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ABSTRACT11

The dynamics of antimicrobial resistance in bacteria are informed by the fitness advantages conferred12

by genetic determinants of resistance in the presence of antibiotic pressure and the potential fitness13

costs in its absence. However, frameworks for quantitative estimates of real-world fitness impact have14

been lacking, given multidrug resistance, multiple pathways to resistance, and uncertainty around drug15

exposures. Here, we addressed these challenges through analysis of genome sequences from clinical16

isolates of Neisseria gonorrhoeae collected over 20 years from across the United States, together17

with national data on antibiotic treatment. Using a hierarchical Bayesian phylodynamic model,18

we quantified the contributions of resistance determinants to strain success. Resistance mutations19

had a fitness benefit when the cognate antibiotic was in use but did not always incur a fitness cost20

otherwise. Two fluoroquinolone-resistance conferring mutations at the same site in gyrA had divergent21

fitness impact after fluoroquinolones were no longer used for treatment, findings supported by in vitro22

competition experiments. Fitness costs were alleviated by loss of costly resistance determinants and23

counterbalanced by gain of new fitness-conferring resistance determinants. Quantifying the extent to24

which the resistance determinants explained each lineage’s dynamics highlighted gaps and pointed to25

opportunities for investigation into other genetic and environmental drivers. This work thus establishes26

a method for linking pathogen genomics and antibiotic use patterns to quantify the fitness impact of27

resistance determinants and the factors shaping ecological trends.28
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INTRODUCTION29

The prevalence of antimicrobial resistance (AMR) reflects competition in an ever-changing environment30

[1, 2]. When an antibiotic is introduced into clinical use, it can result in increased fitness and prevalence31

of resistant bacteria. Once resistance to the antibiotic becomes sufficiently widespread, its use is often32

reduced in favor of another antibiotic for which resistance prevalence is low. This alters the fitness33

landscape, such that alleles and genes that had conferred a fitness advantage in the context of the first34

antibiotic may become deleterious.35

The complexity of the bacterial AMR fitness landscape is shaped by multiple factors. These include36

antibiotic pressure from drugs in current and past use as well as antibiotic resistance, which can often37

be achieved through multiple, at times interacting, genetic pathways (c.f., macrolide resistance in N.38

gonorrhoeae [3] and fluoroquinolone resistance in E. coli [1] ). Population structure [4, 5], linkage39

between AMR determinants in a changing environment [1, 5], linkage with sites under balancing40

selection [6, 5], mutation-selection balance [7], and non-antibiotic pressures can all also inform this41

landscape.42

While the genetic determinants of AMR play a large role in the population expansion and contraction of43

drug resistant lineages [1], the fitness impact of these determinants can vary across genetic backgrounds44

and environment [8, 9]. Efforts to quantify the fitness impact of individual genetic features across45

shifting patterns of antibiotic use in real world data have been fraught with many challenges, such46

as limited availability of data on antimicrobial use, both for targeted treatment and accounting for47

bystander exposure [10]; the influence of other factors, such as pressure from host immunity, on overall48

pathogen fitness; and the frequent co-occurrence of multiple antibiotic resistance determinants in drug49

resistant strains [4, 5]. Additionally, for many pathogens, we lack longitudinal datasets of sufficient50

size, duration, and systematic collection to enable inference about fitness.51

Here, we overcame these challenges to define the fitness contributions of AMR determinants in response52

to changes in treatment using data from N. gonorrhoeae in the USA. N. gonorrhoeae is an obligate53

human pathogen that causes the sexually transmitted infection gonorrhea; infection does not elicit a54

protective immune response [11, 12]. A collection of over 5000 specimens from 20 years (2000-2019) of55

the CDC’s Gonococcal Isolate Surveillance Project (GISP), the CDC’s sentinel surveillance program for56
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antibiotic resistant gonorrhea, have been sequenced and have undergone resistance phenotyping, with57

metadata including the demographics of the infected individuals [3, 13, 14, 15, 16]. Data on primary58

treatment in the US over this period have been reported by the CDC and reflect changes in first-59

line therapy, from fluoroquinolones to cephalosporins plus macrolides, and, among the cephalosporins,60

from the oral cefixime to intramuscular ceftriaxone [17]. Together, these factors enabled us to estimate61

quantitatively the resistance determinant-specific fitness costs in circulating N. gonorrhoeae and their62

interaction with antibiotic pressures.63
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Figure 1: Lineage assignment based on AMR determinants. The phylogenetic tree is annotated
according to the lineage assignment of the ancestral node. Gray nodes in the phylogenetic tree denote
lines of descent that are not in an assigned lineage. Lineage numbering was determined by post-order
traversal of the tree.
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gyrA parC ponA penA mtr
23S

rRNA

Lineage S91 D95 D86 S87 E91 L421 A501 G543 Type mtrC mtrD
mtr

promoter
mtrR C2611

1 S D D S E L A G non-m non-m non-m non-m LOF C
2 S D D S E L A G non-m non-m non-m non-m non-m C
3 S D D S E L A G non-m non-m non-m non-m non-m C
4 S D D S E L A G non-m non-m non-m non-m non-m C
5 S D D S E L A G non-m non-m non-m non-m non-m C
6 S D D S E L A G non-m non-m non-m non-m non-m C
7 S D D S E P A G non-m non-m non-m A-del non-m C
8 S D D S E L A G non-m non-m non-m non-m non-m C
9 S D D S E P A G non-m non-m non-m non-m non-m C
10 S D D S E P A G non-m non-m non-m A-del non-m C
11 S D D S E P A G non-m non-m non-m A-del non-m C
12 F G D S G P T G non-m non-m non-m A-del non-m C
13 F A D R E L A G non-m non-m non-m non-m LOF C
14 F A N S E L A G non-m non-m non-m non-m LOF C
15 F G D R E P A G non-m non-m non-m A-del non-m C
16 F G N S E P V G non-m non-m non-m A-del non-m C
17 S D D S E P A G non-m non-m non-m A-del non-m C
18 S D D S E L A G non-m non-m non-m non-m non-m C
19 S D D S E P A G non-m non-m non-m non-m non-m C
20 F G D R E P A S non-m non-m non-m A-del non-m C
21 F A D R E P A S non-m non-m non-m non-m non-m C
22 F G D R E P — — mosaic non-m non-m A-del non-m C
23 S D D S E L — — mosaic non-m non-m non-m non-m C
24 S D D S E L A G non-m non-m non-m non-m non-m C
25 S D D S E L A G non-m non-m mosaic mosaic non-m C
26 F A N S E L A G non-m mosaic mosaic mosaic non-m C
27 S D D S E L A G non-m mosaic mosaic mosaic non-m C
28 S D D S E L A G non-m non-m mosaic non-m non-m C
29 S D D S E L A G non-m non-m non-m non-m non-m T

