into ferrous ions, the size of which is small enough
to let them pass through the mitochondrial membrane and be converted into ferric ions.
Ferric ions can oxidize, which generates reactive oxygen species, rapid increases of which
in turn can damage DNA, proteins, and lipids, resulting in cell death [37]. All of the above
suggest that the optimization of magnetofection in parameters such as incubation time and
MNPs quantity is of the highest priority. The short time of incubation under the action of an
external magnetic field can significantly decrease undesirable side-effects related to toxicity.
As we have shown in this report, incubation for 10 min promotes successful transfection
without causing side-effects.

The current study showed that the addition of MNPs can also increase the efficiency of
non-viral gene delivery. The results of suicide gene therapy by means of peptide carrier R6p-
cRGD and MNPs are comparable with those that were shown earlier for that carrier [21].
The main improvement that was achieved using this type of modification is a 24-fold
shortage in the incubation time needed for successful transfection of UL cells (from 4 h for
R6p-cRGD/DNA polyplexes to 10 min for R6p-cRGD/DNA/MNPs polyplexes). Delivery
of the pPTK-1 by MNPs-containing polyplexes and subsequent ganciclovir treatment
resulted in a significant decrease of UL cells number, which indicates successful suicide
gene therapy. This observation is confirmed by biochemical (Alamar Blue assay) and
cytological (Trypan blue staining) methods and is also clearly illustrated by micrographs
(Figure 9). Further improvements in R6p-cRGD polyplexes aimed at increasing stability
under physiological conditions will make possible the clinical application of UL gene
therapy by means of non-viral delivery. However, it is worth emphasizing the need for
evaluation of these results in models in vivo. In fact, in a study by Shalaby and co-authors,
the only application of magnetic force for UL gene therapy in rats is described. The authors
have utilized magnetic resonance to generate a localized field in which they injected the
virus into the UL tissue and restricted its spread into nearby tissues [18]. Several works
devoted to magnetofection on animal models have been published recently. Another
promising application of magnetic particles in gene therapy is the delivery of therapeutic
constructs ex vivo. The use of magnetic nanoparticles can generally increase the efficiency
of delivery into the cells [38].
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5. Conclusions

Here, we demonstrated, for the first time, an augmentation of non-viral gene delivery
to uterine leiomyoma cells using magnetic nanoparticles. Suicide gene transfer followed by
ganciclovir treatment resulted in a significant increase in UL therapy. The obtained findings
allow concluding that the MNPs bound to R6p-cRGD polyplexes can be considered as a
promising tool for suicide gene therapy of uterine leiomyoma.
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