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Introduction
Prevalent conditions such as obesity and cardiovascular and 
metabolic diseases arise from the complex interplay between 
genetics and environmental factors including diet, physical 
activity, and environmental toxicants. The developmental ori-
gins of health and disease (DOHaD) theory postulates that the 
early life environment influences metabolic programming and 
increases the risk for developing these conditions later in life.1,2 
Subclinical metabolic and epigenetic changes that occur in 
mid-childhood and adolescence could provide insight into the 

physiological processes that are altered early in life that ulti-
mately lead to disease development.

The metabolome can serve as a surrogate composite 
measure of metabolism and biological function. Metabolomics 
have the potential to uncover mechanisms of disease devel-
opment and may serve as predictive biomarkers of risk, 
including in children and adolescents.3-9 For example, in the 
Early Life Exposure in Mexico to Environmental Toxicants 
(ELEMENT) cohort, 7 identifiable metabolites from untar-
geted serum metabolomics analysis among girls and 3 among 
boys (ages 8-14 years) were associated with age-specific risk 
for metabolic syndrome.5 In Project Viva, branched chain 
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amino acids measured in children’s serum at ages 6 to 10 years 
were associated with decreased glucose in boys and increased 
triglycerides in girls 5 years later.7 The mechanisms by which 
the early life environment influences these metabolic pat-
terns are relatively unknown and may involve epigenetic 
regulation.

Epigenetic modifications regulate gene expression with-
out altering the genetic code, are heritable (mitotically and in 
some cases meiotically), and include DNA methylation and 
histone modifications. The epigenome is particularly sensi-
tive to environmental perturbation during the early stages of 
gestation when disrupted patterns can be propagated across 
subsequent cell divisions. As such, associations between 
DNA methylation and gestational exposures to maternal 
dietary intake and various toxicants10-18 suggest that epige-
netic programming is 1 mechanism underlying the DOHaD. 
There is evidence that early life epigenetic changes program 
individuals to be susceptible to developing metabolic syn-
drome19,20 and obesity.21,22

Epidemiological and animal-model studies provide evi-
dence for relationships between the epigenome (specifically, 
DNA methylation) and the metabolome.23-26 For example, in 
a cross-sectional study of 172 female twins aged 32 to 
80 years with untargeted metabolomics and epigenome-wide 
DNA methylation data from the Infinium 27K BeadChip, 
circulating levels of C-glycosyltryptophan were associated 
with blood leukocyte DNA methylation at CpG sites in 3 
genes. Interestingly, birth weight was associated with 
C-glycosyltryptophan in adulthood, and the association 
between this metabolite and DNA methylation in 1 of the 3 
genes (WDR85) replicated in an additional sample of 350 
adults from the same cohort.24 Thus, epigenetic-metabolite 
relationships may play a role in complex phenotypes through-
out the lifespan and may serve as a link between early life 
conditions and health and disease. Yet to our knowledge, no 
studies have examined relationships between DNA methyla-
tion and metabolites in children or adolescents.

In this study, we hypothesize that epigenetic regulation of 
environmentally-labile growth and adiposity-related genes is 
associated with metabolite profiles in childhood, and these 
metabolites are in turn associated with adolescent adiposity. 
To address these hypotheses, we examine relationships 
between DNA methylation and serum metabolites in children 
(ages 8-14 years) from the ELEMENT study (n = 238). We 
specifically assess associations between 3758 metabolites and 
venous blood leukocyte DNA methylation at 3 genes 
(HSD11B2, IGF2, and H19) and long-interspersed ele-
ments-1 (LINE-1), a global indicator of repetitive element 
DNA methylation status among all children and in stratified 
analyses by sex or pubertal stage. We then assess relationships 
between epigenetic-associated metabolites and measures of 
adiposity in ELEMENT children returning for follow-up on 
average 3 years later (n = 212).

Methods
Study population

This study used data from participants of Cohorts 2 and 3 of 
the ELEMENT project, a group of sequentially enrolled 
mother-child cohorts from 3 maternity hospitals in Mexico 
City.27 Initially, 1459 women were recruited from 1997 to 2004 
during pregnancy or at the time of delivery. Full details regard-
ing all of the ELEMENT cohorts have been previously 
described.27-30 Children were subsequently followed up at mul-
tiple visits from birth to adolescence. This paper includes data 
from 238 ELEMENT children who attended 1 follow-up visit 
between 2011 and 2012 at peripuberty (ages 8-14 years) and 
provided fasting blood leukocyte and serum samples for DNA 
isolation and metabolomics, respectively. At the peripubertal 
study visit, child age was reported, and fasting blood samples 
were obtained to isolate DNA and to analyze metabolite con-
centrations in serum. Most of the children (n = 212) attended 
an additional follow-up visit approximately 3 years later when 
anthropometry measures were repeated (BMI, waist circumfer-
ence, skinfold thicknesses).