Table 1: Distribution of AMR determinants across lineages in (Figure 1). Gray color corresponds to
wild type allele. For gyrA, parC and ponA, polymorphisms occur at several key amino acid positions.
The penA and mtr loci exhibit complex patterns of polymorphism that include interspecies mosaicism
as well as individual amino acid variations. non-m denotes non-mosaic alleles. Adel denotes A deletion
in the mtrR promoter [18]. LOF=loss of function. The only determinant in 23S rRNA that appears
frequently in our dataset is the C2611T substitution, where T indicates at least one and up to four
copies of 23S rRNA C2611T. Coloring highlights non-wild type determinants in each column and
changes from column to column.

RESULTS64

Defining N. gonorrhoeae Drug Resistant Lineages65

We first sought to define AMR-linked lineages from the GISP specimens. On epidemic timescales [20],66

N. gonorrhoeae maintains a lineage structure largely shaped by antimicrobials [21]. The treatment67

for N. gonorrhoeae infections in the US over the past 20 years has been defined by three main drug68

classes: fluoroquinolones, third generation cephalosporins, and macrolides (Supplementary Figures and69

Tables Figure S1). We used ancestral state reconstruction for the major AMR determinants for these70

antibiotics to identify clusters of specimens that had not changed state since descending from their71

most recent common ancestors (MRCA). We refined the classification by requiring that the MRCA72

was no earlier than 1980. As the three drug classes under study entered use after this date, this73
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Figure 2: A cluster of phylogenetically related lineages shows evidence of adaptation in response to
changes in antibiotic use. Panel A: the phylogeny for lineages 20-22. The gray transparent tips
correspond to isolates that have diverged from the ancestral motif combination of the parental lineage.
Panel B: the presence and absence of relevant resistance mutations and antibiotic resistance phenotypes
above or below each drug’s cutoff (CIP: 1µg/mL; CFX: 0.25µg/mL, AZI: 4µg/mL). The yellow bar
on the right highlights a cluster of isolates that changed mtr promoter alleles. The blue bar on the
right highlights a cluster of isolates that reverted to a fluoroquinolone-susceptible gyrA allele. Red bar
on the right highlights a cluster of isolates that acquired azithromycin resistance. Panel C: Median
effective population size trajectories for each of the lineages with 95% credible intervals as estimated
by phylodyn [19].
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cutoff limits the analysis to a time frame over which ancestral state reconstruction is likely to remain74

accurate, while helping separate lineages that acquired the same resistance pattern independently. We75

focused on lineages that have at least 30 specimens, reasoning that a minimum cutoff helps avoid the76

inclusion of small outbreak clusters that could potentially produce unreliable estimates (see Methods77

Lineage Assignment & Phylogenetic Reconstruction).78

This definition led to the identification of 29 lineages across the dataset (Figure 1), along with the79

corresponding distribution of determinants (Table 1). The majority of lineages (21/29) have at least80

one AMR determinant, with multiple pathways to resistance for a given antibiotic present across81

lineages. Lineages 22 and 23, for example, carry the mosaic penA 34 allele, and the remaining 2782

lineages all carry the Penicillin Binding Protein 2 (PBP2; encoded by penA) substitution A517G, each83

of which increases resistance to cephalosporins [22, 23].84

The related lineages 20 − 22 share many resistance determinants but have differing estimates of85

their effective population sizes through time, Ne(t), and illustrate the dynamics that emerge when86

juxtaposing Ne(t) with antibiotic use and resistance (Figure 2). This cluster of lineages contains a87

previously described and the largest mosaic penA 34-carrying lineage, lineage 22 [3], along with its two88

sister-lineages. Lineage 20, the oldest lineage in this cluster, grew during the fluoroquinolone era and89

decreased afterwards [24]. In this lineage, nearly all descendants sampled after the recommendation90

of ceftriaxone plus azithromycin dual therapy had acquired a new resistance determinant or lost an91

existing one. In one sublineage, this change included replacement of a resistance-conferring gyrA92

allele (encoding 91F, 95G) with the wild-type allele (91S, 95D), resulting in phenotypic susceptibility93

(Figure 2, blue bar). Another sublineage changed mtrR promoter alleles (Figure 2, yellow bar).94

Determinants at the mtrR promoter are associated with resistance to a wide range of antibiotics95

[18] including macrolides [25]. Yet another sublineage acquired azithromycin resistance through96

C2611T substitution in 23S rRNA (Figure 2, red bar). Furthermore, the descendants of Lineage 2097

appeared to switch sexual networks: most recent isolates were from heterosexuals whereas past isolates98

were from men who have sex with men (Supplementary Figures and Tables Figure S2). Lineage 2199

expanded after the 2010 switch in recommended treatment to dual therapy with azithromycin plus100

ceftriaxone. The effective population size for the mosaic penA 34-carrying lineage 22 grew during the101

fluoroquinolone period and after, but decreased with the introduction of azithromycin and ceftriaxone102

dual therapy. Together, these patterns of lineage expansion and contraction indicated a relationship103
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among the antibiotics recommended for treatment, genetic determinants of resistance, and lineage104

success. However, while for lineages 20 and 22 the pattern of expansion an contraction aligns matches105

our expectations based on their resistance profile, it was not clear from a simple inspection what could106

explain the dynamics of lineage 21.107

Hierarchical Bayesian Phylodynamic Modeling Reveals a Changing Fitness108

Landscape109

We next sought to quantify the fitness contributions of the genetic determinants of resistance and how110

these varied over time. For each determinant, we estimated a set of regression coefficients, one for each111

of the antibiotic classes to which it conferred resistance, along with an intercept term. These modeled112

the effect of a given resistance determinant on the effective population size growth rate of lineages that113

carry that determinant as a function of the reported treatments (Supplementary Figures and Tables114

