
Frontiers in Cellular and Infection Microbiolo

Edited by:
Lorenza Putignani,

Bambino Gesù Children’s Hospital
(IRCCS), Italy

Reviewed by:
Javier Torres,

Mexican Social Security Institute
(IMSS), Mexico
Valerio Iebba,

University of Trieste, Italy

*Correspondence:
Yongxiang Li

liyongxiang@ahmu.edu.cn

Specialty section:
This article was submitted to

Microbiome in Health and Disease,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

Received: 07 December 2021
Accepted: 13 April 2022
Published: 19 May 2022

Citation:
Zhang C, Hu A, Li J, Zhang F,
Zhong P, Li Y and Li Y (2022)

Combined Non-Invasive Prediction
and New Biomarkers of Oral and
Fecal Microbiota in Patients With
Gastric and Colorectal Cancer.

Front. Cell. Infect. Microbiol. 12:830684.
doi: 10.3389/fcimb.2022.830684

ORIGINAL RESEARCH
published: 19 May 2022

doi: 10.3389/fcimb.2022.830684
Combined Non-Invasive Prediction
and New Biomarkers of Oral and
Fecal Microbiota in Patients With
Gastric and Colorectal Cancer
Chaoyang Zhang1, Asheng Hu1, Jingxing Li2, Fangfang Zhang3, Pei Zhong4,
Yaxian Li1 and Yongxiang Li1*

1 Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China, 2 Department of
Computer Science, Faculty of Science, University of Western Ontario, London, ON, Canada, 3 Department of Anesthesiology,
Hefei BOE Hospital, Hefei, China, 4 Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University,
Hefei, China

Background: There is no information on the commonality and specificity of oral and fecal
microbiota in patients with gastric cancer (GC) and colorectal cancer (CRC).

Methods: The high-throughput 16S rRNA gene V4 region sequencing was used to
perform bioinformatics analysis of oral, fecal, and tissue microbiota in GC (76 subjects),
CRC (53), and healthy controls (HC, 70). Furthermore, we determined the microbial
characteristics of each part, constructed and verified three classifiers for GC and CRC,
and evaluated curves of receiver operating characteristic and precision–recall with
probability of disease.

Results: Compared to HC, the microbial richness and diversity of GC and CRC
decreased in oral cavity and increased in stool; additionally, these indexes in GC tissue
were higher than those in CRC tissue. In GC and CRC patients, Haemophilus, Neisseria,
Faecalibacterium, and Romboutsia were significantly reduced compared to the relative
abundance value of oral or fecal bacterial genera in the HC group, while the
Streptococcus, Gemella, Escherichia-Shigella, and Fusobacterium were significantly
increased. The oral and tissue microbiota have similar and abundant shared bacterial
networks. The single and combined microbial detection have good AUC values based on
POD indices for predicting GC, CRC, and gastrointestinal (GI) cancers (GC and CRC).

Conclusion: This study is the first to examine the characteristics of oral, fecal, and tumor
microbiota in GC and CRC patients, and the similarities and differences in their microbial
changes are reported. These oral or fecal bacteria (Haemophilus, Neisseria,
Faecalibacterium, Romboutsia, Streptococcus, Gemella, Escherichia-Shigella, and
Fusobacterium) may be involved in tumor evolution as potentially characteristic genera.
In addition, both oral and fecal microbial detection may provide a solid theoretical
foundation for the non-invasive prediction of these cancers.
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INTRODUCTION

Gastric cancer (GC) is the fifth most common cancer and the
fourth leading cause of cancer death worldwide, with half of all
cases occurring in East Asia (primarily in China) (Smyth et al.,
2020; Sung et al., 2021). Helicobacter pylori infection contributes
significantly to non-cardiac GC development (Sugano et al.,
2015; Du et al., 2020), and its eradication reduces the risk of
GC (Graham, 2015; Engstrand and Graham, 2020). Only 1%–3%
of people infected with H. pylori develop GC (Peek and Crabtree,
2006; LaCourse et al., 2021). Many studies have reported that
other microbiota, such as Peptostreptococcus, Desulfovibrio, and
Fusobacterium, play a role in GC occurrence and development
(Coker et al., 2018; Liu et al., 2021). The endoscopy and biopsy
techniques are effective in detecting patients with early-stage
gastric cancer (EGC), and their 5-year survival rate is estimated
up to 80% (Eusebi et al., 2020). Although new endoscopic
techniques such as narrowband imaging (NBI) (Pimentel-
Nunes et al., 2012), magnetic controlled capsule gastroscopy
(MCCG) (Zhao et al., 2018), and serum markers such as
pepsinogen, gastrin, and tumor markers can detect GC (Huang
et al., 2015; Zagari et al., 2017; Grady et al., 2021), there is still a
lack of effective, convenient, low-cost, and non-invasive tests.

The diversity and richness of microbiota change significantly
during the evolution of superficial gastritis (SG), atrophic
gastritis (AG), intestinal metaplasia (IM), and GC (Coker et al.,
2018). With the increasing research on the relationship between
microbiota and systemic tumors (especially digestive tract
tumors), many studies have reported that oral microbiota is
related to colorectal cancer (CRC) (Flemer et al., 2018; Zhang
et al., 2020), esophageal cancer (Chen et al., 2015), pancreatic
cancer (Farrell et al., 2012; Torres et al., 2015), and oral cancer
(Pushalkar et al., 2012; Schmidt et al., 2014), while fecal
microbiota is related to CRC (Flemer et al., 2017), liver cancer
(Ren et al., 2019), and breast cancer (Terrisse et al., 2021). Due to
microbial differences between tumor patients and healthy
controls (HC), microbial detection has the potential to be a
new non-invasive screen test (Flemer et al., 2018; Ren et al., 2019;
Zhang et al., 2020; Yonekura et al., 2021). In the meantime, the
role of gastrointestinal (GI) microbiota in the oral cavity and
stool in GC remains unknown.