Prior to participation, study procedures were explained to 
mothers and children. Mothers provided written consent upon 
enrollment in the study, and children also provided assent. The 
research protocol was approved by the Human Subjects 
Committee of the National Institute of Public Health of 
Mexico, participating hospitals, and the Internal Review Board 
at the University of Michigan.

Assessment of DNA methylation

DNA was isolated from blood leukocytes using the PaxGene 
Blood DNA kit (PreAnalytiX, Switzerland) and bisulfite con-
verted via the Epitect kit (Qiagen, Valencia, CA) or the EZ 
DNA Methylation kit (Zymo Research, Irvine, CA) as previ-
ously described.31 Percent of methylated cells was quantified at 
LINE-1 and growth- and metabolism-related genes (H19 
imprinted maternally expressed transcript (non-coding), H19; 
hydroxysteroid (11-beta) dehydrogenase 2 HSD11B2; and insu-
lin-like growth factor 2, IGF2, a paternally expressed imprinted 
gene). These genes and the LINE-1 biomarker were selected 
due to evidence for environmental-lability by various exposures 
in early development15,31-33 and for evidence of associations 
with adiposity-related outcomes in childhood or beyond.34-36

Percent DNA methylation was quantified via the pyrose-
quencing platform37 using assays previously developed by us 
for LINE-138 and HSD11B215 and by others for H19.33 
Details on each region are included in Supplemental Table 
S1. Methylation at IGF2 was quantified via the Sequenom 
EpiTYPER platform39 using a previously developed assay.40 
Briefly, sequences were amplified from approximately 50 ng 
bisulfite-converted DNA using HotStartTaq Master Mix 
(Qiagen). Each PCR batch (experimental plate) contained at 
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least 2 controls of known methylation status (0 and 100%). 
For pyrosequencing, Pyro Q-CpG software was used to com-
pute percent methylation reads at 4 to 5 CpG sites per gene 
from the PyroMark MD Pyrosequencer (Qiagen), and this 
software incorporates internal quality control checks (eg, 
bisulfite conversion control). Samples were run in duplicate 
with reads averaged. For IGF2, methylation was quantified at 
5 cleaved units representing 7 total CpG sites via the 
Sequenom EpiTYPER platform.

Metabolomics

Metabolomics analyses were conducted at the Michigan 
Regional Comprehensive Metabolomics Resource Core 
(MRC2). Fasting serum samples were collected in Mexico 
according to standard protocol, shipped to the US overnight on 
dry ice, and stored at –80°C until analysis. An untargeted assay 
was run in 8 batches of approximately 30 samples each using 
liquid chromatography-mass spectrometry (LC-MS) method-
ologies. Full details on the procedure have been previously 
described.41 Samples were run in positive and negative electro-
spray ionization modes. Within- and between-batch normali-
zation was achieved using spiked internal standards within 
each sample as well as sample pools run in each batch. Of the 
9303 features detected, 3758 remained after removal of redun-
dant compounds and those with >70% of values missing.

Anthropometry

Waist circumference was measured in duplicate to the nearest 
0.1 cm with a non-stretchable tape (QM2000; QuickMedical).42 
Tricep and suprailiac skinfold thicknesses were measured in 
duplicate to the nearest 0.1 mm with a Lange skinfold caliper 
(Lange; Beta Technology). Child height was measured in 
duplicate to the nearest 0.1 cm with a stadiometer (Perspective 
Enterprises, Portage, WI, USA). Weight was measured with a 
Bamescale (model 420, Puebla, Mexico) and rounded to the 
nearest 0.1 kg. Age- and sex-specific BMI z-scores were calcu-
lated according to the World Health Organization criteria.43 
For all outcomes measured in duplicate, if intra-personal vari-
ability exceeded the measurement tolerance of ± 0.5 cm for 
waist circumference and height or 2.0 mm for skinfold thick-
ness, an additional measurement was taken.