Table S1). As the treatment data are percentages summing to 1 and thus are not full rank, we selected115

ceftriaxone 250mg as the baseline for all estimated treatment use effects. (See Sections A Lineage-116

Based Hierarchical Phylodynamic Model and Supplementary Methods A Hierarchical Phylodynamic117

Model for explicit formulation of the model).118

This model formulation allowed us to answer three main questions. First, did the relative fitness of119

a given resistance determinant change as a function of the pattern of antibiotic use? Second, what120

is the fitness cost or benefit through time associated with a particular resistance allele compared to121

its susceptible counterpart? Third, how much of a lineage’s trajectory is explained by the fitness122

contributions of the resistance determinants? To answer these questions, we first calculated the123

predicted effect of individual determinants on the growth rate of lineages, finding that several resistance124

determinants had a strong impact (defined by the 95% posterior credible interval interval excluding125

[−0.1, 0.1]) on lineage dynamics (Supplementary Figures and Tables Table S2).126

gyrA gyrA is the main fluoroquinolone-resistance determining gene in N. gonorrhoeae, with alleles of127

parC also contributing to resistance [25]. Our modeling revealed several phenomena among lineages128

encoding ParC 86D/87R/91E. First, lineages carrying GyrA 91F/95G with this parC allele experienced129

a growth rate increase during the period of recommended fluoroquinolone treatment for gonorrhea130
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(Figure 3, Supplementary Figures and Tables Figure S3). However, for GyrA 91F/95G, there was too131

much uncertainty to determine its absolute effect on the growth rate of lineages carrying it during132

the fluoroquinolone period compared to the baseline GyrA 91S/95D type within the wild-type ParC133

86D/87S/91E context (Figure 3). After fluoroquinolones were no longer recommended, GyrA 91F/95G134

appeared weakly deleterious when combined with ParC 86D/87R/91E allele compared to wild type135

(Figure 3, Supplementary Figures and Tables Table S2). Second, lineages carrying GyrA 91F/95A136

had distinctly higher growth rates than the GyrA 91S/95D susceptible allele after the period in which137

fluoroquinolones were used for treatment (Figure 3, Supplementary Figures and Tables Table S2).138

Third, lineages carrying GyrA 91F/95A had a relative growth rate advantage over GyrA 91F/95G139

after the end of fluoroquinolone era (Supplementary Figures and Tables Figure S4). The majority of140

lineages carrying GyrA 91F/95A expanded after 2007, increasing the uncertainty in estimates of the141

effect that fluoroquinolone use had on these lineages.142

To investigate whether the resistance provided by GyrA 91F/95G differed from GyrA 91F/95A143

in lineages containing the ParC 86D/87R/91E allele, we fitted a linear model to log2-transformed144

ciprofloxacin MIC, while accounting for determinants at the mtrCDE operon. There was no significant145

difference in log2-transformed ciprofloxacin MICs (GyrA 91F/95G coefficient = 0.183, two-sided T-146

test P-value > 0.242; see Supplementary Methods Comparison of the Impact of GyrA 91F/95G versus147

GyrA 91F/95A on ciprofloxacin MICs for details).148
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Figure 3: The estimated predicted effect on growth rate of selected GyrA motifs within the ParC
86D/87R/91E context based on past fluoroquinolone use patterns. The predicted effect is an
absolute effect as computed compared to the baseline GyrA 91S/95D type within the wild-type ParC
86D/87S/91E context. The average effect across all parC contexts for each of the gyrA alleles is
denoted by Mean. The shaded region denotes the 95% posterior credible interval around the posterior
median, depicted by the bold black line. Dashed line denotes no predicted growth rate effect relative
to baseline allele.

Given these results, we tested whether GyrA 91F/95A contributes to a growth rate advantage over149

GyrA 91F/95G in vitro. Both sets of mutations increased the ciprofloxacin MIC ≥128-fold over the150

susceptible gyrA allele (Supplementary Figures and Tables Table S3). In a competition assay between151

GyrA 91F/95A and GyrA 91F/95G isogenic strains in the GCGS0481 strain background with ParC152

86D/87R/91E, GyrA 91F/95A conferred a fitness benefit (Figure 4): the competitive index (CI) after153

8 hours of competition for GCGS0481 kanamycin-labeled GyrA 91F/95A versus GyrA 91F/95G was154

1.54 (p = 0.0003), consistent with the reciprocal competition, in which the CI of kanamycin-labeled155

GyrA 95F/95G versus GyrA 91F/95A was 0.54 (p = 0.0017). Both GyrA 91F/95G and GyrA 91F/95A156

strains were less fit than the susceptible parental strain (Supplementary Figures and Tables Figure S5).157

After 8 hours of competition, the CI of kanamycin-labeled GyrA 91F/95A versus GyrA 91S/95D was158

0.67 (p = 0.0015), and for kanamycin-labeled GyrA 91F/95G versus GyrA 91S/95D, it was 0.58159

(p = 0.0009) (Supplementary Figures and Tables Figure S5). Consistent with this, the CI after 8160
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hours of competition of GCGS0481 kanamycin-labeled GyrA 91S/95D versus GyrA 91F/95A was 1.45161

(p = 0.0023) and kanamycin-labeled GyrA 91S/95D versus GyrA 91F/95G was 1.72 (p = 0.0001)162

(Supplementary Figures and Tables Figure S5).163

GyrA 91F/95A within the ParC 86N/87S/91E context conferred a growth rate advantage after 2007,164

when fluoroquinolones were no longer in use, compared to the baseline type that does not carry any165

of the resistance determinants studied (Supplementary Figures and Tables Table S2, Supplementary166

Figures and Tables Figure S6).167
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Figure 4: In vitro competition assays between GCGS0481 GyrA 91F/95A and GyrA 91F/95G
with ParC 86D/87R/91E. Panel A: Competition between unlabeled GCGS0481 GyrA 91F/95G and
kanamycin-labeled GyrA 91F/95A. Statistical significance (for 2, 4, 6 and 8 hours, p = 0.13, 0.005,
0.0002, 0.0003, respectively). Panel B: Competition between unlabeled GCGS0481 GyrA 91F/95A and
kanamycin-labeled GyrA 91F/95G. Statistical significance (for 2, 4, 6 and 8 hours, p = 0.84, 0.02, 0.003,
0.0017, respectively). N = 3/time point, representative of three independent experiments performed
in the absence of antibiotic pressure. Error bars represent mean with 95% CI. Statistically significant
differences in CI values were analyzed using an unpaired two-sided Student’s t test (*p < 0.05,
**p < 0.005 and ***p < 0.0005).