CRC is now the third most common cancer and the second
leading cause of cancer death worldwide with an increase in
morbidity and mortality rates in China over the last decade
Abbreviations: CRC, colorectal cancer; GC, gastric cancer; GI, gastrointestinal;
EGC, early gastric cancer; NBI, narrowband imaging; MCCG, magnetic controlled
capsule gastroscopy; SG, superficial gastritis; AG, atrophic gastritis; IM, intestinal
metaplasia; HC, healthy controls; CT, computed tomography; FOBT, fecal occult
blood test; FIT, fecal immune test; PRoBE, prospective specimen collection and
retrospective blind evaluation; FFQ, food frequency questionnaire; IBS, irritable
bowel syndrome; IBD, inflammatory bowel disease; PCoA, principal coordinate
analysis; POD, probability of disease; ANOVA, analysis of variance; FDR, false
discovery rate; BMI, body mass index; RMB, renminbi; CSS, cumulative-sum
scaling; LDA, linear discriminant analysis; LEfSe, linear discriminant analysis
effect size; RF, random forest; ROC, receiver operating characteristic; AUC, area
under the curve; OTUs, operational taxonomic units; CAGs, co-
abundance groups.
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(Sung et al., 2021). Colonoscopy remains the gold standard for
CRC detection, while imaging (CT: computed tomography),
stool (FOBT: fecal occult blood test; FIT: fecal immune test),
serum, and genetic material screening all have varying detection
rates and limitations (Issa and Noureddine, 2017). It has been
reported that oral and fecal microbiota play a role in developing
polyps, adenomas, and CRC; however, the relationship between
microbiota and CRC remains unknown (Flemer et al., 2017;
Flemer et al., 2018; Zhang et al., 2020). In addition, the microbial
relationship between GC and CRC requires further investigation.

The body produces approximately 1,000 ml of saliva
(containing 1011 types of bacteria) each day, almost all of
which enters the GI tract, forming a loop between the subject’s
oral, fecal, and GI microbiota (Andersson et al., 2008; Pfaffe et al.,
2011; Segata et al., 2012). This study investigated the microbial
relationship among oral cavity, stool, tumor, and paracancerous
tissue in GC and CRC patients. Some novel oral and fecal
potential microbial markers (genera) (Haemophilus, Neisseria,
Faecalibacterium , Romboutsia , Streptococcus, Gemella ,
Escherichia-Shigella, Fusobacterium, etc.) were reported in this
study. Furthermore, we evaluated the potential of oral and fecal
microbiota as non-invasive biomarkers for GC and CRC through
the validation cohort and diagnostic cohort.
MATERIALS AND METHODS

Participant Information
The study protocol was approved by the Committee on Medical
Ethics of the First Affiliated Hospital of Anhui Medical
University (Quick-PJ 2021-13-23) adopting prospective
specimen collection and retrospective blind evaluation
(PRoBE) methods (Pepe et al., 2008). Before sampling, all
participants were notified, and their written consent was
obtained before any procedure. A total of 353 oral, stool,
tumor, and paracancerous tissue samples from GC (88) and
CRC (61) inpatients were prospectively collected, eventually
including 311 samples for the study. The collected samples
consisted of samples from GC (76) [oral (70), stool (49),
tumor (33), and paracancerous tissue (36)] and CRC (53) [oral
(42), stool (33), tumor (24), and paracancerous tissue (24)],
followed by 16S rRNA Miseq sequencing. The demographic
information, relevant clinical data, pathological diagnosis, and
tumor staging for inpatients were obtained from hospital
electronic medical records and questionnaires (Table 1)
(Yaghoobi et al., 2017; Ren et al., 2019; Shao et al., 2019;
Zhang et al., 2020). Furthermore, paired oral and fecal samples
from 70 healthy people (Qin et al., 2014) were collected with a
detailed description of the participant’s information shown in
Table 1. Meanwhile, dietary habits were collected and screened
by referring to the food frequency questionnaire (FFQ) (Claesson
et al., 2012) and relevant articles (Table 1 and Table S1)
(Tsugane and Sasazuki, 2007; Shao et al., 2019). The exclusion
criteria for the GC and CRC cohorts were as follows: (1) taking
antibiotics or probiotics within 1 month of inclusion; (2) cancer
treatment within 3 months of inclusion; (3) presence of other
diseases, such as irritable bowel syndrome (IBS), inflammatory
May 2022 | Volume 12 | Article 830684
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TABLE 1 | Clinical characteristics and diet information of the enrolled participants.

RC (n = 53) p-value

9.21 ± 14.40 0.091 a

23.64 ± 3.02 0.064*
0.063#

37 (69.8%)
16 (30.2%)

0.003#

14 (26.4%)
9 (17.0%)
30 (56.6%)

<0.001#

28 (52.8%)
21 (39.6%)
4 (7.5%)

0.138#

34 (64.2%)
13 (24.5%)
6 (11.3%)

0.002#

45 (84.9%)
7 (13.2%)
1 (1.9%)

16 (30.2%) 0.521#

5 (9.4%)
48 (90.6%)

–

–

–

7 (13%)
12 (23%)
34 (64%)

4.14 ± 1.92 0.596 b

0.460#

23 (43.4%)
30 (56.6%)

0.921#

47 (88.7%)
5 (9.4%)
1 (1.9%)

<0.001#

7 (13.2%)
16 (30.2%)
30 (56.6%)

0.016#

6 (11.3%)
26 (49.1%)
21 (39.6%)

(Continued)
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Characteristics HC (n = 70) GC (n = 76)

Age (years) 60.99 ± 9.06 63.63 ± 9.56
BMI (kg/m2) 23.61 ± 3.04 22.54 ± 3.34
Sex
Male 36 (51.4%) 51 (67.1%)
Female 34 (48.6%) 25 (32.9%)

Education, n (%)
No education 7 (10.0%) 21 (27.6%)
Primary education 10 (14.3%) 21 (27.6%)
Secondary education or more 53 (75.7%) 34 (44.7%)

Smoking status
Never smoker 50 (71.4%) 39 (51.3%)
Former smoker 7 (10.0%) 30 (39.5%)
Current smoker 13 (18.6%) 7 (9.2%)

Alcohol consumption
Never drink 38 (54.3%) 44 (57.9%)
<1 standard drink per day 28 (40.0%) 20 (26.3%)
≥1standard drink per day 4 (5.7%) 12 (15.8%)

Household income, RMB
≤5,000 44 (62.9%) 68 (89.5%)
5,000–10,000 22 (31.4%) 7 (9.2%)
≥10,000 4 (5.7%) 1 (1.3%)

