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BK Polyomavirus Evades Innate Immune
Sensing by Disrupting the Mitochondrial
Network and Promotes Mitophagy

Julia Manzetti,1,8 Fabian H. Weissbach,1 Fabrice E. Graf,1 Gunhild Unterstab,1,9 MarionWernli,1 Helmut Hopfer,2

Cinthia B. Drachenberg,3 Christine Hanssen Rinaldo,4,5 and Hans H. Hirsch1,6,7,10,*

SUMMARY

Immune escape contributes to viral persistence, yet little is known about human
polyomaviruses. BK-polyomavirus (BKPyV) asymptomatically infects 90% of hu-
mans but causes premature allograft failure in kidney transplant patients. Despite
virus-specific T cells and neutralizing antibodies, BKPyV persists in kidneys and
evades immune control as evidenced by urinary shedding in immunocompetent
individuals. Here, we report that BKPyV disrupts the mitochondrial network
and membrane potential when expressing the 66aa-long agnoprotein during
late replication. Agnoprotein is necessary and sufficient, using its amino-terminal
and central domain for mitochondrial targeting and network disruption, respec-
tively. Agnoprotein impairs nuclear IRF3-translocation, interferon-beta expres-
sion, and promotes p62/SQSTM1-mitophagy. Agnoprotein-mutant viruses
unable to disrupt mitochondria show reduced replication and increased
interferon-beta expression but can be rescued by type-I interferon blockade,
TBK1-inhibition, or CoCl2-treatment. Mitochondrial fragmentation and p62/
SQSTM1-autophagy occur in allograft biopsies of kidney transplant patients
with BKPyV nephropathy. JCPyV and SV40 infection similarly disrupt mitochon-
drial networks, indicating a conserved mechanism facilitating polyomavirus
persistence and post-transplant disease.

INTRODUCTION

Viruses infect all forms of life, and although metagenomics are revealing an increasing complexity of vi-

romes (Hirsch, 2019; Simmonds et al., 2017; Virgin, 2014), the underlying principle remains the same: viral

genetic information present as DNA or RNA is decoded by host cells, thereby enabling a programmed

take-over of cell metabolism to accomplish the essential steps of viral genome replication, packaging,

and progeny release to infect new susceptible cells and hosts (Enquist and Racaniello, 2013). With progeny

rates ranging from ten to several hundred-thousands per cell, virus replication represents a severe burden

compromising host cell function and viability and ultimately organ and host integrity. Host defense mech-

anisms include antiviral restriction factors (Kluge et al., 2015) as well as innate and adaptive immune re-

sponses (McNab et al., 2015) intercepting early and late steps of the viral life cycle. Given the obligatory

intracellular location of virus replication, the innate immune response is faced with the challenge of discrim-

inating virus and its regulatory and structural units as ‘‘non-self’’ amid physiological host cell constituents.

This task is partly accomplished by identifying pathogen-associated molecular patterns (PAMPs) such as

repetitive protein, lipid, and sugar structures through pattern recognition receptors (PRRs). In the last

decade, cytoplasmic sensing of nucleic acids has emerged as a key mechanism of intracellular innate im-

mune sensing (Takeuchi and Akira, 2010). Evolutionarily linked to detecting DNA damage and the failing

integrity of nuclei or mitochondria associated with metabolic stress, toxicity, or cancer (Hartlova et al.,

2015; Li and Chen, 2018; West and Shadel, 2017), viral RNA and DNA were found to be similarly sensed

through PRRs such as RIG-I/MDA-5/MAVS and cGAS/STING (Goubau et al., 2013; Hartlova et al., 2015;

McFadden et al., 2017). MAVS and STING have been located on membranous platforms of mitochondria

and the endoplasmic reticulum (ER) in the cytosol. Besides direct cross-talk (Zevini et al., 2017) and prox-

imity via mitochondria-associated ER-membranes (MEM), both pathways converge in inducing type-1

interferon expression following the activation of the downstream kinases TBK-1 and IKKε and the
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phosphorylation and nuclear translocation of transcription factors such as IRF3, IRF7, and NFkB (Liu et al.,

2015; McFadden et al., 2017). Interferons are key mediators of the antiviral state in infected and neigh-

boring cells and help to activate the adaptive antigen-specific immune responses (Iwasaki and Medzhitov,

2010; Schneider et al., 2014). Different molecular mechanisms of innate immune activation are induced in

acute and chronic infections with human RNA or DNA viruses, and a variety of strategies has been

described, which may permit transient or persistent viral evasion (Garcia-Sastre, 2017). However, such as-

pects are incompletely understood for small non-enveloped DNA viruses such as human polyomaviruses.