Covariates

Potential confounders in the relationship between metabolites 
and DNA methylation included maternal characteristics (age 
at birth of child, household socioeconomic status) and child 
characteristics (sex, age, pubertal status). A trained pediatrician 
assessed each child to determine Tanner stage on a scale of 1 
(no development) to 5 (full development) for testicles, breasts, 
and pubic hair using standardized methods.44 A dichotomous 
variable for pubertal onset was set to 1 if breast and/or pubic 

hair Tanner stages were >1 for girls, and if testicles or pubic 
hair Tanner stages were >1 for boys.

Metabolomics data processing

Metabolites were annotated by matching MS/MS fragmenta-
tion patterns, retention times, and ionization masses to metab-
olites within the MRC2 compound library, allowing for the 
annotation of 574 known compounds. The remaining unan-
notated metabolites, considered unknown, were labeled by 
their neutral mass and retention times. Prior to formal analyses, 
systematic biases across batches were adjusted first by aligning 
the median of quality control samples in each batch with a 
global median,45 and additional variations were accounted for 
by batch-specific random intercepts in the linear mixed-effects 
models. Metabolites were log-transformed, standardized using 
a z-score transformation (mean = 0, SD = 1), then imputed 
using the K-nearest-neighbour algorithm (K = 5) with the 
IMPUTE package in R. All 3758 metabolites were considered 
as outcomes in the statistical analysis.

DNA methylation data processing

DNA methylation at each gene region was examined for batch 
effects (ie, significant differences between experimental plates 
using ANOVA tests). All except the Sequenom-analyzed gene, 
IGF2, were found to exhibit batch effects in the bisulfite 
sequencing process. Therefore, methylation measurements for 
LINE-1, HSD11B2, and H19 were standardized to controls of 
known methylation status included in each batch according to 
justified methods15 and as we previously described.31

The quantification of DNA methylation involved several 
CpG sites for each region (4 for LINE-1, 5 for HSD11B2, and 
4 for H19) or 5 units containing 7 total CpG sites for IGF2 
(due to the inability of the Sequenom EpiTYPER platform to 
resolve CpG sites on the same cleaved fragment). First, we 
considered a simple average of all sites or units at 1 region or a 
weighted average via principal component analysis (PCA). For 
LINE-1, HSD11B2, and IGF2, methylation differences in 
means and variances across CpG sites within the same region 
were apparent with low correlation between some of the sites. 
Then, to account for site-specific variability within each region 
we used a weighted average obtained by non-negative PCA 
transformation (NNPCA) available via the R package 
NSPRCOMP.46-48 NNPCA constrains all factor loadings to be 
positive, which avoids cancellation of site-specific methylation 
in the resulting principal components (PCs). We chose 2 PCs 
(or weighted averages) for LINE-1, HSD11B2, and H19 
respectively, and 3 PCs for IGF2 in the subsequent analyses.

Statistical analysis

All statistical analyses were conducted in the R software (version 
3.3). Prior to modeling associations among metabolites and 
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DNA methylation outcomes, we examined the pairwise associa-
tion of gene PCs with sociodemographic variables to identify 
potential confounders. Child’s age, sex, and pubertal status were 
included in the LMM as these have been shown to be associated 
with metabolites in our previous work,5 as well as DNA methyla-
tion at some loci in this study. Other available covariates were not 
associated with DNA methylation and/or metabolites. We fit a 
LMM to examine the association between each metabolite and 
DNA methylation PC pair —adjusting for child’s age, sex, and 
pubertal status - where random intercepts were used to account 
for residual batch effects in the metabolite measurements. The R 
package NLME was utilized in the analysis involving 9 DNA 
methylation PCs and 3758 metabolites. To address the large 
number of hypotheses tested, we calculated q-values via the 
Benjamini-Hochberg method to account for false discovery 
rate.49 A q-value less than 0.05 was considered a statistically sig-
nificant metabolite-DNA methylation relationship.

Many studies using candidate gene DNA methylation as a pre-
dictor of outcomes model the data as averaged across CpG sites. 
Considering multiple PCs (also known as eigen-markers, but 
referred to as PCs in this study) allows us to not only preserve the 
maximum information of the original methylation data but also 
find signals that may not have been detected by a mean CpG site 
approach due to the averaging out of potentially opposite effects. 
The non-negative weights of NNPCA facilitate biological inter-
pretation of the PCs as weighted sums of individual CpG sites. 
While we believe the NNPCA method better captures the varia-
bility in each genic region with no loss of interpretability, we ran 
the same association analysis replacing PCs (ie, weighted averages) 
with the mean DNA methylation (ie, equally weighted averages) 
across all CpG sites for each of the 4 regions in an effort to com-
pare results with the more commonly used approach.