penA The penA gene, which encodes PBP2, contributes to resistance to cephalosporins as well as168

other beta lactams, with mosaic penA alleles the major determinants of resistance to cephalosporins169

[26, 13, 27]. Most of the cephalosporin resistance determinants in our dataset appeared in 1-3 lineages170

each (Table 1), which limited our ability to estimate their impact on growth rates (Supplementary171

Figures and Tables Table S2, Figure S7). However, we estimated a major beneficial effect of mosaic172

penA 34 on growth rates when cefixime and ceftriaxone 125mg were widely used, as well as the173

subsequent loss of this beneficial effect when treatment with cephalosporins other than ceftriaxone174
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250mg declined. (Figure 5, Supplementary Figures and Tables Table S2). Similarly, carriage of PBP2175

501T was associated with a large relative decrease in fitness when ceftriaxone 250mg became the176

sole recommended treatment (Supplementary Figures and Tables Table S2, Figure S7). However, the177

absolute effect for PBP2 501T compared to wild-type cannot be identified (Supplementary Figures178

and Tables Table S2, Figure S7), as PBP2 501T appeared only in a single lineage that carries a unique179

GyrA/ParC combination. The decrease in the predicted growth rate effect for both mosaic penA 34180

and PBP2 501T started in 2008 and aligns with a shift in primary treatment with cephalosporins to181

ceftriaxone 250mg, even before the guidelines changed in 2012 (Supplementary Figures and Tables182

Figure S1).183

PBP2 501V was associated with a weak increase in fitness after the switch in treatment to ceftriaxone184

250mg (Supplementary Figures and Tables Table S2, Supplementary Figures and Tables Figure S8).185

Both the PBP2 501V and 501T have wide credible intervals for their absolute effects compared to the186

baseline type that does not carry any of the resistance determinants studied (Supplementary Figures187

and Tables Table S2, Supplementary Figures and Tables Figure S7). These alleles occur both in a188

single lineage each with a unique gyrA/parC combinations (Table 1) making the intercept term for189

these determinants unidentifiable.190
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Figure 5: Top Panel: The predicted the absolute growth rate effect for mosaic penA 34 compared to
baseline. The predicted effect was computed based on reported treatments. The shaded region denotes
the 95% credible interval around the posterior median, depicted by the bold black line. Dashed line
denotes no predicted growth rate effect relative to the baseline type that does not carry any of the
resistance determinants studied. Bottom Panel: The use of cephalosporins other than ceftriaxone
250mg as a percentage of primary treatment. Other cephalosporins consist mainly of ceftriaxone
125mg, cefixime and other unclassified cephalosporins.

ponA The ponA gene encodes Penicillin Binding Protein 1 (PBP1) and contributes to resistance to191

penicillin [28]. The PBP1 421P variant was associated with a weak disadvantage compared to the192

baseline type that does not carry any of the resistance determinants throughout the study period.193

(Supplementary Figures and Tables Table S2, Figure S9, Figure S10).194

mtr locus mtrCDE encodes an efflux pump that modulates resistance to a wide range of antibiotics195

in N. gonorrhoeae [18], including to macrolides [25], and it is regulated by its transcriptional repressor,196

MtrR. Of particular relevance are mosaic mtrC, mtrD, and mtrR promoter as these are associated197

with azithromycin resistance [3, 29]. While our modeling recovered a growth rate increase associated198

with the carriage of mosaic mtrR promoter and the mosaic mtrD compared to wild-type baseline199

during the azithromycin co-treatment era (Supplementary Figures and Tables Table S2, Supplementary200

Figures and Tables Figure S11), the fact that mosaic mtrR promoter only occurred on mosaic mtrD201

backgrounds in our dataset (Table 1) raises the concern that the estimated effects of themtrR promoter202
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and the mosaic mtrD maybe be only weakly identified. As such, we focused on the combined effect203

of mosaic mtrR promoter, mosaic mtrC, and mosaic mtrD. The predicted combined effect had large204

uncertainty, limiting interpretation, with clear support for a growth rate benefit only in 2010-2011205

(Figure 6).206
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Figure 6: Predicted absolute effect for the total impact of the two most common combinations of
determinants at the mtrCDE locus. The predicted effect was computed based on reported treatments.
The shaded region denotes the 95% credible interval around the posterior median, depicted by the
bold black line. Dashed line denotes no predicted growth rate effect relative to the baseline type that
does not carry any of the resistance determinants studied.
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The mtrR promoter A deletion in the 13-bp inverted repeat – a determinant implicated in an increase207

in resistance to a wide range of antibiotics including macrolides [18] – was associated with a weak208

increase in growth rate after the switch to ceftriaxone 250mg and azithromycin. This increase led to209

a weak advantage in growth rate after 2012 compared to the baseline type that does not carry any210

of the resistance determinants studied (Supplementary Figures and Tables Table S2, Supplementary211

Figures and Tables Figure S11, Supplementary Figures and Tables Figure S12).212

Extent of lineage growth trajectory explained by resistance determinants213

To quantify the extent to which the set of resistance determinants and lineage background explains214

each lineage’s growth rate over time, for each lineage we visualized the average growth rate effect of215

individual resistance determinants, along with lineage residual effect and lineage background effect,216

and summarized the total effect in the four treatment recommendation periods in the study period217

(Figure 7, Supplementary Figures and Tables Figures S13 to S40).218

This per-lineage analysis revealed the shifting contributions of resistance determinants to individual219

lineage growth dynamics, provided examples in which fitness costs of one determinant are220

counterbalanced by the fitness benefits of another, and identified lineages with dynamics unexplained221

by these determinants. Lineage 22 carried a combination of GyrA 91F/95G along with mosaic penA222

34. Despite carrying GyrA 91F/95G, which was associated with a fitness cost after fluoroquinolones223

were no longer recommended in 2007 (Figure 3, Supplementary Figures and Tables Table S2), the224

growth of this lineage peaked in 2010, reflecting the fitness benefit of the mosaic penA 34 (Figure 7).225

The shift in use to cephalosporins plus azithromycin in 2010 was accompanied by a fitness benefit from226

mtr variants, though cumulatively the fitness costs from other resistance determinants resulted in an227

overall negative growth rate.228
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Figure 7: Growth rate effect summary for Lineage 22. The top panel shows the combined average
growth rate effect of resistance determinants along with the lineage background term and the residual.
The black solid line represents the total average effect. The dashed horizontal line indicates zero. The
bottom panel depicts a table summarizing the median total growth rate effect across 4 treatment
periods, as well as the 95% credible interval around the median in brackets. The period 1993-
2007 corresponds to when fluoroquinolones were recommended as primary treatment; 2007-2010 to
when multiple cephalosporins were recommended; 2010-2012 to when multiple cephaloporins were
recommended along with azithromycin co-treatment; and 2012-2019 to when only ceftriaxone 250mg
along with azithromycin co-treatment was recommended.