Family history of cancer, n (%) 15 (21.4%) 18 (23.7%)
Diabetes
Yes 0 (0%) 8 (10.5%)
No 70 (100%) 68 (89.5%)

Tumor location
Upper third of stomach – 38 (50%)
Middle third of stomach – 18 (24%)
Lower third of stomach – 20 (26%)
Proximal colon – –

Distal colon – –

Rectum – –

Tumor size (cm) – 3.89 ± 1.88
TNM stage
I–II – 38 (50%)
III–IV – 38 (50%)

Fresh vegetables
≥5 days/per week 64 (91.4%) 71 (93.4%)
2–4 days/per week 5 (7.1%) 4 (5.3%)
≤1 day/per week 1 (1.4%) 1 (1.3%)

Fresh fruits
≥5 days/per week 35 (50.0%) 9 (11.8%)
2–4 days/per week 22 (31.4%) 25 (32.9%)
≤1 day/per week 13 (18.6%) 42 (55.3%)

High-fat food
≥5 days/per week 3 (4.3%) 10 (13.2%)
2–4 days/per week 19 (27.1%) 25 (32.9%)
≤1 day/per week 48 (68.6%) 41 (53.9%)
C
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TABLE 1 | Continued

HC (n = 70) GC (n = 76) CRC (n = 53) p-value

0.195#

6 (8.6%) 3 (3.9%) 1 (1.9%)
20 (28.6%) 15 (19.7%) 10 (18.9%)
44 (62.9%) 58 (76.3%) 42 (79.2%)

0.319#

20 (28.6%) 18 (23.7%) 12 (22.6%)
23 (32.9%) 25 (32.9%) 11 (20.8%)
27 (38.6%) 33 (43.4%) 30 (56.6%)

0.166#

0 (0%) 0 (0%) 0 (0%)
2 (2.9%) 7 (9.2%) 6 (11.3%)

68 (97.1%) 69 (90.8%) 47 (88.7%)

0/70 (0%) 12/58 (20.7%) 34/51 (66.7%)
70/70 (100%) 46/58 (79.3%) 17/51 (33.3%)

est; aKruskal–Wallis H test; bWilcoxon. BM, body mass index; RMB, renminbi; FOBT, fecal occult blood test; 1 standard drink = 10 g alcohol.
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Characteristics

High-sugar food
≥5 days/per week
2–4 days/per week
≤1 day/per week

Pickled food
≥5 days/per week
2–4 days/per week
≤1 day/per week

Moldy food
≥5 days/per week
2–4 days/per week
≤1 day/per week

FOBT
Yes
No

*One-way analysis of variance (ANOVA); #Pearson chi-square
 t

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zhang et al. Non-Invasive Prediction of GC and CRC
bowel disease (IBD), and metabolic diseases; and (4) participants
who lacked the clinical information (Table S1).

Tissue Sample Collection for GC and
CRC Patients
Following isolation of lesions surgically, the samples comprising
cancer lesions and paracancerous tissues (with no abnormality
on the mucosal surface, 5–10 cm from the tumor boundary) were
transferred into a 3-ml RNAlater sterile cryotubes (Qiagen,
Hilden, Germany) and transported to the laboratory in an ice
pack and stored it at −80°C until further use.

Oral Sample Collection of Subjects
The oral samples were collected by swabbing the medial sides of
both cheeks of the subjects using a cotton swab (Flemer et al.,
2018), followed by transferring the swabs into a sterile test tube
and stored them at −80°C until further use. It was ensured that
none of the subjects had any oral disease and received any drug
treatment before sampling as per the NIH Human Microbiome
Project-Core microbiome sampling protocol (Gevers
et al., 2012).

Stool Sample Collection of Subjects
The subject’s fresh stool samples were collected in a special stool
tube sterilized internally and were packed using ice packs and
delivered to the laboratory for further processing. The samples
were divided into 200-mg portions and kept at −80°C until
further use. The oral and fecal samples were collected prior to
surgery in GC and CRC inpatients.

Extraction of Genome DNA, Library
Preparation, and High-Throughput 16S
Ribosomal RNA Gene Sequencing
Total genome DNA from samples was extracted using the CTAB
method. DNA concentration and purity was monitored on 1%
agarose gels. According to the concentration, DNA was diluted to
1 ng/µl using sterile water. The high-throughput 16S ribosomal
RNA gene sequencing was carried out using specific primers of 16S
rRNA gene V4 region 515F: -GTGCCAGCMGCCGCGGTAA-
and 806R: -GGACTACHVGGGTWTCTAAT-. The sequencing
libraries were created using a TruSeq® DNA PCR-Free Sample
Preparation Kit (Illumina, USA) according to manufacturer’s
instructions and index codes were added. The Qubit@ 2.0
Fluorometer (Thermo Scientific) and Bioanalyzer 2100 system
(Agilent) were used to evaluate the library’s quality. The library
was sequenced on an Illumina NovaSeq platform (Novogene,
Beijing, China), resulting in 250-bp paired-end reads.

Data Processing
Paired terminal readings were assigned to each sample based on
its unique barcode and truncated by excising the barcode and
primer sequences. FLASH was used to perform sequence
assembly (Magoc and Salzberg, 2011). The data filtering was
done following QIIME quality control process (Caporaso et al.,
2010). The database was consulted, using UCHIME algorithm
for chimeric removal, and eventually obtained an effective label
(Edgar et al., 2011).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Operation Classification Unit Clustering
and Classification Annotation
Sequence analysis was performed using Uparse software.
Sequences with ≥97% similarity were assigned to the same
OTU. The Silva database was used to annotate classification
data using Mothur algorithm (Quast et al., 2013). Multiple
sequence alignments were performed using MUSCLE software
to study the phylogenetic relationship of different OTUs and the
differences in the dominant species (Edgar, 2004). The
abundance of OTUs was then normalized using the samples
with the least sequence as the standard.

Bacterial Diversity and Taxonomic
Analysis
The raw data were normalized by the QIMME1/normalize
module [cumulative-sum scaling (CSS)]. The a-diversity of
each sample was evaluated by richness (Chao 1) and
biodiversity (Shannon) (Zhang et al., 2021). These indicators
were calculated using QIIME (version 1.9.1) and displayed using
R package ggplot2 (version 2.15.3). To evaluate the microbial
diversity among samples, the b-diversity among samples was
evaluated using principal coordinate analysis (PCoA) and cluster
analysis. The PCoA of this study was built on a distance
(dissimilarity) matrix of Bray–Curtis indexes.

