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Abstract
Background: The frequency of a haplotype comprising one allele at each of two loci can be
expressed as a cubic equation (the 'Hill equation'), the solution of which gives that frequency. Most
haplotype and linkage disequilibrium analysis programs use iteration-based algorithms which
substitute an estimate of haplotype frequency into the equation, producing a new estimate which
is repeatedly fed back into the equation until the values converge to a maximum likelihood estimate
(expectation-maximisation).

Results: We present a program, "CubeX", which calculates the biologically possible exact
solution(s) and provides estimated haplotype frequencies, D', r2 and χ2 values for each. CubeX
provides a "complete" analysis of haplotype frequencies and linkage disequilibrium for a pair of
biallelic markers under situations where sampling variation and genotyping errors distort sample
Hardy-Weinberg equilibrium, potentially causing more than one biologically possible solution. We
also present an analysis of simulations and real data using the algebraically exact solution, which
indicates that under perfect sample Hardy-Weinberg equilibrium there is only one biologically
possible solution, but that under other conditions there may be more.

Conclusion: Our analyses demonstrate that lower allele frequencies, lower sample numbers,
population stratification and a possible |D'| value of 1 are particularly susceptible to distortion of
sample Hardy-Weinberg equilibrium, which has significant implications for calculation of linkage
disequilibrium in small sample sizes (eg HapMap) and rarer alleles (eg paucimorphisms, q < 0.05)
that may have particular disease relevance and require improved approaches for meaningful
evaluation.

Background
Linkage disequilibrium (LD) describes the condition that
occurs when alleles at different loci are non-randomly
associated in a given population. Under LD the frequency
(f11) of a haplotype (h11) representing the "1" allele at two

loci is significantly more or less than the product of the
respective allele frequencies. Characterisation of LD is
important in medical genetics, influencing association
mapping of trait loci and providing information on inter-
actions between genes [1,2]. LD is the result of a shared
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history of mutation and recombination, and other factors
including: genetic drift, population growth, admixture,
population structure, the ages of the polymorphisms, the
physical distance separating them and the effects of selec-
tive pressure [3].

For unrelated individuals the estimation of LD relies on
the estimation of haplotype frequencies. In a 3 × 3 table
for a biallelic marker the haplotype phase of all individu-
als is known with the exception of the centre cell (repre-
senting individuals heterozygous at both loci). The

estimated frequency, , of the haplotype h11 is described

by a cubic equation of the form

that is adapted from Hill's equation (4) [4] with the con-

stants defined under Methods. With  and the allele fre-

quencies, all four haplotype frequencies can be calculated,
thus estimating the unknown proportions of the middle
cell.

Several approaches exist for solving equation (1), the
solution of which enables estimation of haplotype fre-
quencies and LD coefficients. The first approach uses iter-
ation-based algorithms. An initial estimate of haplotype
frequency (either random, or based on the known haplo-
type numbers) is substituted into the equation, providing
a new estimate. This is then fed back into the equation
and the expectation-maximisation (EM) process repeated
until the values converge. This is the basis both of the
algorithm described by Hill in 1974 for the estimation of
pairwise haplotype frequencies [4], and of other EM algo-
rithms that enable the estimation of multilocus haplotype
frequencies. Many programs exist that utilise variations on
this approach, including: GOLD [5], GOLDsurfer [6],
MIDAS [7], Haploview [8] and many others reviewed in
[9-12]. The potential problem for these approaches is that
algorithms may converge on one of the alternative roots
of the cubic equation (a local maximum rather than the
global maximum).

Other approaches include parsimony, eg HAPAR [13] and
Bayesian algorithms, eg PHASE [14-16]. Parsimony and
Bayesian methods are both better suited to estimating
individual haplotypes than EM approaches, while Baye-
sian and EM methods are useful for estimating population
frequencies [11].

An alternative approach would be exact solution, such as
Cardan's solution [17] of the generalized cubic equation (of
which equation (1) is an example). This provides all roots
to the cubic equation, from which we can select those that

are both real (i.e. not a complex number) and biologically
possible. If more than one solution exists then the likeli-
hoods of the different solutions can be compared and an
informed evaluation made of the result. Theoretically, the
non-iterative approach may be computationally less
intensive and more accurate, but computational efficiency
and accuracy will be software and platform dependent.