The per-lineage analysis also addressed the question of what drove the growth of lineage 21, indicating229

that its expansion post-2010 was driven primarily by the presence of GyrA 91F/95A (Supplementary230

Figures and Tables Figure S33).231

While the fitness contributions of the set of resistance determinants in our model accounted for much232

of the lineage dynamics, some dynamics remained unexplained. For each lineage, we computed the233

number of years in which the absolute value of the average of the sum of the residual and lineage234

background terms exceeded the threshold of 0.1, representing approximately 10% growth or decline in235

a given year. In 11/29 lineages (lineages 2-4, 11, 13, 15, 16, 23, 26-28), there was at least one such236

year, and in six of those (lineages 2-4, 11, 15, 27), there were at least 3 such years.237
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To investigate this pattern, we examined lineages 2, 3, and 4. Lineage 2 carried none of the determinants238

we included in our model and underwent substantial growth starting in 2012 and peaking in 2018. We239

revisited the resistance phenotypes and genotypes for this lineage and noted that the isolates in Lineage240

2 carry tetM, which confers high-level resistance to tetracycline-class antibiotics [30]. We did not include241

tetM in our model because we lacked data on the extent of tetracycline-class antibiotics use for N.242

gonorrhoeae treatment and for syndromic treatment of known or presumed chlamydial co-infection243

and because none of the other lineages carry tetM. Lineages 3 and 4 had high residual effects for at244

least 3 years and carried none of the resistance determinants in our model. The large and consistently245

positive residual effects (Supplementary Figures and Tables Figure S15 and Supplementary Figures246

and Tables Figure S16) thus point to factors other than the antibiotic pressures examined here in247

shaping these two lineages’ success.248

DISCUSSION249

Antibiotic exposure selects for resistant strains over their susceptible counterparts, whereas in the250

absence of antibiotics the resistant strains may suffer a fitness cost. While this relationship plays251

a central role in shaping microbial population dynamics, we have lacked quantitative estimates of252

the environmentally varying fitness effects of genetic elements in natural populations. Here, we used253

N. gonorrhoeae population genomics from large-scale surveillance data, detailed understanding of the254

genetics underlying antibiotic resistance, and data on antibiotic treatment to quantify the contribution255

of and the interactions among antibiotic resistance determinants and how these shaped N. gonorrhoeae256

AMR dynamics in the US over the study period (1993-2019).257

Models of antibiotic use-resistance relationships typically treat all phenotypically resistant strains as if258

they have the same fitness costs and benefits [31]. However, our findings suggest that a single amino acid259

difference in a resistance determinant may result in markedly different dynamics. The fluoroquinolone260

resistance-conferring alleles of GyrA 91F/95G and 91F/95A have phenotypically similar levels of261

resistance in the context of ParC 86D/87R/91E; however, after fluoroquinolones were no longer262

recommended, GyrA 91F/95G was associated with a fitness cost whereas GyrA 91F/95A was associated263

with a benefit. In line with this, the rising prevalence of fluoroquinolone resistance in N. gonorrhoeae264
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(Supplementary Figures and Tables Figure S1) masked the replacement of lineages carrying GyrA265

91F/95G with those carrying GyrA 91F/95A. To help distinguish whether this advantage was due to266

GyrA 91F/95A itself or a tightly linked variant, in vitro competition assays demonstrated that the267

GyrA 91F/95A-containing strain was more fit than an isogenic GyrA 91F/95G strain, supporting the268

hypothesis that single amino acid differences in resistance determinants can drive distinct evolutionary269

trajectories. Several potential explanations exist for this phenomenon. One possibility is that reduced270

fitness cost of GyrA 91F/95A facilitates an overall fitness benefit in the presence of bystander exposure271

to fluoroquinolones, whereas GyrA 91F/95G is simply too costly to provide a net benefit from bystander272

exposure to fluoroquinolone alone, in the absence of direct use. Another possibility is that there may273

be a fitness benefit irrespective of treatment exposure in vivo. Studies have characterized an in vivo274

advantage of N. gonorrhoeae fluoroquinolone-resistant gyrA mutants compared to those carrying wild-275

type GyrA 91S/95D in a mouse model [32] in the absence of fluoroquinolone administration. The276

marked difference in fitness between GyrA mutants is also consistent with in vitro estimates of fitness277

differences between resistant gyrA mutants in E. coli, as resistant E. coli GyrA 87G mutants were fitter278

than resistant 87Y mutants [8]. These results underscore the importance of accounting for pathways279

to resistance when analyzing and modeling antimicrobial resistance dynamics.280

Lineages carrying GyrA 91F/95G lost fitness after fluoroquinolones were no longer recommended, and281

persistence of sublineages point to N. gonorrhoeae’s strategies for responding to this fitness change.282

In lineage 20, one sublineage reverted to the susceptibility-conferring GyrA 91S/95D allele. Others283

changed the mtr locus, and one acquired azithromycin resistance through the C2611T 23S rRNA284

mutation (Figure 2). At the same time, the sexual network in which the sublineages circulated appeared285

to change from men who have sex with men to heterosexuals (Supplementary Figures and Tables286

Figure S2). While the number of isolates and sublineages limited quantification of these phenomena,287

they suggest responses to pressures from both antibiotics and host environments.288

Similarly, for mosaic penA 34, we saw clear evidence of a large growth rate advantage compared to the289

baseline type that does not carry any of the resistance determinants studied when the cephalosporin290

cefixime was recommended. This advantage was rapidly lost after the switch to ceftriaxone 250mg,291

consistent with the observed decline of cefixime resistance [33].292

For PBP1 421P, we estimated a consistent small fitness defect across the study period (1993-2019).293
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PBP1 421P mainly provides penicillin resistance with only relatively modest increase in cephalosporin294