We conducted stratified analyses to explore whether there 
were sex- or pubertal status-specific associations between 
DNA methylation and metabolites. We re-ran the LMM 
stratified by (1) sex or by (2) pubertal status (no pubertal onset 
versus pubertal onset) to assess associations between DNA 
methylation PCs and metabolites. We considered associations 
with FDR q < 0.05 to be statistically significant.

Lastly among all children, we tested associations between 
known (identifiable) metabolites associated with DNA meth-
ylation and adiposity measures, for example, BMI z-score, 
waist circumference, triceps and suprailiac skinfold thicknesses 
measured at the follow-up visit. We applied multiple linear 
regression models, with the metabolites significantly associated 
with DNA methylation as predictors, adjusted for child age, 
sex and pubertal status at the first visit. We discuss estimated 
associations with P-value <.05.

Results
Descriptive statistics

Characteristics of the study population are summarized in 
Table 1. Of the 238 participants, 125 were female and 113 were 

male. Age at the peripubertal study visit ranged from 8 to 
14 years. 41.9% of children had initiated puberty (Tanner stage 
>1) by the time of sample collection. At the follow-up visit, 
BMI z-score averaged 0.50 (SD = 1.28). Percent DNA meth-
ylation, averaged across the CpG sites included for each gene 
or region, is displayed in Table 1. Loadings for each PC from 
NNPCA are in Supplemental Table S2.

Associations between DNA methylation PCs and 
metabolites

We observed significant associations (q < 0.05) between known 
and unknown metabolites with PCs of each region (see Table 2 
for known and Supplemental Table S3 for unknown metabo-
lites). DNA methylation of LINE-1 repetitive elements was 
associated with 76 metabolites (20 with both PCs, 16 with PC1 
only, and 40 with PC2 only). These included inverse associations 
with 2 dicarboxylic fatty acids and a positive association with 
1-octadecanolyl-rac-glycerol. HSD11B2 methylation was associ-
ated with 27 metabolites (3 with PC1, 24 with PC2), which 
included an inverse association with 16-bromo-9E-hexadecenoic 
acid. H19 methylation was associated with 103 metabolites (one 
with both PCs, 21 with PC1, 81 with PC2). Inverse associations 

Table 1. Characteristics, DNA methylation at specific regions, 
and metabolites among peripubertal children from the early life 
exposures in Mexico to environmental toxicants (ELEMENT) 
cohort.

N (%) MEAN (SD)

Age (yrs) 238 10.43 (1.5)

Gender—Boys 113 (47.5)  

Gender—Girls 125 (52.5)  

Tanner Stage = 1 136 (58.1)  

Tanner Stage ⩾ 2 98 (41.9)  

DNA methylation (%)*

Mean LINE-1 Methylation 233 78.5 (2.3)

Mean HSD11B2 Methylation 236 9.2 (1.4)

Mean IGF2 Methylation 219 45.2 (4.2)

Mean H19 Methylation 235 58.3 (4.9)

Anthropometry at follow-up visit

Age (yrs)—second visit 212 13.6 (1.7)

BMI for age z-score 211 0.5 (1.28)

Waist circumference (cm) 213 78.0 (10.6)

Triceps skinfold thickness (mm) 212 18.0 (6.8)

Suprailiac skinfold thickness (mm) 213 25.0 (13.8)

*DNA methylation levels standardized to batch for LINE-1, HSD11B2, 
and H19.
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were observed with 3 dicarboxylic acids, 1-octadecanoyl-rac-
glycerol, cycloheptanecarboxylic acid, 4-hydroxyphenylethanol, 
and 5-oxo-7-octenoic acid. Four unknown metabolites were 
associated with PC1 or PC2 of IGF2 (Table S3).

DNA methylation means and metabolites

When gene-specific DNA methylation is the predictor in an 
analysis, the mean methylation across all included CpG sites in a 
region is often used. Thus, we ran a separate analysis using the 
DNA methylation means to compare overlap between results 
obtained with the NNPCA method (Supplemental Table S4). 
In general, our NNPCA analysis identified more statistically sig-
nificant metabolites than the average DNA methylation analysis 
which is more commonly used. Of the significant metabolites in 
the mean analysis, 50 out of 77 for LINE-1, 2 out of 2 for 
HSD11B2, 22 out of 34 for H19, and 1 out of 1 for IGF2 were 
also identified in the NNPCA analysis.