Implementation
Hill assumed random mating and Hardy Weinberg Equi-
librium (HWE) [4]. Rearranging terms for consequent
diplotype frequency expectations for two biallelic loci Luo
and Suhai [18] obtained equation 1 given in the introduc-

tion (here redefining  as x, a3 as a, a2 as b, a1 as c and

a as d for convenience): ax3 + bx2 + cx + d = 0, where a = 4n;
b = 2n (1 - 2p - 2q) - 2(2n11 + n12 + n21) - n22; c = 2npq -

(2n11 + n12 + n21)(1 - 2p - 2q) - n22(1 - p - q); d = -(2n11 +

n12 + n21)pq; n = number of subjects; p = common allele

freq of locus 1; q = common allele freq of locus 2; n11 is the

number of subjects who are homozygous for the com-
moner allele at both loci; n12 are common homozygous at

locus 1 and heterozygous at locus 2; n21 are heterozygous

at locus 1 and common homozygous at locus 2; n22 are

heterozygous at both loci [18]. Equation 1 can be solved
exactly for x (with 1 to 3 real number solutions).

We have adopted the Nickalls treatment of the Cardan
solution of the generalized cubic equation [17], and writ-
ten a Python [19] program "CubeX" to solve equation 1
exactly. In CubeX, after calculation of constants a-d from
diplotypic data the following are calculated:

xN = -b/(3a); δ2 = (b2 -3ac)/9a2; h2 = 4a2δ6; yN = axN
3 + bxN

2 

+ cxN + d.

The discriminant ∆3 = yN
2 - h2 is then used to determine the

outcome in real roots (without having to go through com-
plex number intermediates or ambiguities), with three
possible outcomes:

Outcome 1: if yN
2 > h2 there will be only one real root (α)

given by

Outcome 2: if yN
2 = h2 there are three real roots (α, β and

γ) and α and β are equal. For a value of :
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α = xN + µ (3)

β = xN + µ (4)

γ = xN - 2µ (5)

Outcome 3: if yN
2 <h2 there are three real roots (α, β and

γ). Where :

α = xN + 2δcosθ (6)

β = xN + 2δcos(2π/3 + θ) (7)

γ = xN + 2δcos(4π/3 + θ) (8)

Values for D' and r2 are calculated as previously described
[20,21]:

Dmax = min [p(1-q),(1-p)q] if D > 0 or Dmax = min [pq, (1-
p)(1-q)] if D < 0

D' = D/Dmax (9)

r2 = D2/(p(1-p)q(1-q)) (10)

Diplotype frequencies based on the estimated haplotype
frequencies are compared to the input diplotype frequen-
cies by a χ2 test, which effectively tests sample deviation
from the null hypothesis of HWE for the diplotypes
formed of the four haplotypes. The number of degrees of
freedom is equal to the number of observations (diplo-
type counts) minus four estimated parameters which are
either three haplotypes (the fourth can be inferred) and D,
or one haplotype, two allele frequencies and D. If nine dif-
ferent diplotypes are observed the number of degrees of
freedom is therefore five. For each empty cell in the 3 × 3
the number of degrees of freedom is reduced by one. If the
user knows there are only three haplotypes present (and
therefore six diplotypes) then there are only three esti-
mated parameters (D is inferred by the three haplotype
frequencies) and 3 df. It is important to note that in the
latter case neither cubic solution nor iteration is necessary
as the haplotype frequencies can be directly counted from
the diplotype data. If the user believes that there are only
three alleles and hence six diplotypes, but there are non-
zero values for any of the other three possible diplotypes,
then reconsideration of the technical veracity of the data
and of the homogeneity of the population sample would
be wise.

Results

Solutions are considered biologically possible when 

and the derived ,  and  all fall within the range

0 to 1 (i.e. ) and add up to 1. This

constraint is tighter than those described elsewhere [22] as
it relies on the inherent assumption of representative sam-
pling and HWE, an extreme chance distortion of which
could lead to three solutions at SNP allele frequencies of
0.5 in sample data drawn from a population (if all sam-
ples are heterozygous at both loci the following are possi-
ble: all could be diplotype 11/22, all could be diplotype
12/21, or there could be a combination of both).