MICs [22], but the absence of a fitness benefit suggests this resistance phenotype was insufficient even295

in the context of cephalosporin use to confer an advantage. Moreover, the carriage of PBP1 421P in 12296

of 29 lineages is consistent with at most a mild fitness defect. We conclude that it likely represents a297

relic of the era when penicillin was the backbone of N. gonorrhoeae infection treatment (Supplementary298

Figures and Tables Figure S1).299

We estimated a large growth rate benefit of mosaic mtrR promoters once azithromycin co-treatment300

was introduced in 2010. This is consistent with the findings of continued rapid expansion of lineages301

carrying mosaic mtrR promoters noted in Europe [34], but we note that the interaction with other302

mtrCDE mosaics makes the overall picture challenging to interpret. In the dataset we used, mosaic303

mtrR promoters always co-occur with at least one of mosaic mtrC or mtrD, both of which have their304

own distinct fitness impacts (Supplementary Figures and Tables Table S2, Figure 6). The trajectory of305

the largest lineage carrying mosaic mtrR promoter, lineage 29, plateaus around 2015 (Supplementary306

Figures and Tables Figure S41). A similar behavior can be seen in the overall prevalence of azithromycin307

resistance (Supplementary Figures and Tables Figure S1), whereby the growth rate seems to decline308

post 2015. Possible explanations include a drop in azithromycin use [35] and sexual network-dependent309

fitness of the mtrCDE mosaics, as suggested by the over-representation of mtrC loss-of-function alleles310

in cervical specimens [36].311

Investigating the fitness contributions at the level of individual lineages (Figure 7, Supplementary312

Figures and Tables Figures S13 to S40)) allowed us to interrogate how much of each lineage’s growth313

trajectory can be explained by the combination of AMR and changes in treatment policy. This revealed314

an example of hitchhiking, where in Lineage 22 (Figure 7) the fitness cost incurred by one resistance315

determinant, GyrA 91F/95G, conferring resistance to fluoroquinolones, was outweighed by the fitness316

benefit from another resistance determinant, mosaic penA 34, conferring resistance to cephalosporins.317

Several lineages did not carry any of the determinants and displayed a consistent trend in their residual318

terms. In the case of Lineage 2 (Supplementary Figures and Tables Figure S14), we identified the319

presence of tetM, which confers resistance to tetracycline class antibiotics. This suggests that for some320

lineages, there may be a substantial impact of bystander exposure on their fitness trajectories [35,321

37]. A similar phenomenon may explain the dynamics of Lineages 3 and 4. Incorporating population-322

wide antimicrobial use may enable quantification of the impact of bystander exposure. Lineages that323
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displayed large residual effects despite carrying resistance determinants included in our model may324

reflect the impact of lineage background, environment pressures, or bystander exposure, suggesting325

avenues for further investigation.326

Our approach has limitations. First, we were only able to uncover sufficient signal in the data to327

quantify the impact of determinants that have a large effect or that appear on multiple lineage328

backgrounds. Even as we captured the dominant effects of resistance determinants, there was329

too much uncertainty to define the impact of many resistance determinants on fitness landscape330

of N. gonorrhoeae. Reducing the uncertainty requires either a larger number of sequences, more331

representative sampling, or both. This may also enable use of birth-death-sampling processes [38],332

especially variations of the multi-type birth-death process [39]. Larger sample sizes and higher data333

quality would enable more robust estimates under more complex models that could, for example,334

accommodate time-varying relationships between prescribing data and the growth rate effect of335

resistance determinants. Second, in our study, deviations from the model get captured by the residual336

terms. To include these phenomena, non-parametric methods such as splines or Gaussian processes337

could be used to model the relationship between treatment composition, time, and growth rate effect of338

determinants. Third, the need to explicitly define fixed lineages a priori is an approximation and may339

result in fragmentation of otherwise linked lineages. Fourth, the approach presented is only applicable340

for determinants that give rise to lineage-like dynamics. This effectively means that the estimates341

for the determinants are valid for sufficiently compatible genetic backgrounds where any putative342

fitness cost is not too large. If the fitness cost was large, the observed dynamics would likely resemble343

mutation-selection balance in the case of strong mutation and strong negative selection [7]. Fifth, our344

approach can only estimate the association between the presence of resistance determinants if carried345

by sufficiently successful or ’major’ lineages. This effectively conditions on determinants being present346

on compatible genetic backgrounds, as it is unlikely that a clone would give rise to a major lineage in347

the absence of compatibility between the genetic background and the resistance determinant. Sixth,348

we have ignored any spatial heterogeneity in transmission and treatment. As the data collection is349

spatially very sparse, heterogeneity within the US in transmission and treatment is unlikely to impact350

the results. Lastly, importations from outside of the US may distort the results. Due to the focus on351

only major lineages, and the size of the N. gonorrhoeae epidemic in the US, we do not expect this to352

play a major role, and any remaining effects of importation should be compensated by the residual353
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over-dispersion terms in the statistical model.354

Our results demonstrate how the expanding collection of microbial genomic data together with355

antibiotic prescribing data and phylodynamic modeling can be used to explain microbial ecological356

dynamics and quantify the fitness contributions of genetic elements in their changing in vivo357

environments. The power of this approach will be augmented with continued surveillance, sequencing,358

and systematic data collection, and the growing datasets will enable model refinement and development.359

While we focused on N. gonorrhoeae and AMR, these methods could be more broadly applied to other360

microbes and pressures, aiding in efforts to understand how combinations of genetic elements inform361

strain fitness across antimicrobial exposure, host niche, and other environmental pressures.362

METHODS363

Genomic Analysis364

We collected publicly available genomic data, minimum inhibitory concentrations, and demographic365

data from GISP isolates (n = 5367) sequenced between years 2000 and 2019 [3, 13, 14, 15, 16]. De366

novo assembly was performed using SPAdes v 3.12.0 [40] with the –careful flag, and reference-based367

mapping to NCCP11945 (NC 011035.1) was done using BWA-MEM v 0.7.17 [41]. We used Pilon368

v 1.23 to call variants (minimum mapping quality: 20, minimum coverage: 10X) [42] after marking369

duplicate reads with Picard v 2.20.1 (https://broadinstitute.github.io/picard/) and sorting reads with370

samtools v 1.17 [43]. We generated pseudogenomes by incorporating variants supported by at least 90371