Identification of Microbial OTU Markers
The optimal OTU marker described above was determined using
fivefold cross-validation. The POD index was defined as the ratio
between the number of randomly generated decision trees with
predicted samples such as GC, CRC, or GI to the number of
healthy controls. The optimal OTU set was used to calculate
POD indices for the training and testing cohorts. The receiver
operating characteristic (ROC) (R version 3.6.0, pROC package
version 1.18.0) area under the curve (AUC) was used to represent
the ROC effect. Characteristic biomarker genera were found by
Random Forest (Version 3.6.0, randomForest package version
4.6-14) (Ren et al., 2019).

Statistical Analysis
The clinical data were analyzed using one-way ANOVA, the
Kruskal–Wallis H test, chi-square test, or Fisher’s exact test
(Table 1). The difference in microbial diversity between two
groups was estimated by using the Mann–Whitney U test, and
two-stage FDR corrections were applied to adjust p-values. SPSS
V.23.0 for Windows (SPSS, USA), GraphPad Prism V.9.0 (Graph
Pad Software, USA), and Microsoft Excel (Microsoft, USA) were
used for statistical analysis. The statistical significance was set at
p < 0.05.
RESULTS

A total of 435 oral and fecal samples from the same area were
prospectively collected. Of these, 334 samples (140 HC, 119 GC,
and 75 CRC) were included after systematic elimination and
pathological diagnosis. Meanwhile, 117 tumors and
paracancerous tissues were collected from some participants
May 2022 | Volume 12 | Article 830684
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Zhang et al. Non-Invasive Prediction of GC and CRC
(69 GC, 48 CRC). The above samples were acquired from 199
qualified participants (including 70 HC, 76 GC, and 53 CRC) and
were randomly divided into a discovery phase and a verification
phase. In the discovery phase, we characterized microbiota of 72/
71 HC (37/35 oral, 36/35 stool), 68 GC (35 oral, 23 stool), and 37
CRC (20 oral, 17 stool), and identified microbial markers. The
GC and CRC classifiers were constructed by using the random
forest model between the GC/CRC cohort and the HC cohort. In
the validation phase, we used 68/69 HC (33/35 oral, 34/35 stool),
61 GC (35 oral, 26 stool), and 38 CRC (22 oral, 16 stool) to
validate diagnosis efficacy of the GC and CRC classifiers.
Furthermore, all oral samples (70 HC, 70 GC, and 42 CRC)
and fecal samples (70 HC, 49 GC, and 33 CRC) were used as
another independent diagnostic stage to verify the potential of
the GC and CRC classifiers (Figure 1).

Clinical and Dietary Characteristics
of Participants
The analysis of clinical data revealed that, compared to GC and
CRC, the number of people in HC who met these criteria
(secondary education or higher, never smoked, household
income >5,000 RMB) increased significantly. In dietary
surveys, healthy people had a higher frequency of intake of
fresh fruits and a lower frequency of intake of high-fat foods than
GC and CRC groups (Table 1). The detailed clinical and dietary
information of each participant is presented in Table S1.

Microbial Diversity and Phylogenetic
Profiles of GC and CRC in Oral Cavity,
Stool, and Tissue
The rank abundance curve showed that, compared to oral and
fecal samples, the microbiota in GC and CRC tissue had greater
richness and evenness (Figure 2A). The number of observed
species in each group approached saturation as the sequencing
depth increased (Figure 2B); as the number of samples
increased, the richness of each group tended to stabilize
(Figure 2C). The microbial richness and species number in
GC and CRC oral samples decreased compared to HC but
increased in fecal samples, while the index in the tumor was
higher than that in the paracancerous tissue.

The Venn diagram showed that, compared to HC, the oral
OTUs in GC and CRC were significantly reduced, while the fecal
OTUs were increased. Interestingly, the oral, fecal, and tissue
OTUs in GC were significantly higher than those in CRC
(Figures 3A, 4A, 5A). PCoA based on Bray–Curtis distance
and ANOSIM confirmed differences in the oral and fecal
microbial structure of participants in the three groups, as well
as in the tissues of GC/CRC patients (Figures 3B, 4B, 5B, and
Figures S1A–C). We calculated two a-diversity indices to assess
bacterial a-diversity across all groups (Table S2). The oral
microbial diversity (Shannon index, Chao 1) of the GC and
CRC groups was significantly lower than that of the HC group.
On Shannon index, CRC was lower than GC (Figures 3C, D).
Compared to HC, Shannon index of fecal microbiota in the CRC
group was significantly higher (Figures 4C, D). There were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
differences in Shannon indexes between GC and CRC
paracancerous tissue and in Chao 1 between tumor and
paracancerous tissue of GC (Figures 5C, D).

Firmicutes, Proteobacteria, and Bacteroidetes were the three
dominant phyla in oral samples, accounting for more than 75%
of each group (Figure 3E). Compared to HC, the proportion of
Firmicutes of GC and CRC increased, and the proportion of
Proteobacteria decreased. The proportion of Fusobacteriota of
HC and GC was higher than that of CRC (Figure 3E). GC and
CRC had a lower proportion ofHaemophilus and Neisseria at the
genus level than HC, but a higher proportion of Streptococcus
and Herbaspirillum (Figure 3F). The pairwise comparison of
linear discriminant analysis (LDA) values (LDA > 4) of oral
groups also showed the previously mentioned changes in phylum
and genus level (Figures S2A–C). The three dominant phyla of
fecal samples were consistent with the oral cavity and accounted
for more than 85% of each group’s sequence (Figure 4E). At the
phylum level, compared to HC and CRC, the proportion of
Proteobacteria of GC increased; compared to HC and GC, the
proportion of Fusobacteriota of CRC increased (Figure 4E). At
the genus level, the proportion of Escherichia-Shigella in GC and
CRC increased compared to HC; the proportion of
Fusobacterium in CRC increased compared to HC and GC,
and the proportion of Streptococcus in GC was higher than
that of HC (Figure 4F). These changes were also observed in a
pairwise comparison of LDA values (LDA > 4) of fecal groups
(Figures S3A–C). We also observed that Campilobacterota and
Helicobacter increased significantly in GC tissues, in accordance
with the previous studies. Surprisingly, the abundance of
Helicobacter was higher in paracancerous tissue of GC than in
tumor tissue (Figures 5E, F). There was little difference in the
proportion of phylum and genus level between tumor and
paracancerous tissue in GC and CRC patients. Nevertheless,
there were significant differences between GC and CRC groups.
Compared to GC, the proportion of Proteobacteria,
Fusobacteriota, and Bacteroidota in CRC bacteria phylum was
found to increase, while the proportion of Fusobacterium,
Klebsiella, Escherichia-Shigella, and Bacteroides in the genus
increased (Figures 5G–J).