Sex-stratif ied analysis

In the sex-stratified analysis, DNA methylation at all 4 
regions was associated with metabolites among both boys 
and girls (see Table 3 for number of associations with FDR q 
< 0.05 and Supplemental Table S5 for the list of metabolites 
with q < 0.05). Among boys, most of the statistically signifi-
cant associations were with LINE-1 (Supplemental Table 
S5), including 2 saturated dicarboxylic fatty acids (11:0 and 
9:0) with positive associations and an unsaturated dicarbox-
ylic fatty acid (17:3) with an inverse association; the latter 
relationship also observed in all children (Table 2). Among 
girls in contrast to boys, most of the statistically significant 
associations were with H19 or HSD11B2 (Supplemental 
Table S5). Known metabolites inversely associated with H19 
methylation in girls include 5-oxo-7-ocetenoic acid and FA 
8:0 DiC, which were also identified in the analysis of all chil-
dren (Table 2).

Table 2. Significantly associated known metabolites with PCs of DNA methylation of LINE-1, HSD11B2, and H19 (q < 0.05) 
among all children.

METABOLITE SUPER 
PATHWAy

SUB PATHWAy PC1 OF DNA METHyLATION PC2 OF DNA METHyLATION

β (SE) q-vALUE β (SE) q-vALUE

Associated with LINE-1

FA 17:3 (DiC, diOH) Lipid Fatty Acid, 
Dicarboxylate, 
dihydroxy

−0.0737 (0.0152) 0.0000 −0.0709 (0.0186) 0.0349

1-octadecanoyl-rac-
glycerol

Lipid Monoacylglycerol 0.0499 (0.0136) 0.0439 0.0579 (0.0164) 0.0573

FA 10:1 (DiC) Lipid Fatty Acid, 
Dicarboxylate, hydroxy

−0.0613 (0.015) 0.0221 −0.0528 (0.0183) 0.1789

Associated with HSD11B2

16-bromo-9E-
hexadecenoic acid

Lipid Halogenated fatty 
acids

−0.0764 (0.0207) 0.0439 −0.028 (0.0161) 0.5911

Associated with H19

1-octadecanoyl-rac-
glycerol

Lipid Monoacylglycerol −0.0311 (0.0066) 0.0000 0.011 (0.0102) 0.8020

FA 8:0 (DiC) Lipid Fatty Acid, 
Dicarboxylate

−0.03 (0.0072) 0.0000 0.0021 (0.0115) 0.9741

cycloheptane carboxylic 
acid

Organic acids 
and derivatives

Carboxylic Acid −0.0281 (0.0073) 0.0221 0.0025 (0.0117) 0.9710

4-hydroxyphenylethanol Amino acid tyrosine metabolism 
pathway

−0.0242 (0.0078) 0.1310 −0.0483 (0.0118) 0.0221

FA 11:1 (DiC,OH) Lipid Fatty Acid, 
Dicarboxylate, hydroxy

−0.019 (0.0081) 0.3473 −0.0514 (0.012) 0.0000

FA 14:1 (DiC, OH) Lipid Fatty Acid, 
Dicarboxylate, hydroxy

−0.0073 (0.0071) 0.8201 −0.0462 (0.0114) 0.0221

5-oxo-7-octenoic acid Lipid Fatty acid, Keto −0.0159 (0.0078) 0.4754 −0.0422 (0.0116) 0.0439

Models adjusted for child’s age, sex, and pubertal status. There were no known metabolites associated with PCs of IGF2 DNA methylation at q < 
0.05. Only metabolites with at least one significant association at q < 0.05 are shown.
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Pubertal stage-stratif ied analysis

When stratified by pubertal onset, a small number of statisti-
cally significant associations were observed among pre-puber-
tal children, primarily with PCs of LINE-1 and H19 DNA 
methylation (Supplemental Table S6). Among pre-pubertal 
children, a primary bile acid metabolite (3,7-dihydroxy-5-
cholestan-26-oic acid) was positively associated with LINE-1 
methylation and a dicarboxylic fatty acid (11:1) was inversely 
associated with LINE-1, with additional associations between 
LINE-1 and fourteen unknown metabolites. The same dicar-
boxylic fatty acid was inversely associated with H19 methyla-
tion among children with pubertal onset.