Number of solutions to the cubic equation with simulated 
data
We have calculated the number of possible solutions to
the cubic equation for genotypes of simulated pairs of
SNPs with a range of allele frequencies for a range of sam-
ple sizes. The genotype numbers were calculated assum-
ing HWE with a wide range of LD situations for the two
SNPs. This was achieved by simulating all combinations
of haplotype frequencies between 0 and 1, at intervals of
1/55, that add up to 1. These haplotype frequencies were
then converted to diplotype frequencies according to
Hardy-Weinberg equilibrium. The results are plotted in
Figure 1. Small samples result in minor deviations from
sample HWE, allowing more than one solution. The
smaller the sample size, the greater the range of allele fre-
quencies over which this occurs. A sample of 10 subjects
allows more than one biologically possible solution at a
wide range of allele frequencies (Figure 1A). With 60 indi-
viduals a broad range of allele frequencies is still affected
(Figure 1B) – this has implications for analyses based on
the HapMap CEU dataset of 60 unrelated individuals
[23,24]. At 100 individuals (Figure 1C) the problem is
limited to allele frequencies below 15% (Figure 1C),
while the plot for 1000 individuals shows no condition
under which there is more than one biologically possible
solution (Figure 1D). This last observation is because
under perfect sample HWE (infinite samples) the number
of biologically possible solutions is always 1, despite the
number of real solutions exceeding 1 at lower allele fre-
quencies (data not shown).

Number of solutions to the cubic equation with real data
We have also calculated the number of solutions to equa-
tion 1 for a set of real data from the HapMap project
[23,24]. These were a selection of SNPs from the ACE-
GH1 region of chromosome 17 for the CEU population
(60 unrelated individuals). Figure 2A shows that at the
lower allele frequencies the possibility of more than one
real solution to the cubic equation begins to arise. This is

θ = −arccos( / )yN h
3

D = × − ×( ) ( )f f f f11 22 12 21

f̂11
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consistent with the simulated data for 60 samples (Figure
1B), except that a broader range of allele frequencies is
affected. This is probably due to the inherent errors of real
data increasing the deviations from HWE relative to near-
perfect simulated data. In most cases of multiple solutions
only two of the three real roots are biologically possible.
Figure 2B compares these two values, indicating that in
most cases the differences in estimated haplotype are
small. In the minority of cases with three solutions these
fit the same pattern. However, this can have major conse-
quences for the calculation of D' (as illustrated in Figure
3). Note that D' and r2 behave quite differently in this
respect, and r2 is much less affected. However, as a |D'| of
1 indicates the existence of three or less haplotypes (r2 of
1 indicates two haplotypes), |D'| is a good indicator of
haplotype block structure, with a value of exactly 1 sug-
gesting little or no recombination between two loci, and a
value less than 1 supporting a break-down of LD. In fact
CubeX provides both D' and r2, allowing the user to select
their measure of preference. Figure 4 illustrates the rela-
tionship between these two measures in the simulated
and real datasets, which clarifies how a large |D'| value can
be observed with a low r2 value, but the key point is that a
|D'| of 1 indicates complete LD (i.e. three or less haplo-
types) despite a low r2.

Comparison of the cubic exact solution with other 
approaches
For the purposes of comparison we have analysed two
datasets with PHASE [16], MIDAS [7] (Hill EM) and
CubeX. The first is a dataset of directly haplotyped sam-
ples comprising 80 subjects from 3 ethnic groups (Asian,
African and Caucasian) for APOE [25]. Although all but
one SNP was in Hardy-Weinberg equilibrium, this dataset
has the potential to invalidate some of the assumptions of
the programs due to the mixture of ethnicity. However,
this provides a useful substrate on which to test the influ-
ence of stratification on the outcome of the cubic exact
solution. The second dataset is a set of multi-locus phased
data from HapMap CEU samples [23,24] for the IGF2
gene region. Although these have not been directly haplo-
typed, the multi-locus phased haplotypes are expected to
be very accurate, and this dataset comprises Caucasians,
so will not suffer from the same stratification issues. We
tested the programs on pair-wise subsets of these data.