LEfSe analysis was applied to identify the taxa most associated
with each of the three groups of participants. The rich genera of
GC oral samples were Leptotrichia and Gemella, the rich genera
of CRC were Streptococcus and Herbaspirillum, and the rich
genera of HC were Haemophilus and Neisseria (Figures 3G, H).
Escherichia-Shigella, Dialister, and Streptococcus were enriched
in GC stool samples; Fusobacterium was enriched in CRC; and
Faecalibacterium was enriched in HC (Figures 4G, H). The
characteristic bacterial genera of oral samples of Lefse, RF, and
PLSDA-VIP were compared, and the results showed that
Gemella of GC, Streptococcus of CRC, and Neisseria of HC
were all suggested as important genera in the three algorithms.
In the comparison of characteristic bacterial genera of the three
groups of fecal samples, Lactobacillus of GC, Peptostreptococcus
of CRC, and Faecalibacterium of HC showed differences in the
two algorithms (Figures S2D–G, S3D–G). Concurrently,
pairwise MetaStat analysis comparisons were performed on all
May 2022 | Volume 12 | Article 830684
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samples at the phylum and genus levels (Figures S4A–F, S5A–F,
S6A–H and Tables S3–5).

Based on the linear discriminant analysis effect size (LEfSe)
and MetaStat analysis, we further analyzed the relative
abundance values of the different bacterial genera (LDA > 4)
among the groups. In comparison to oral flora of the HC group,
Streptococcus, Gemella, and Herbaspirillum in the oral cavity of
GC and CRC patients were more abundant (p < 0.05), while that
of Haemophilus and Neisseria were less abundant (p < 0.05). In
comparison to fecal flora of the HC group, Escherichia-Shigella
and Streptococcus were more abundant (p < 0.05) in the stools of
GC and CRC patients, while Faecalibacterium, Dialister, and
Romboutsia were less abundant (p < 0.05). Meanwhile,
Fusobacterium and Akkermansia were more abundant (p <
0.05) in the stool of CRC patients, and Megamonas was less
abundant (p < 0.05). Interestingly, Fusobacterium was less
abundant (p < 0.05) in the CRC oral cavity samples compared
to the HC oral group. The different bacteria (Bacteroides,
Helicobacter, Klebsiella, Prevotella, etc.) in GC and CRC tissues
were also evaluated and they differed in oral, fecal, and tissue
flora (Figures 6A–P). The majority of these diverse bacterial
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
genera were a part of non-invasive tumor marker screening,
shared microbial regulation, and network interaction. In
conclusion, these differential bacteria in the oral cavity, stool,
and tissue may play an active role in the GC/CRC evolution.
Differences and Network Analysis of
Co-Abundant Microbiota of Oral Cavity,
Stool, and Tissue of GC and CRC
Although some OTUs were more abundant across samples from
GC/CRC patients, there was considerable heterogeneity. We
analyzed the microbiota by assaying CAGs (or clusters), as
community structure may provide more valuable information
than differences in the abundance of individual genera. To
investigate the microbiota correlation between HC, GC, and
CRC in oral, fecal and tissue samples, 16 OTUs shared between
oral and tissue samples of participants from the three groups
were screened. These 16 OTUs were expressed in at least 30% of
all oral and tissue samples from the three groups and had more
than 300 reads in a single sample. In addition, 16 OTUs were
shared between fecal and tissue samples from the three groups of
FIGURE 1 | Study design and flow diagram. A total of 435 oral and fecal samples from the same area were prospectively collected and 334 samples (140 HC, 119
GC, and 75 CRC) were included after systematic elimination and pathological diagnosis. The above samples came from 199 qualified participants (including 70
healthy controls, 76 GC patients, and 53 CRC patients) and were randomly divided into a discovery phase and a verification phase. In the discovery phase, we
characterized microbiota of 72 HC (37/35 oral, 35/37 stool), 60 GC (35 oral, 25 stool), and 38 CRC (21 oral, 17 stool), and identified microbial markers. The GC and
CRC classifiers were constructed through the random forest model among GC, CRC cohort, and HC cohort. In the validation phase, we used 68 HC (33/35 oral,
35/33 stool), 59 GC (35 oral, 24 stool), and 37 CRC (21 oral, 16 stool) to validate diagnosis efficacy of the GC and CRC classifiers. Furthermore, all oral samples (70
HC, 70 GC, and 42 CRC) and fecal samples (70 HC, 49 GC, and 33 CRC) were used as another independent diagnostic stage to verify the potential of the GC and
CRC classifiers. HC, healthy controls; GC, gastric cancer; CRC, colorectal cancer.
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participants, which were expressed in at least 30% of all fecal and
tissue samples across all three groups, with >300 reads in a single
sample (Table S6). The bacteria in oral and tissue samples were
divided into two co-abundance groups (CAGs) based on
abundance profiles (16 OTUs): oral pathogens and biofilms
(Figure 7A). Oral pathogens (e.g., Fusobacterium) were
pathogenic and were linked to the late colonization of oral
biofilms and several human diseases (including CRC and
juvenile periodontitis). Actinomyces, Haemophilus, Rothia,
Streptococcus, and other genera existed in the early stage of
dental biofilm formation and were associated with relatively
healthy dental pockets, which were defined as Biofilm CAG
(Flemer et al., 2018; Zhang et al., 2020). The oral pathogen
CAG of GC and CRC was lower in oral samples than in HC
(Figure 7B). The two groups of CAGs in the GC tumor tissue
samples were higher than those in the paracancerous tissue
(Figure 7C). The bacteria in the stool and tissue samples were
clustered by abundance profiles (16 OTUs) and divided into
three clusters: Cluster 1, Cluster 2, and Cluster 3 (Figure 7D).
Cluster 1 of GC and CRC was found to decrease in the stool
samples in comparison to HC, while an increasing trend was
observed for Cluster 2 with a significant increase in Cluster 3 of
GC (Figure 7E). Cluster 1 and Cluster 2 of CRC were found to be
higher than that of GC in tissue samples, whereas Cluster 1 of
CRC tumor was found to be lower than that of paracancerous
tissue (Figure 7F). Furthermore, the network of the
aforementioned bacteria (31 OTUs) in all samples was also
analyzed. The number of bacteria and lines in HC oral and
fecal samples were found to be in abundance (Figures 8A, D).
Compared to HC, the number of oral bacteria in GC and CRC
decreased (Figures 8B, C), while fecal bacteria decreased
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
significantly (Figures 8E, F). Moreover, deletion of some
OTUs (and genera) in the network resulted in significant
changes in phylum and CAGs in GC/CRC patients. For
example, Actinobacteriota (OTU_9 and OTU_50) and Biofilm
CAG (OTU_1, OTU_9, OTU_10, OTU_17, OTU_50) of GC
oral samples vanished completely. The bacterial network in CRC
tissue was sparser (number of OTUs and lines) compared to that
in GC tissue. Similar bacterial networks in tumor and
paracancerous tissue may indicate that the bacterial
composition of diseased organs has changed before tumor
formation (Figures 8G–J). To further analyze the correlation
between GC and CRC in oral, stool, and tissue, Venn diagrams
and PCoA analysis were performed on all samples (Figures
S7A–H).
Identification and Validation of GC and
CRC Markers Based on Oral and Fecal
Microbial OTU
A random forest classifier model to determine the diagnostic
value of oral and fecal microbiota for GC, CRC, and GI cancers
were generated. A 5-fold cross-validation was used to achieve
specific cancer identification (Table S7). In the prediction of GC
using oral and stool samples, in the discovery cohort, we found
the optimal OTU marker set (oral: 13 OTUs, stool: 9 OTUs) and
calculated their POD and area under the curve (AUC) (Figures
S8A–C, H–J). In the validation cohort, the AUC of POD index
between the GC and HC was found to be 82.40% (95% CI: 72.60–
92.20%) for oral microbiota, 93.90% (95% CI: 87.70–100%) for
fecal microbiota, and 92.20% (95% CI: 86.80–97.70%) for
combined detection (Figures 9A, S8D, E, K–L). The diagnostic
A B