BK polyomavirus (BKPyV) is one of more than 10 human polyomaviruses and infects >90% of the general

population typically during childhood without specific illness (Greenlee and Hirsch, 2017; DeCaprio

et al., 2013). Although BKPyV induces potent virus-specific CD4 and CD8 T cells (Binggeli et al., 2007;

Chen et al., 2008; Cioni et al., 2016; Leboeuf et al., 2017) and neutralizing antibodies (Kaur et al., 2019; Pas-

trana et al., 2012; Shah et al., 1980; Solis et al., 2018), the virus latently persists in the kidneys and regularly

escapes from immune control as evidenced by asymptomatic urinary virus shedding in immunocompetent

healthy individuals (Egli et al., 2009; Imperiale and Jiang, 2016). In immunosuppressed patients, BKPyV

replication increases in rate and magnitude, progressing to hemorrhagic cystitis and nephropathy in

5%–25% and 1%–15% of allogeneic bone marrow transplant and kidney transplant recipients, respectively,

and even urothelial cancer (Cesaro et al., 2018; Graf and Hirsch, 2020; Hirsch and Randhawa, 2019). Because

specific antiviral agents and vaccines are not available, reducing immunosuppression is the current main-

stay of therapy in order to regain control over BKPyV replication (Cesaro et al., 2018; Hirsch and Randhawa,

2019). However, this maneuver increases the risk of immunological injury such as allograft rejection or graft-

versus-host disease. In our ongoing study to identify functionally and diagnostically relevant targets of

BKPyV-specific antibody and T cell responses (Binggeli et al., 2007; Cioni et al., 2016; Leboeuf et al.,

2017), we noted that the small BKPyV agnoprotein of 66 amino acids (aa) is abundantly expressed in the

cytoplasm during the late viral life cycle in vitro and in vivo but largely ignored by the adaptive immunity

(Leuenberger et al., 2007; Rinaldo et al., 1998). BKPyV agnoprotein co-localizes with lipid droplets (LD)

(Unterstab et al., 2010) and membranous structures of the ER (Unterstab et al., 2013). We now report

that the BKPyV agnoprotein also targets mitochondria and subverts interferon-b induction by disrupting

the mitochondrial network and its membrane potential and promotes p62/SQSTM1 mitophagy in cell

culture and in kidney allograft biopsies.

RESULTS

BKPyV Agnoprotein Colocalizes with Mitochondria and Induces Mitochondrial

Fragmentation

To elucidate the function of BKPyV agnoprotein in the absence of LD, we noted that the N-terminal amino

acid (aa) sequence had similarity tomitochondrial targeting sequence (MTS) found in cytochrome c oxidase

cox8 (Figure S1). To investigate the potential mitochondrial localization, we infected primary human renal

proximal tubular epithelial cells (RPTECs) with the agnoprotein wild-type BKPyV-Dunlop (Dun-AGN), a

well-characterized model of renal allograft nephropathy (Bernhoff et al., 2008; Hirsch et al., 2016; Low

et al., 2004). The results were compared with the isogenic derivative Dun-agn25D39E, of which the en-

coded point mutant agnoprotein is known to no longer bind to LD after replacing the hydrophobic A25

and F39 with D and E, respectively, abrogating the amphipathic character of the central agnoprotein

domain without affecting the a-helix prediction (Unterstab et al., 2010).

At 48-h post-infection (hpi) with wild-type Dun-AGN and mutant Dun-agn25D39E viruses, immunofluores-

cent staining identified infected cells in the late viral replication phase by detecting both the early viral

protein large T-antigen (LTag) and the late viral protein Vp1 capsid in the nucleus and agnoprotein in

the cytoplasm (Figure S2). Using the mitochondrial outer membrane protein Tom20 as a marker, its specific

colocalization with both the AGN wild-type and agn25D39Emutant protein was found, demonstrating ag-

noprotein colocalization to mitochondria (Figure 1A). However, the mitochondria of Dun-AGN-replicating