% of reads and sites with ambiguous alleles into the reference genome sequence. We mapped reads to372

a single copy of the locus encoding the 23S rRNA and called variants using the same procedures [44].373

We identified resistance-associated alleles from de novo assemblies and pseudogenomes. Likewise, we374

identified the presence of single nucleotide variants (e.g., mutations in gyrA, parC, ponA, and penA)375

and the copy number of resistance-associated variants in 23S rRNA from variant calls. To determine376

the presence or absence of genes, mosaic alleles, promoter variants, and small insertions or deletions377

we used the results of blastn v 2.9.0 [45] searches of assemblies for resistance-associated genes. We378
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typed mosaic penA alleles according to the nomenclature in the NG-STAR database [46]. We defined379

mosaic mtr alleles as those with <95% identity to the mtr operon encoded by FA1090 (NC 002946.2).380

Alleles were defined as loss-of-function (LOF) if frameshifts or nonsense mutations led to the translated381

peptide being less than 80% of the length of the translated reference allele.382

Prior to phylogenetic reconstruction, we filtered assembled genomes based on the following criteria:383

(1) The total assembly length was longer than 1900000 bp and less than 2300000 bp. (2) Reference384

coverage was more than 30%. (3) Percentage of reads mapped to reference was at least 70%. (4) Less385

than 12% of positions were missing in pseudogenomes. This resulted in (n = 4573) retained samples.386

A Lineage-Based Hierarchical Phylodynamic Model387

Our aim was to study how interactions among six resistance-associated genes and operons–gyrA, parC,388

ponA, penA, the mtr operon, and the 23S rRNA–and the major antimicrobial classes used as primary389

treatment of gonorrhea between 1993-2019 (Supplementary Figures and Tables Table S1; [22, 47])390

affected the success and failure of resistant N. gonorrhoeae lineages in the US. For gyrA, we considered391

alleles given by codons 91 and 95. For ponA, we considered the L and P variants encoded at codon392

421. For parC, we considered alleles given by combinations of codons at positions 86, 87, and 91.393

For each of the loci that make up the mtr operon (mtrC, mtrD, mtrR, and the mtr promoter), we394

considered whether the locus was non-mosaic, mosaic, affected by a loss-of-function mutation, and395

whether there was an A-deletion in the mtr promoter. For penA, we considered variants at each site396

listed by NG-STAR penA allele types [46], along with whether the penA allele was mosaic. Within397

the lineages derived from our dataset, we only observed variation at codon sites 501 and 543 and the398

presence of the mosaic penA 34 allele. The mosaic penA 34 allele carries variants at other sites; however,399

since these variants do not occur on other backgrounds in the dataset, we could not estimate their400

contributions. The determinants at parC act as mutations modulating the impact of gyrA resistance401

mutations [25]. Consequently, we used partial pooling to estimate the effects of gyrA determinants402

across different parC contexts. For 23S rRNA we considered the presence of at least one copy carrying403

the C2611T substitution. While the 23S substitution A2059G is associated with a more dramatic404

increase in azithromycin resistance, we did not include it in any analysis as it appeared in fewer than405

20 isolates.406
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We used phylodynamic modeling [48] to mitigate the impact of inconsistent sampling on reconstructing407

lineage ecology. Because phylodynamic modeling can be less sensitive than traditional incidence-based408

modeling to violations of sampling assumptions [49], it can accommodate the overrepresentation of409

antibiotic resistant specimens in collections of sequenced isolates[3, 13].410

The data used in the statistical model consisted of (1) L genealogiesG = {gggi}1≤i≤L, each corresponding411

to a particular AMR-linked lineage (Figure 1); (2) resistance determinant presence by lineage (Table 1);412

and (3) treatment data from GISP clinics (Supplementary Figures and Tables Figure S1). As our413

aim was to quantify the impact of individual AMR determinants on lineage success and failure, we414

estimated the growth rate of the lineage-specific effective population size r(t) = Ṅe(t)/Ne(t) [50, 24].415

We extended prior work [50, 24] to a multiple lineage, multiple treatment, multiple AMR determinant416

scenario by constructing a hierarchical Bayesian regression model that accounted for intrinsic variation417

among lineages. We formulated the growth rate of the effective population size as a hierarchical418

linear model to estimate how much of lineage growth and decline could be explained as a function419

of the interaction between AMR determinants and the pattern of antimicrobial use. Disentangling420

the contributions of individual AMR determinants from external factors required accounting for the421

overall epidemic dynamics, for which we included a global trend term shared by all lineages; the effect422

of lineage background on baseline fitness, for which we included lineage-specific terms; and the over-423

dispersion in the growth and decline of individual lineages that occurs due to factors unaccounted424

for.425

The growth rate of the effective population size serves as a proxy for lineage success and can be used426

to solve for the effective population size (Supplementary Methods Equation S2). While the effective427

population size is not necessarily directly proportional to incidence (it is a non-linear function of428

incidence and prevalence [49]), if fitness benefits are small in comparison to the per capita transmission429

rate β(t) or if β(t) is approximately constant, then the growth rate of the effective population size will430

approximately match the growth of the epidemic [50]. The effective population size can then be linked431

to individual genealogies via the coalescent likelihood (Supplementary Methods Equation S3). The key432

quantity of interest was the marginal impact of individual determinants on lineage growth rates. This433

is formulated in (Supplementary Methods Equation S5) and (Supplementary Methods Equation S6).434

A detailed model characterization, including the regression equation, likelihood approximations, and435
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choice of priors, is in (Supplementary Methods A Hierarchical Phylodynamic Model).436

Implementation437

The model was implemented in the stan probabilistic programming language [51] and R language438

version 4.4.0 [52]. Sampling was performed using Hamiltonian Monte Carlo as implemented in stan439

[51]. Four chains were run in parallel for 1000 sampling iterations each. For all model parameters, the440

bulk effective sample size (bulk-ESS) was always at least 500, the R̂ statistic always lower than 1.05441

[53].442

Lineage Assignment & Phylogenetic Reconstruction443

We used Gubbins [54] to estimate recombining regions and IQTree [55] for phylogenetic reconstruction.444