C

FIGURE 2 | Microbial diversity in each group. (A) The evenness of the ten microbiota groups was assessed by graded abundance curve. (B) The accumulation curve
between the sequencing depth of ten samples and the number of observed species. (C) The accumulation curve between ten samples and estimated richness.
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potential of the model was further confirmed by all GC samples,
which showed an AUC of 94.90% (95% CI: 91.50–98.30%) for all
oral samples and 97.70% (95% CI: 95.20–100%) for all fecal
samples (Figures S8F, G, M, N). In the discovery cohort of
CRC’s oral and fecal samples, we identified the optimal OTU
marker set (oral: 9 OTUs, stool: 6 OTUs) and calculated their
POD and AUCs (Figures S9A–C, H–J). In the validation cohort,
the AUC was found to be 88.60% (95% CI: 79.10–98.20%) for
oral samples, 85.90% (95% CI: 75.80–96.00%) for fecal samples,
and 93.70% (95% CI: 87.90–99.40%) for combined detection
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
(Figures 9B, S9D, E, K, L). The AUC of all CRC oral samples
was found to be 96.40% (95% CI: 92.90–99.90%), and the AUC of
all fecal samples was determined to be 96.30% (95% CI: 93.30–
99.30%) (Figures S9F, G, M, N). The GC and CRC samples were
integrated, and respective POD and AUC were calculated for the
predictive potential of oral and fecal microbiota for GI cancers.
In the validation cohort, using the optimal OTUmarker set (oral:
20 OTUs, stool: 20 OTUs) for GI samples, the AUC was 92.70%
(95% CI: 96.30–99.20%) for oral samples, 99.60% (95% CI:
98.80–100%) for fecal samples, and 97.70% (95% CI: 95.40–
A B

D E F

G

H

C

FIGURE 3 | Compared with the HC (n = 70), the oral microbial diversity of patients with GC (n = 70) and CRC (n = 42) was reduced. (A) The Venn diagram
displayed the overlaps among groups, showing a total of 12,077 OTUs. (B) PCoA calculated b-diversity on a distance (dissimilarity) matrix of Bray–Curtis indexes.
The Shannon index (C) and Chao1 index (D) were used to evaluate the oral microbial diversity of patients with HC, GC, and CRC. Composition of oral microbiota at
the phylum level (E) and genus level (F) among the three groups. The linear discriminant analysis (LDA) effect size (LEfSe) method was used to analyze the specific
characterization of the oral microbiota of patients with HC, GC, and CRC. (G, H) The LEfSe method identified the most divergent taxa in GC and CRC and scored
the two groups of oral samples by LDA. Only the taxa that reach the effective threshold of LDA >4 were displayed. The brightness of each point was proportional to
the size of its effect. *p < 0.05, **p < 0.01, ***p < 0.001; OTUs, operational taxonomy units; PCoA, principal coordinate analysis.
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100%) for combined detection (Figure 9C, S10A–E, H–L). The
AUC of all GI oral samples was found to be 97.50% (95% CI:
95.00–100%), and the AUC of all stool samples was 99.90% (95%
CI: 99.70–100%) (Figures S10F, G, M, N). According to these
findings, POD based on microbial OTUmarkers in oral and fecal
samples had the high predictive potential for GC, CRC, and GI
cancers. In addition, combined detection outperformed oral or
fecal detection alone in terms of CRC prediction.
DISCUSSION