For the APOE [25] dataset the data are presented in Addi-
tional File 1, with a selected summary in Table 1. The sub-
set in Table 1 demonstrate the advantage of being
provided with all possible solutions by CubeX, but also
demonstrates that all three approaches can be wrong. To
summarise the outcome, PHASE [16] and MIDAS [7] (Hill
EM) both matched the real counts in 28 of 36 SNP pairs,
while CubeX matched real counts in 33 of 36 SNP pairs
(for one of its solutions). However, in five of those cases
the user would need to determine which of the two CubeX
solutions to use based on their prior knowledge of the LD
structure in the region (i.e. do they expect three or four
haplotypes). This comparison confirms the risk of EM
finding a local maximum when there is more than one
biologically possible solution, and suggests that CubeX

Evaluation of number of solutions for real dataFigure 2
Evaluation of number of solutions for real data. (A) 
Number of biologically possible solutions over a range of 
allele frequencies using a large sample of SNP data (Chr. 
17:60 to 60.5 MB, 121 SNPs) from the HapMap project 
[23,24]. x-axis: allele frequency of SNP1, y-axis: allele fre-
quency of SNP2. Black = more than one solution. Grey = one 
solution. (B) Comparison of two solutions within the dataset. 
x-axis: higher value solution, y-axis: lower value solution.

Simulated data in which HWE is observed to the limit of rounding errors (whole number values for counts of individu-als)Figure 1
Simulated data in which HWE is observed to the 
limit of rounding errors (whole number values for 
counts of individuals). (A) Number of biologically possible 
solutions to the cubic equation in (A) 10 individuals; (B) 60 
individuals; (C) 100 individuals (D) 1000 individuals. x-axis: 
allele frequency of SNP1, y-axis: allele frequency of SNP2. 
Black = more than one solution. Grey = one solution.
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may offer advantages in stratified datasets or datasets with
low SNP minor allele frequencies (confirming the results
from simulated data above).

For the HapMap [23,24] IGF2 region data (comprising
SNPs rs3802971, rs734351, rs3213221, rs4244808,
rs1003483, rs3741208, rs1004446, rs4320932 and

rs7924316) CubeX gives only one solution in all cases,
and there is little difference between the outcome of the
three approaches (Additional File 2). This confirms that in
situations of higher allele frequencies there is less of an
issue with multiple biologically possible solutions to the
cubic equation, and iterative approaches are completely
acceptable.

Discussion
We have written an online program, "CubeX", to enable
simple analysis of the biologically possible estimated hap-
lotypes for pairs of biallelic markers. This program takes
data from a pair of markers as a standard 3 × 3 table of
nine diplotypes, generates cubic exact solutions to equa-
tion 1 and generates output in the format shown in Figure
3. The number of possible solutions is shown, followed
by haplotype frequencies and LD statistics for those solu-
tions. Below that a duplicate of the 3 × 3 input table is dis-
played with the addition of expected absolute diplotype
frequencies calculated from the haplotype frequencies.
The difference between these and the input data are sub-

jected to a χ2 test, which effectively tests sample deviation
from the null hypothesis of HWE for the diplotypes
formed of the four haplotypes. However, the interpreta-
tion of solutions depends on the prior hypothesis. In the

example in Figure 3, although solution γ exhibits a slightly

worse χ2 fit than solution β, the former is consistent with
a prior hypothesis of only three of the four haplotypes
existing (see Figure 5 in reference [7]), which is biologi-
cally likely in the absence of recombination between any
two loci. In fact, in all tested cases in Figure 2 generating
more than one solution, the diplotype data included zero
values in at least one corner cell and the two adjacent edge
cells of the 3 × 3 (i.e. where one possible solution has a
|D'| = 1, although it should be noted that more than one
solution can occur without zero values if double heterozy-
gotes are greatly over-represented). This suggests that the
principal issue is whether three or four haplotypes exist,
and in these cases the prior hypothesis (based on distance
and recombination rates) is of utmost importance. If
input data for individual SNPs are significantly out of
HWE a warning message is given at the top of the page.
For completeness, the biologically impossible real
number solutions are displayed at the bottom, along with
minimum and maximum biologically possible values for

 and allele frequencies. This program provides a con-

venient utility for researchers to both analyse data for hap-
lotype frequencies and LD statistics and to check previous
analyses for potential problems caused by multiple solu-
tions.