The molecular clock model was GTR+G+ASC as selected by ModelFinder [56].445

We estimated the dates of ancestral nodes using the resulting tree with BactDating [57] under the446

additive relaxed clock model [58]. We estimated ancestral states for all determinants under study447

apart from the 23S rRNA as the joint maximum likelihood estimate under the F81 model [59] using448

PastML [60]. In the case of penA, the ancestral state reconstruction was performed using allele types449

and the resulting reconstruction was then mapped to penA determinants for subsequent analysis and450

lineage calling. For the 23S rRNA, we used maximum-parsimony ancestral reconstruction based on451

the DELTRAN algorithm [61] as implemented in PastML [60]. We chose this approach because the452

C2611T substitution is usually present in 4 copies, making reverse mutation unlikely, and DELTRAN453

prioritizes parallel mutation [61]. Furthermore, the 23S rRNA C2611T variant does not display a454

clonal pattern of inheritance (Supplementary Figures and Tables Figure S42).455

We excluded samples with missing values in any of the determinants from the analysis prior to ancestral456

state reconstruction, leaving (n = 5215) samples. We defined a subset of tips as a lineage if it was the457

maximal subset such that there was no change of ancestral state in any of the loci across the unique458

path from each tip to the most recent common ancestor of the subset and the timing of the most recent459

common ancestor was estimated to no earlier than 1980 with at least 99% posterior probability. We460
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then defined included lineages in the analysis if they contained at least 30 tips.461

GyrA Mutants Competition Assay462

N. gonorrhoeae culture conditions463

N. gonorrhoeae was cultured on GCB agar (Difco) supplemented with Kellogg’s supplement (GCB-K)464

at 37◦C with 5% CO2 [62]. We performed pairwise competition experiments in liquid GCP medium465

containing 15g/L proteose peptone 3 (Thermo Fisher), 1g/L soluble starch, 1g/L KH2PO4, 4g/L466

K2HPO4, and 5g/L NaCl (Sigma-Aldrich) with Kellogg’s supplement [63].467

Generation of isogenic N. gonorrhoeae strains and antibiotic susceptibility testing468

Antibiotic susceptibility testing for ciprofloxacin was performed on GCB-K agar via Etest469

(BioMerieux). All minimum inhibitory concentration (MIC) results represent the mean of three470

independent experiments. Strains, plasmids and primers used in this study are listed in (Supplementary471

Figures and Tables Tables S4 to S6). All the isogenic N. gonorrhoeae strains were generated in a472

ciprofloxacin-resistant clinical isolate, GCGS0481, which carries GyrA 91F/95G and ParC 87R. To473

clone a GyrA 91S/95D fragment with a chloramphenicol resistant cassette (CMR), pAM 3 plasmid474

was constructed using Gibson assembly in a pUC19 [64] backbone. The GyrA 91S/95D fragment475

was amplified from pDRE77 [65] using the primer pair AM 7 and AM 8 and the chloramphenicol476

cassette from pKH37 [66] using the primer pair AM 9 and AM 10. Fragments were amplified using477

Phusion high-fidelity DNA polymerase (NEB), checked for appropriate size by gel electrophoresis,478

column purified (Qiagen PCR purification kit), assembled with Gibson Master Mix (NEB), and479

transformed into chemically competent DH5α E. coli (Invitrogen). Individual colonies were selected480

on LB agar supplemented with 20µg/mL chloramphenicol and grown overnight at 37◦C. Plasmids481

were isolated using Miniprep Kit (Qiagen) according to the manufacturer’s instructions and sequences482

were confirmed by Sanger sequencing. For the insertion of GyrA 91S/95D allele into N. gonorrhoeae483

GCGS0481, the isolate was grown overnight on a GCB-K plate at 37◦C with 5% CO2. After 16-20484

hours, the strain was scraped and suspended in 0.3M sucrose (Sigma-Aldrich), electroporated with 200485
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ng of pAM 3 plasmid, and rescued with GCP medium supplemented with Kellogg’s for 30 minutes.486

The transformants were then plated on non-selective GCB-K agar plates for 4-6 hours followed by487

selection on GCB-K plates supplemented with 4.5µg/mL chloramphenicol. Finally, individual colonies488

were re-streaked on non-selective GCB-K agar plates and the gyrA allele checked by Sanger sequencing.489

For cloning of GyrA 91F/95G and GyrA 91F/95A, fragments of gyrA were amplified using primers490

AM 5 (F) and AM 6 (R) from the genomic DNA of clinical N. gonorrhoeae isolates GCGS0481 and491

NY0842 respectively. Electroporation was done as described above, and individual colonies were492

selected on GCB-K plates supplemented with 2µg/mL ciprofloxacin. For all the transformations493

performed, transformations without DNA were used as negative controls.494

Competitive fitness measurement of GyrA variants495

GCGS0481 GyrA 91S/95D, GyrA 91F/95G and GyrA 91F/95A containing the CMR cassette were496

transformed with pDR53, a kanamycin cassette (KanR) derivative of pDR1 [67] (constructed using497

the primer pair DR 395 and DR 396). The resulting transformants were selected on GCB-K agar498

supplemented with 70µg/ml kanamycin. Colony PCR was performed to screen the kanamycin positive499

clones using the primer pair (DR 62 and DR 63) (Supplementary Figures and Tables Table S6). During500

the pairwise competition experiments, the competitive paired strains from overnight cultured plates501

(one kanamycin-sensitive and one kanamycin-resistant strain) were mixed and co-cultured (at a ratio502

of 1:1 by optical density) in antibiotic-free GCP media with Kellogg’s supplement for 8 hours. At503

each timepoint, cultures were serially diluted, and same volume was plated on both GCB-K agar and504

GCB-K agar supplemented with 70µg/ml kanamycin. Finally, dilutions on both plates were quantified505

and the competitive index (CI) was calculated at each timepoint. The CI value at any timepoint506

was calculated as (Rt/St)/(R0/S0) where Rt and St are the proportions of kanamycin-resistant and507

kanamycin-sensitive strains, respectively at any time point and R0 and S0 are the proportions of508

kanamycin-resistant and kanamycin-sensitive strains at time 0.509
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Code & Data Availability510

The code and data511

necessary to reproduce the statistical analysis, along with the metadata and accession numbers for512

the isolates analyzed, are available at: https://github.com/gradlab/GC_AMR_Lineages.513
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