In this study, a combined analysis of GC and CRC was
performed, demonstrating the commonality and specificity of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
microbiota in the oral cavity, stool, tumor, and paracancerous
tissue. Compared to HC, GC and CRC showed the same
changes in the richness, evenness, and number of bacterial
species, revealing that the indicators decreased in oral samples
and increased in fecal samples. Similar changes were observed
in the a-diversity. Microbial dysbiosis may be caused by a
decrease in low-abundance bacteria and a change in their
composition in GC and CRC oral samples and an increase in
microbial diversity in fecal and tumor samples. Meanwhile,
compared to HC, the GC Proteobacteria and CRC
Fusobacteriota content decreased in oral samples (LDA > 4),
while they increased in fecal samples (LDA > 4). At the genus
level, compared to HC, the content of Haemophilus and
Neisseria of GC and CRC decreased, while the content of
A B
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FIGURE 4 | There were differences in fecal microbial diversity among HC (n = 70), GC (n = 49), and CRC (n = 33). (A) The Venn diagram displayed the overlaps
among groups, showing a total of 5844 OTUs. (B) PCoA calculated b-diversity on a distance (dissimilarity) matrix of Bray–Curtis indexes. The Shannon index (C) and
Chao1 index (D) were used to evaluate the fecal microbial diversity of patients with HC, GC, and CRC. Composition of fecal microbiota at the phylum level (E) and
genus level (F) among the three groups. LDA and LEfSe methods were used to analyze the specific characterization of the fecal microbiota of patients with HC, GC,
and CRC. (G, H) The LEfSe method identified the most divergent taxa in GC and CRC and scored the two groups of fecal samples by LDA. Only the taxa that reach
the effective threshold of LDA >4 were displayed. The brightness of each point was proportional to the size of its effect. *p < 0.05.
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FIGURE 5 | There were many similarities and differences in the microbial diversity of tissue between GC and CRC. GC.Tumor (n = 33), GC.Para (n = 36),
CRC.Tumor (n = 24), and CRC.Para (n = 24). (A) The Venn diagram displayed the overlaps among groups, showing a total of 19,739 OTUs. (B) PCoA calculated b-
diversity on a distance (dissimilarity) matrix of Bray–Curtis indexes. The Shannon index (C) and Chao1 index (D) were used to evaluate the microbial diversity of
tissues in patients with GC and CRC. Composition of tissue microbiota at the phylum level (E) and genus level (F) among the four groups. LDA and LEfSe methods
were used to analyze the specific characterization of the tissue microbiota of patients with GC and CRC. (G) The LEfSe method identified the most divergent taxa in
GC and CRC and scored both groups of tumor samples by LDA. (H) The LEfSe method identified the most divergent taxa in GC and CRC, and scored both groups
of paracancerous samples by LDA. (I) The LEfSe method identified the most divergent taxa in tumor and paracancerous tissues of GC and scored both groups of
samples by LDA. (J) The LEfSe method identified the most divergent taxa in tumor and paracancerous tissues of CRC and scored both groups of samples by LDA.
Only the taxa that reach the effective threshold of LDA >4 were displayed. The brightness of each point was proportional to the size of its effect. Para, paracancerous
tissues. *p < 0.05, ***p < 0.001.
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Streptococcus and Herbaspirillum increased in oral samples
(LDA > 4); in addition, the content of GC’s Streptococcus and
Escherichia-Shigella and CRC’s Fusobacterium and Escherichia-
Shigella increased in stool samples (LDA > 4). Through the
comparison of the three algorithms of Lefse, RF, and PLSDA-
VIP, these shared differential genera (GC: Gemella and
Lactobacillus and CRC: Streptococcus, Peptostreptococcus, etc.)
were found, and may play a role in GC/CRC. We also further
compared the relative abundance of different bacterial genera
(LDA > 4) (Haemophilus, Neisseria, Faecalibacterium,
Romboutsia, Streptococcus, Gemella, Escherichia-Shigella,
Fusobacterium, etc.) in the oral cavity, stool, and tissue
among multiple groups. The results suggested that they could
be used as potential biomarkers to participate in the evolution
of tumors as passengers or drivers. However, the significance of
the synergistic or antagonistic relationship between microbiota
must be investigated further. These oral and fecal bacterial
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
changes appear to be regular, and further research into their
interactions may provide new insights into tumorigenesis.
Furthermore, significant differences from HC bacteria served
as a foundation for GC and CRC-specific prediction.

The most prevalent species in the human stomach isH. pylori,
which accounts for 72%–99% of sequencing reads (Hunt et al.,
2015). This study showed that the sequencing reads of
Helicobacter genus in tumor (<25%) and paracancerous tissue
(<50%) implies that other bacteria may play more important
biological functions in GC. Although the acidic environment of a
healthy stomach is not conducive to bacterial growth, the
bacterial richness and several GC a indexes were higher in the
tissue samples than those of CRC, indicating a change in GC
tissue environment and rich microbial diversity. Streptococcus
was found to be more abundant in GC tumors than in
paracancerous tissue, and Fusobacteriota and Fusobacterium
were found to be more prevalent in CRC tissue (Flemer et al.,
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FIGURE 6 | Comparison of the relative abundance of different bacterial genera (LDA > 4) among multiple groups. The results showed the different bacterial genera
(LDA > 4) in the oral cavity, feces, and tissues of the HC, GC, and CRC groups: Akkermansia (A), Bacteroides (B), Dialister (C), Escherichia-Shigella (D),
Faecalibacterium (E), Fusobacterium (F), Gemella (G), Haemophilus (H), Helicobacter (I), Herbaspirillum (J), Klebsiella (K), Megamonas (L), Neisseria (M), Prevotella
(N), Romboutsia (O), and Streptococcus (P). Compared with the HC oral group, the relative abundance values of Haemophilus (H) and Neisseria (M) in the oral
cavity of GC and CRC patients were significantly downregulated; the relative abundance values of Gemella (G), Streptococcus (P), and Herbaspirillum (J) were
significantly upregulated. Compared with the HC oral stool group, the relative abundance values of Dialister (C), Faecalibacterium (E), Megamonas (L), and
Romboutsia (O) in the stool of GC or CRC patients were significantly downregulated; the relative abundance values of Streptococcus, Escherichia-Shigella (D),
Fusobacterium (F), and Akkermansia (A) were significantly upregulated. Helicobacter (I), Bacteroides (B), Klebsiella (K), and Prevotella (N) are also different genera in
GC and CRC tissues, and their relative abundance values have also changed. *p < 0.05, **p < 0.01, ***p < 0.001.
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2018). These potential rules of bacterial changes in the oral
cavity, stool, and tissue may be linked to the evolution of GI
tumors, but the role of passenger or driver needs to be further
explored (Sepich-Poore et al., 2021). The Fusobacterium
nucleatum is involved in the occurrence and development
mechanism of CRC at the moment (Yang et al., 2017; Brennan
and Garrett, 2019).