f̂11

Screenshot of results screen from CubeX online analysis programFigure 3
Screenshot of results screen from CubeX online 
analysis program. In this example there are two biologi-
cally possible solutions. Results for both are shown (upper 
table), and observed (input values) and expected diplotype 
frequencies (for the two solutions) displayed for comparison 
(lower table).
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Under perfect sample HWE the frequencies of all haplo-
types can be directly inferred from the corresponding cor-

ner diplotypes of the 3 × 3. For example: , so

. That being the case there are only two possi-

ble values for , one positive and one negative, the latter

being biologically impossible. Perfect sample HWE there-
fore results in only a single biologically possible solution
to the cubic equation. In the case of extreme sample HWD
where all samples fall within the middle cell of the 3 × 3,

 can contribute either a half, a quarter or none of the

haplotypes to the middle cell. There are therefore three
biologically possible solutions under conditions of
extreme sample HWD. The results from real data confirm
that in some cases more than one biologically possible
solution to the cubic equation for haplotype frequency
can exist. The simulations suggest that this occurs where
small sample size, sampling errors or non-random mating
result in a distortion of sample HWE, and demonstrates
the importance of testing HWE before haplotype analyses.
The greater the distortion of sample HWE the higher the
allele frequency at which more than one solution can
occur (hence, as described above, three solutions can
occur at allele frequencies of 0.5 if all samples are hetero-
zygous at both loci). In these cases the cubic exact algo-
rithm gives all possible solutions and a test of HWE, while
an iteration-based method would only give one. This sup-
ports the hypothesis that the cubic exact approach is supe-

rior to iteration-based methods in real-world datasets
where sample data rarely fit exactly to HWE (note that
sample may differ from population in HWE statistics –
here we refer to sample HWE). This is particularly impor-
tant in the analysis of low frequency SNPs and paucimor-
phisms [26-28], for which different solutions can
significantly distort D' results, despite the relatively simi-
lar solutions giving similar r2 results. In all the observed
data with two solutions there were no occasions in which
r2 exceeded 0.3 for any biologically possible solution, and
in most cases there is only a small difference in r2 between
biologically possible solutions. The largest effect is on D'.
On the basis of empirical data and using different
approaches to inference Wong et al showed that coding
SNPs with minor allele frequencies <0.06 are likely to be
of functional importance [29], and rarer alleles, haplo-
types and diplotypes of causal importance have emerged
in numerous disease contexts (eg. inflammatory bowel
disease, hemochromatosis). In addition to being applica-
ble and giving exact evaluation for D' analysis of common
SNPs, the cubic exact solution may prove of particular
value for evaluating "post-HapMap" and "post-dbSNP"
rarer haplotypes, for fully evaluating D' estimates from
datasets with greater deviations from the random mating
and HWE assumptions and for fully evaluating LD in
small datasets.

Finally, we have demonstrated by comparison with
PHASE [16] and MIDAS [7] (Hill EM) that in certain situ-

n f11 11
2= n ˆ

f̂ n
n11
11=

f̂11

f̂11

The range of LD in datasets using the CubeX tool to calculate r2 and D'Figure 4
The range of LD in datasets using the CubeX tool to calculate r2 and D'. (A) Simulated data. D' on x-axis, r2 on y axis. (B) Real 
SNP data (Chr. 17:60 to 60.5 MB, 121 SNPs) from the HapMap project [23,24]. D' on x-axis, r2 on y axis.
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Table 1: Illustrative examples of comparison of CubeX with PHASE [16] and MIDAS [7] (Hill EM).

Haplotype frequencies (rounded to 5 decimal places) Haplotype numbers (rounded to nearest haplotype)