More significant associations were observed between DNA 
methylation and metabolites in the pubertal onset group 
(Table 3), including 137 and 305 metabolites associated with 
PC1 and/or PC2 of LINE-1 and H19 methylation, respec-
tively (Supplemental Table S6). Overlaps were observed in the 
all-children analysis including the known metabolites 5-oxo-
7-octenoic acid, 4-hydroxyphenylethanol, and several dicarbo-
xylic fatty acids. Additional metabolites associated with 
LINE-1 among pubertal children include a phosphatidylcho-
line, a phosphatidylserine, pinitol, methyl beta-d-galactoside, 
and taurolithocholate. In the pubertal onset group, 38 named 
metabolites and 267 unknown metabolites were associated 
with H19 methylation. Inverse associations were observed 
with 22 saturated and monounsaturated dicarboxylic fatty 

acids with chain lengths from 8 to 20; this is 37% of dicarbo-
xylic fatty acids captured in the entire dataset. The fatty acid 
oxidation metabolite, N-undecanoylglycine, was inversely 
associated with H19. Other metabolites associated with H19 
included 5-methoxytryptophol, 4-acetamidobutanoate, die-
thyl 2-methyl-3-oxosuccinate, methyl 8-2-2-formyl-vinyl-
3-hydroxy-5-oxo-cyclopentyl-octanoate, porphobilinogen, 
and metabolites that likely stem from diet, supplement, or 
pharmaceutical use (benzoin, chloropheniramine, ibuprofen, 
and salsolinol).

Metabolites and child’s adiposity measures

We examined relationships between the ten known metabo-
lites associated with DNA methylation of at least 1 gene among 
all children (q < 0.05) and adiposity measured approximately 3 
years later. Fatty acid intermediates, FA 17:3 (DiC, diOH) and 
5-oxo-7-octenoic acid, were both inversely associated with adi-
posity measures (P < .05; Table 4). Both were associated with 
decreased skinfold thickness, and FA 17:3 (DiC, diOH) was 
also associated with decreased waist circumference.

Discussion
We observed statistically significant associations between serum 
metabolite levels and blood leukocyte DNA methylation of 
environmentally-labile genes related to physical growth and 

Table 3. Number of metabolites significantly associated with DNA methylation at each region among all children and in stratified 
analyses (q < 0.05).

GENE ALL CHILDREN BOyS GIRLS PRE-PUBERTy PUBERTAL ONSET

 N = 238 N = 113 N = 125 N = 136 N = 98

LINE-1

 PC1 36 30 5 16 99

 PC2 60 28 2 4 111

HSD11B2

 PC1 3 2 2 0 7

 PC2 24 0 28 3 13

H19

 PC1 22 2 13 9 242

 PC2 82 1 15 0 175

IGF2

 PC1 1 2 1 0 0

 PC2 3 5 2 1 1

 PC3 0 0 0 1 0

Models of all children are adjusted for child’s age, sex, and pubertal status. Sex-stratified models adjust for age and pubertal status. Puberty stage-
stratified models adjust for sex and age. The number of metabolites from among 3758 associated with DNA methylation at the region at a false 
discovery rate of 5% (q < 0.05) are listed for each set of children. Pre-puberty was defined as Tanner stage = 1, and pubertal onset refers to Tanner 
stage = 2, 3, 4, or 5.
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metabolism in a sample of Mexican adolescents. Out of 3758 
metabolites including 574 knowns, 76 metabolites were associ-
ated with DNA methylation of LINE-1, 27 metabolites with 
HSD11B2, 103 with H19, and 4 with IGF2 at q < 0.05. The 
known identities among these were 7 fatty acids, a monoacylg-
lycerol, a carboxylic acid, and a metabolite of the tyrosine metab-
olism pathway. Dicarboxylic fatty acids were inversely associated 
with LINE-1 and H19 DNA methylation, which may reflect an 
increase in extra-mitochondrial fatty acid oxidation. Two metab-
olites - 5-oxo-7-octenoic acid and FA 17:3 DiC—were also 
inversely associated with adiposity measured in adolescence, sug-
gesting a role for these metabolites as biomarkers or predictors of 
adiposity in children. Analyses stratified by sex revealed some 
statistically significant associations among girls and boys, though 
most were with unknown metabolites or with named metabo-
lites that had already been identified in the analysis with all chil-
dren. The analysis stratified by pubertal stage revealed hundreds 
of statistically significant associations between known and 
unknown metabolites, primarily with LINE-1 or H19 DNA 
methylation, among children in the puberty onset group (Tanner 
stage>1). In particular, the relationship between H19 DNA 
methylation and metabolites relevant to fatty acid oxidation and 
metabolism was evident in this group.