RPTECs had lost the network-like pattern typical of uninfected cells and appeared in short, fragmented

units (Figure 1A, Video S1). In contrast, Dun-agn25D39E-replicating RPTECs exhibited a regular mitochon-

drial network similar to neighboring uninfected cells (Figure 1A; Video S2). Quantification of the mitochon-

drial morphology indicated a large excess of short mitochondrial fragments in Dun-AGN-infected cells,

whereas mostly elongated mitochondria in a network-like pattern were seen in the Dun-agn25D39E-in-

fected cells (Figure 1B). Given these striking differences in mitochondrial phenotype, we examined whether

or not the mutant agn25D39E-agnoprotein was still able to target the ER as reported for the wild-type
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agnoprotein (Unterstab et al., 2013). Confocal microscopy revealed that the agn25D39E protein colocal-

ized with the ER marker calreticulin (Figure 1C). However, whereas the mitochondrial colocalization of

the agn25D39E protein appeared in network strings, the ER colocalization with calreticulin was patchy

and reminiscent of the contact sites with the mitochondria-associated membranes (MEMs) (Figure 1C).

The patchy ER-colocalization pattern was independently confirmed using protein disulphide isomerase

(PDI), another ER marker protein (Figure S2C). The results indicated that targeting of ER and mitochondria

Figure 1. Agnoprotein Colocalizes with Mitochondria and Induces Mitochondrial Fragmentation in the Late

Replication Phase of BKPyV Infection

(A) Z-stacks of RPTECs infected with BKPyV Dun-AGN (top row) or with Dun-agn25D39E (bottom row, large replicating cell

next to small non-replicating cell) at 48 hpi, stained for Tom20 (red), agnoprotein (green), and DNA (blue). Colocalizing

voxels are shown in yellow.

(B) Quantification of mitochondrial morphology in six fields of two independent experiments using Fiji software (mean G

SD, two-way ANOVA).

(C) Z-stacks of BKPyV Dun-agn25D39E-infected cells at 48 hpi, stained for mitochondrial marker Tom20 (red), calreticulin

as marker for the ER(magenta), agnoprotein (green), and DNA (blue). Colocalizing voxels are shown in yellow (scale bar,

5 mm).

(D) Confocal images of RPTECs infected with BKPyV Dun-AGN at indicated times post-infection. Cells were stained for

LTag (red), agnoprotein (green), mitochondrial marker Tom20 (cyan), and DNA (blue). White arrows indicate cells

magnified (scale bar, 20 mm).
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remained intact and implicated the amphipathic character of the central a-helix of the wild-type agnopro-

tein in the disruption of the mitochondrial network.

To correlate the severely altered mitochondrial morphology with the viral life cycle, we examined a time

course of Dun-AGN infection demonstrating that expression of the early viral LTag at 24 hpi had no effect

on the mitochondrial network (Figure 1D). After 36 hpi, expression of the late viral gene region had started

and agnoprotein appeared in the cytoplasm, but mitochondrial fragmentation and perinuclear condensa-

tion became apparent only from 48 hpi onwards. At 72 hpi, Dun-AGN-replicating cells could be readily

identified solely by the dramatically fragmented mitochondrial network using Tom20 staining (Figure 1D).

Thus, wild-type and agn25D39E agnoprotein were able to localize to both mitochondria and the ER, which

in case of the wild-type Dun-AGN led to mitochondrial fragmentation, whereas this was not observed for

the Dun-agn25D39E mutant.

To further characterize the role of agnoprotein and its amphipathic helix in BKPyV replication, two addi-

tional isogenic derivatives were generated: Dun-agn25L39L encoding a mutant agnoprotein retaining

the amphipathic character of the central a-helix, and Dun-ATCagn, in which the ATG start codon had

been changed to ATC to create a ‘‘null’’-agnoprotein virus. Ribbon models predicted that the overall

secondary structures of agn25D39E and agn25L39L were similar to the AGN-encoded wild-type protein

in having a short N-terminal and a central helix, whereas the C-terminal structure was not predictable

except for a short terminal a-helical tail (Figure 2A). All BKPyV variants were found to proceed to expression

of the late viral gene region, as evidenced by nuclear Vp1 staining (Figure 2B). Similar to Dun-AGN wild-

type infection, the Dun-agn25L39L-infected RPTECs exhibited a cytoplasmic agnoprotein distribution

and mitochondrial fragmentation (Figure 2B). In contrast, Dun-ATCagn-infected RPTECs retained intact

mitochondrial networks similar to Dun-agn25D39E but lacked agnoprotein expression as expected (Fig-

ure 2B). Because LD-binding had been shown to require the amphipathic character of the central a-helix