Example SNP pair Haplotype REAL 
frequency

PHASE 
frequency

MIDAS 
frequency

CUBEX
 alpha

CUBEX 
beta

CUBEX 
gamma

REAL 
number

PHASE 
number

MIDAS 
number

CUBEX 
alpha

CUBEX 
beta

CUBEX 
gamma

1 Pair1_2 AC 0.0875 0.08689 0.0875 na 0.0875 na 14 14 14 na 14 na

Pair1_2 AT 0.725 0.72561 0.725 na 0.725 na 116 116 116 na 116 na

Pair1_2 TC 0 0.00061 0 na 0 na 0 0 0 na 0 na

Pair1_2 TT 0.1875 0.18689 0.1875 na 0.1875 na 30 30 30 na 30 na

2 Pair1_5 AG 0.75 0.75318 0.75478 0.75478 na 0.75 120 121 * 121 * 121 * na 120

Pair1_5 AA 0.0625 0.05932 0.05772 0.05772 na 0.0625 10 9 * 9 * 9 * na 10

Pair1_5 TG 0.1875 0.18432 0.18272 0.18272 na 0.1875 30 29 * 29 * 29 * na 30

Pair1_5 TA 0 0.00318 0.00478 0.00478 na 0 0 1 * 1 * 1 * na 0

3 Pair1_9 AT 0.05625 0.06477 0.05633 na 0.0563 0.075 9 10 * 9 na 9 12 *

Pair1_9 AC 0.75625 0.74773 0.75617 na 0.7562 0.7375 121 120 * 121 na 121 118 *

Pair1_9 TT 0.01875 0.01023 0.01867 na 0.0187 0 3 2 * 3 na 3 0 *

Pair1_9 TC 0.16875 0.17727 0.16883 na 0.1688 0.1875 27 28 * 27 na 27 30 *

4 Pair2_3 CG 0.05625 0.04724 0.0465 0.0465 na na 9 8 * 7 * 7 * na na

Pair2_3 CT 0.03125 0.04026 0.041 0.041 na na 5 6 * 7 * 7 * na na

Pair2_3 TG 0.48125 0.49026 0.491 0.491 na na 77 78 * 79 * 79 * na na

Pair2_3 TT 0.43125 0.42224 0.4215 0.4215 na na 69 68 * 67 * 67 * na na

5 pair5_9 GT 0.075 0.07313 0.06664 na 0.0666 0.075 12 12 11 * na 11 * 12

pair5_9 GC 0.8625 0.86437 0.87086 na 0.8709 0.8625 138 138 139 * na 139 * 138

pair5_9 AT 0 0.00187 0.00836 na 0.0084 0 0 0 1 * na 1 * 0

pair5_9 AC 0.0625 0.06063 0.05414 na 0.0541 0.0625 10 10 9 * na 9 * 10

A selection of comparisons using direct haplotyped APOE data [25]. Full data are present as a additional table. For haplotype numbers (rounded to the nearest number) incorrect answers 
are marked '*', correct answers are unmarked. Examples: (1) Phase, MIDAS and CubeX (1 solution) give correct answer. (2) Only CubeX gives the correct answer as one of its two 
solutions. (3) MIDAS and CubeX give the correct answer, PHASE and the other CubeX solution are wrong. (4) All three approaches are wrong. (5) PHASE and CubeX give the correct 
answer, MIDAS and the other CubeX solution are wrong.
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ations (low minor allele frequency, population stratifica-
tion) the cubic exact approach can perform better for pair-
wise analyses than alternative approaches by indicating
the existence of multiple solutions. However, our findings
confirm that in most other situations iterative approaches
are robust and accurate.

Conclusion
We present a comprehensive analysis of the consequences
of different variables on the number of solutions to the
cubic equation for haplotype frequency. Our analyses
demonstrate that lower allele frequencies, lower sample
numbers and a possible |D'| value of 1 can result in more
than one solution. This has significant implications for
the calculation of LD in small sample sizes and with rarer
alleles that may have particular disease relevance. This
evaluation provides essential information for an under-
standing of the limitations of LD estimation, which is par-
ticularly relevant for genome-wide analyses (where
sample sizes and allele frequencies can be low). Finally,
we present a program "CubeX", freely available as an
online program, which provides each of the biologically
possible cubic exact solution(s) to equation 1 for haplo-
type frequency, enabling the user to identify the solution
that best fits their prior hypothesis for number of haplo-
types.

Availability and Requirements
Project name: CubeX

Project home page: http://www.oege.org/software/cubex

Operating system(s): Platform independent (web-based)

Programming language: Python http://www.python.org

Licence: CubeX licence available from http://
www.oege.org/software/cubex

Any restrictions to use by non-academics: royalty-free use
allowed within terms of licence
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HWE – Hardy-Weinberg Equilibrium

LD – Linkage Disequilibrium
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