DNA methylation of LINE-1 repetitive elements serves as 
a partially representative biomarker of genome-wide DNA 
methylation.50 LINE-1 is a family of repetitive elements that 
comprises nearly 17% of the human genome; these elements 
are typically hypermethylated to prevent retrotransposition and 
genomic instability.51,52 LINE-1 methylation levels are associ-
ated with health outcomes as diverse as pubertal timing and 
cancer.53,54 Dicarboxylic fatty acids, inversely associated with 
LINE-1 methylation, are formed as intermediates in extra-
mitochondrial fatty acid oxidation within the endoplasmic 

reticulum and the peroxisomes,55 potentially suggesting a link 
between a broad decrease in DNA methylation across the 
genome and increases in extra-mitochondrial fatty acid oxida-
tion. The mechanism underlying this association is currently 
unknown. It is possible that LINE-1 methylation is serving as 
a proxy of DNA methylation of other environmentally-labile 
genes, some of which may play functional roles in fatty acid 
oxidation pathways. Previous studies have suggested a relation-
ship between mitochondrial β-oxidation and extra-mitochon-
drial ω-oxidation with metabolic health in adolescents. Butte 
et  al. observed decreases in dicarboxylic fatty acids in obese 
versus non-obese Hispanic children with an average age of 
11 years (n = 803).9 In a previous study of ELEMENT children, 
fat intake was associated with increased insulin resistance, and 
this seemed to be related to increased omega oxidation.56 In the 
present study, the dicarboxylic FA 17:3 with 2 hydroxyl groups 
was inversely associated with waist circumference and skinfold 
thickness in adolescence, supporting that some dicarboxylic 
fatty acids may be a biomarker of adiposity. Whether measure-
ment of dicarboxylic fatty acids in childhood could serve as an 
earlier or better biomarker of adiposity and its complications 
compared to typical clinical biomarkers remains to be tested.

In this study, we observed methylation at H19 was associated 
with the largest number of metabolites (Supplemental Table 
S3), including a pattern of inverse associations with dicarboxylic 
fatty acids, a monoacylglycerol, carboxylic acid, and a tyrosine 
metabolite (4-hydroxyphenylethanol). When stratifying by 
pubertal status, we observed hundreds of statistically significant 
associations (Supplemental Table S6) between H19 and metab-
olites among children who had started puberty (Tanner stage 
>1). The significant metabolites included 22 medium to long 
chain dicarboxylic fatty acids, comprising 37% of all dicarbox-
ylic fatty acids captured in the dataset. DNA methylation at 

Table 4. Associations between metabolites and child adiposity measures (model estimates and their SE are shown).

KNOWN METABOLITE BMI FOR AGE z-SCORE WAIST CIRCUMFERENCE TRICEPS SKINFOLD SUPRAILIAC SKINFOLD

FA 10:1 (DiC) −0.067 (0.088) −1.117 (0.739) −0.023 (0.442) −1.017 (0.918)

FA 17:3 (DiC, diOH) −0.095 (0.087) −1.478 (0.732)* −0.346 (0.443) −1.936 (0.906)*

1-octadecanoyl-rac-glycerol −0.137 (0.087) −0.834 (0.739) −0.843 (0.438) −1.331 (0.914)

16-bromo-9E-hexadecenoic acid −0.072 (0.086) −0.337 (0.736) 0.018 (0.439) −1.113 (0.91)

4-hydroxyphenylethanol 0.067 (0.087) 0.383 (0.743) 0.254 (0.442) 0.276 (0.921)

FA 8:0 (DiC) 0.077 (0.089) 0.801 (0.752) 0.31 (0.452) 0.885 (0.933)

FA 11:1 (DiC,OH) 0.054 (0.086) 0.432 (0.73) 0.313 (0.435) 0.421 (0.905)

FA 14:1 (DiC, OH) −0.004 (0.087) −0.622 (0.736) 0.059 (0.439) −1 (0.911)

5-oxo-7-octenoic acid −0.095 (0.086) −1.412 (0.724) −1.081 (0.429)* −2.403 (0.891)**

cycloheptane carboxylic acid 0.068 (0.089) 0.783 (0.751) 0.296 (0.451) 1.022 (0.931)