We observed that the bacteria on tumor mucosa of GC and
CRC were more closely related to oral bacteria by analyzing the
shared bacteria and networks between oral cavity, stool, and
tissue of all samples and that distant colonization of oral
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
microbiota may promote this close relationship (Flemer
et al., 2018; Mascitti et al., 2019; Koliarakis et al., 2019;
Stasiewicz and Karpiński, 2021). The GC and CRC differ
from their precancerous lesions in microbial diversity, and
bacteria can influence the risk of inflammation and cancer in
the host by participating in purine metabolism, carbohydrate
metabolism, peptidoglycan biosynthesis (Grivennikov et al.,
2012; Coker et al., 2018), and interaction with the immune
system (such as Treg cells) (Furusawa et al., 2013). The
network map also showed significant changes in the phylum
and CAGs within each group. These results suggested that the
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FIGURE 7 | Abundant oral and fecal microbial networks were detected in GC and CRC mucosa. Analyze the shared microbiota of the oral cavity and tissue of HC,
GC, and CRC participants: (A) 16 oral microbial OTUs associated with GC and CRC tissue were aggregated into two coabundance groups (CAGs). CAGs were
defined in terms of clusters in a vertical or horizontal dendrogram and were named after their most prominent features. (B) Relative abundance of Oral pathogen
CAG and Biofilm CAG in three groups of oral samples (HC = 70, GC = 70, and CRC = 42). (C) The relative abundance of Oral pathogen CAG and Biofilm CAG in
GC and CRC tissue samples (GC.Tumor = 33, GC.Para = 36, CRC.Tumor = 24, and CRC.Para = 24). Analyze the shared microbiota of the stool and tissue of HC,
GC, and CRC participants: (D) 16 fecal microbial OTUs associated with GC and CRC tissue were aggregated into three CAGs. CAGs were defined in terms of
clusters in a vertical or horizontal dendrogram and were named after their most prominent features. (E) The relative abundance of Cluster 1, Cluster 2, and Cluster 3
in fecal samples of the three groups (HC = 70, GC = 49, and CRC = 33). (F) The relative abundance of Cluster 1, Cluster 2, and Cluster 3 in GC and CRC tissue
samples (GC.Tumor = 33, GC.Para = 36, CRC.Tumor = 24, and CRC.Para = 24). *p < 0.05, **p < 0.01, ***p < 0.001.
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composition and abundance of microbiota constantly change
in different disease states and sites and may actively participate
in disease evolution (Abreu and Peek, 2014; Engstrand and
Graham, 2020; LaCourse et al . , 2021; Sepich-Poore
et al., 2021).

The GC is an inflammatory-related cancer that is commonly
classified into cardia and non-cardia; factors that increase the
risk of non-cardia GC include chronic H. pylori infection,
smoking, alcohol consumption, pickled food, barbecue, low
fruit intake, etc. (Engstrand and Graham, 2020; Sung et al.,
2021). A high-fat diet and a sedentary lifestyle increase the CRC
risk (Sung et al., 2021). Primary prevention remains an
important strategy for reducing the global burden of GC and
CRC (Song et al., 2020; Sung et al., 2021). According to clinical
data, education, smoking, and family income may also be
associated with the prevalence of GC and CRC. Our results
and those of several other studies suggested that improving
dietary intake may be beneficial in the prevention of GC and
CRC (Tsugane and Sasazuki, 2007; Claesson et al., 2012;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
Etemadi et al., 2020). In this study, a random forest model
and POD calculation were used to classify oral and fecal
microbiota of GC, CRC, and GI cancers, which indicated that
the microbial markers could be used as a non-invasive
predictive tool for them. A more effective, non-invasive,
convenient, and cost-effective screening program may be
implemented as a primary preventive measure.

Since this study was primarily based on a high-risk elderly
cohort, appropriately lowering the screening age (down to 45
years old) could help reduce the burden of GC and CRC (Wolf
et al., 2018). Microbiota research in the pathogenesis of systemic
diseases, metabolomics analysis, and multi-center large-sample
verification is in the early stages. Biomarker analysis failed to
resolve to the species level and better identify species (e.g.,
Shigella spp. and Escherichia coli) (Devanga Ragupathi et al.,
2018). Various sequencing analyses and algorithms (such as
DADA2) also need to be updated and compared in time to
better present the results. Longitudinal studies remain required
to determine the role of oral, fecal, and GI biomarkers in tumor
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FIGURE 8 | Network analysis of microbiota shared by tumor, paracancerous tissue, oral cavity, and stool in HC, GC, and CRC. The figure showed the 31-OTU
(Figure 6) network map of bacteria found in the oral, fecal, tumor, and paracancerous mucosal microbiota of HC, GC, and CRC participants: oral samples of 70 HC
(A), 70 GC patients (B), and 42 CRC patients (C); fecal samples of 70 HC (D), 49 GC patients (E), and 33 CRC patients (F); tumors from 33 GC patients (G) and
24 CRC patients (I); and paracancerous tissue of 36 GC patients (H) and 24 CRC patients (J). For each group of samples, OTUs shared with oral and fecal samples
were determined respectively. The color of each nodule was divided according to its phylum, and the color of the number (the corresponding OTU) beside the
nodule was only calculated using the corresponding CAG in Figure 6 (Figures 6A, D). The colors of the lines between nodes (Spearman correlation value: r > 0.6 or
<−0.6, p < 0.01) were divided according to correlation (gray: positive correlation, blue: negative correlation). As the Spearman correlation value between each
corresponding node increased, the width of each edge increased. Legend on the right: the Mothur method and the SSUrRNA database of SILVA138 were used to
perform species annotation analysis on OTUs sequences. OTU_1 was shared by Biofilm CAG and Proteobacteria CAG and shown in red.
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development. We hope to provide a new idea for the difficulties
of targeted therapy in GI cancer’s intratumoral, intra-patient,
and inter-patient heterogeneity by further studying the
relationship between microbiota and GI cancers and applying
it to clinical diagnosis and treatment (Smyth et al., 2020).
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