Adiposity (BMI for age z-score, waist circumference [cm], and triceps or suprailiac skinfold thickness [mm] at the second adolescent study visit were 
modeled as outcomes adjusting for age, pubertal status, and sex among all children.
*P < .05, **P < .01.
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IGF2 and H19 was assessed at well-characterized differentially 
methylated regions (DMRs) that are critical for their unique 
regulation as imprinted genes.33,57 There is evidence that epige-
netic alteration at these DMRs from the early life environment 
is persistent—even into late adulthood58—and contributes to 
adverse health outcomes including low birth weight, adolescent 
adiposity, and adiposity in post-menopausal women.34-36,57 
While epigenetic regulation of IGF2 and H19 seem to play a 
role in obesity and metabolic conditions later in life, how or 
whether this starts to develop in childhood or adolescence is 
unknown. Examined separately, lower levels of dicarboxylic 
fatty acids have been previously associated with obesity in chil-
dren5,9 and H19 methylation is positively associated with adi-
posity including among 17-year old children. 34,35 Our findings 
suggest DNA methylation and subsequently expression of H19 
may influence the formation of dicarboxylic fatty acids and 
development of adiposity and metabolic risk, especially among 
children who have initiated puberty. The biological pathway by 
which H19 may affect fatty acid oxidation is currently unknown 
and an area of interest for future research. In this study, H19 
DNA methylation was also associated with decreased 5-oxo-
7-ocetenoic acid; a medium chain unsaturated fatty acid that 
was inversely correlated with adolescent skinfold thickness in 
the same children. While the function of 5-oxo-7-ocetenoic 
acid is currently unknown, another straight-chain fatty acid of 
the same length (octanoic acid) inhibits adipogenesis.59

The application of metabolomics to children’s health 
research has led to the identification of sets of metabolites 
associated with obesity,8,60 insulin resistance,56 and overall risk 
for metabolic syndrome5 in children and adolescents. These 
metabolites hold promise for future development into screen-
ing tools to identify children at risk and for increasing under-
standing of disrupted biological pathways that lead to excessive 
adiposity and metabolic disorders. Recent rodent and epide-
miological studies of adults have unveiled associations between 
the epigenome and metabolome that provide insight into early 
developmental epigenetic programming of metabolic path-
ways.23-25,61 Combining epigenetic and metabolomics analyses 
in studies of children will accelerate our understanding of how 
early life epigenetic programming leads to the development of 
complex metabolic conditions later in life and will aid in the 
identification of key pathways to target to disrupt disease 
development. In these types of analyses, development stage of 
the children, especially pertaining to pubertal onset, is impor-
tant to stratify by whenever possible.

There are several strengths to this study. Batch effects in 
both metabolite and DNA methylation data were addressed 
statistically to minimize error as batch effects are known to be 
problematic in both metabolomics and pyrosequencing analy-
sis methods.15,62 LMMs are a well-established tool for mode-
ling covariance between measurements and lend themselves to 
adjustment for batch for the dependent variable via random 
intercept. For the primary analysis, NNPCA was used on all 
CpG sites within each gene instead of averaging methylation 

at CpG sites within the same region as the lability and the 
inter-individual variability of DNA methylation at each CpG 
site can differ.63 We were able to annotate 574 of the 3758 
metabolites included in the analysis.

Limitations of this study include the limited number of loci 
selected for DNA methylation analysis. With this candidate 
gene approach, we did not capture data on all genes and non-
coding regions that are involved in metabolism. Moreover, 
DNA methylation at only 1 time period was quantified in 1 
tissue type (blood leukocytes). Given the timing of the epige-
netic and metabolomics analyses, reverse causation is possible 
for associations between DNA methylation and metabolites 
(ie, for associations between pharmaceutical metabolites and 
DNA methylation observed in the children with pubertal 
onset). The process of puberty and lifestyle changes when 
entering adolescence may induce epigenetic changes at many 
genes.64 While we performed sex-stratified and pubertal onset-
stratified analyses, our sample size precluded stratification by 
pubertal status within boys and girls separately. Such stratifica-
tion will be important in future studies given the vast biological 
differences between boys and girls that emerge during and 
after puberty that influence metabolism and adiposity.

Future studies should emphasize longitudinal measure-
ments of DNA methylation and utilize an epigenome-wide 
platform to identify novel genes or gene networks that are 
environmentally labile and influence growth and adiposity. 
Identification of these genes or non-coding regions would pro-
vide insight into the biological mechanisms influencing the 
developmental origins of adiposity and metabolic outcomes in 
childhood and adolescence. Ultimately, this knowledge will 
improve our understanding of subclinical indicators of meta-
bolic health and biological pathways that can be screened and 
targeted earlier in life to break the chain of cardiovascular and 
metabolic disease risk as children age into adulthood.
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