(Figure 2A) now implicated in mediating mitochondrial fragmentation (Unterstab et al., 2010), the effect

of LD-formation on the mitochondrial network was investigated. To this end, RPTECs were infected with

Dun-AGN or with Dun-agn25D39E, and 300 mM oleate was added at 24 hpi after early viral gene region

expression. Confocal microscopy of Dun-AGN at 48 hpi revealed that agnoprotein was sequestered

around LD as described previously, but mitochondrial fragmentation of Dun-AGN infected cells was

prevented (Figure 2C). In contrast, Dun-agn25D39E-infected RPTECs retained the mitochondrial colocal-

ization of the mutant agnoprotein without sequestering to LD (Figure 2C, magnification panel bottom

right), which in the absence of LD staining are known to appear as punched-out holes (Unterstab et al.,

2010). These results linked the amphipathic helix of agnoprotein to LD binding and to mitochondrial frag-

mentation in a competitive manner.

To investigate the functional consequences of agnoprotein expression, we examined the mitochondrial

membrane potential (MMP) using the (Jm)-dependent accumulation of JC-1 dye, whereby mitochondrial

depolarization is indicated by a decrease in the red/green fluorescence intensity. At 48 hpi, Dun-AGN-in-

fected cells exhibited fragmented mitochondria (green channel) and a significant decrease in MMP (red

channel), whereas MMP changed little in Dun-agn25D39E- or Dun-ATCagn-infected RPTECs or in mock-

treated cells (Figure 2D). Similarly, automated measurements of overall JC-1 red and green signals in

cell culture revealed significant MMP decreases of about 40% in Dun-AGN-infected RPTECs at 48 hpi

compared with controls. Together, the results indicated that infection with BKPyV expressing an agnopro-

tein with a central amphipathic helix was necessary for MMP breakdown and network fragmentation in the

late viral replication phase.

Agnoprotein Is Sufficient for Mitochondrial Fragmentation and Breakdown of the

Mitochondrial Membrane Potential and Impairs Innate Immune Signaling

To investigate whether or not agnoprotein expression alone is sufficient for mitochondrial fragmentation,

expression vectors containing the full-length gene of wild-type agnoprotein or agnoprotein subdomains

fused to monomeric enhanced green fluorescent protein (mEGFP) (Unterstab et al., 2010) were transfected

into UTA6 cells (Figure 3A). At 24 h post-transfection (hpt) of the agno(1-66)mEGFP construct, GFP and ag-

noprotein overlapped in their colocalization to fragmented mitochondria (Figure 3A, top row). Similarly,

mitochondrial colocalization and fragmentation was seen for agno(1-53)mEGFP lacking the C-terminal

13 aa of agnoprotein, but not for any of the other truncated agnoprotein constructs shown. Because the

truncated agno(20-66)mEGFP had been previously demonstrated to be able to still colocalize with LD
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(Unterstab et al., 2010), we hypothesized that the N-terminal domain was necessary for mitochondrial tar-

geting in order to mediate the breakdown of the mitochondrial network. Therefore, the N-terminal mito-

chondrial targeting sequence of cytochrome c oxidase (MTScox8) was fused to agno(20-66)mEGFP

yielding MTScox8-agno(20-66)mEGFP (Figure S1). The results showed that agno(20-66) was sufficient to

Figure 2. The Amphipathic Character of the Central Agnoprotein Helix Is Required for Mitochondrial

Fragmentation

(A) Three-dimensional ribbon model of each agnoprotein derivate as predicted with the Quark online algorithm (https://

zhanglab.ccmb.med.umich.edu/I-TASSER/) and predicted amphipathic helical wheel of the agnoprotein amino acids 22–

39 (http://cti.itc.virginia.edu/�cmg/Demo/wheel/wheelApp.html).

(B) Confocal images of RPTEC-infected with BKPyV Dun-AGN and isogenic derivatives Dun-agn25D39E, Dun-agn25L39L,

and Dun-ATCagn, respectively. Cells were fixed at 48 hpi and stained for mitochondrial marker Tom20 (red), agnoprotein

(green), Vp1 (cyan), and DNA (blue) (scale bar, 20 mm).

(C) Confocal images of RPTECs infected with BKPyV Dun-AGN and BKPyV-Dun-agn25D39E, respectively, at 48 hpi. Cells

were mock-treated or treated with 300 mM oleate at 24 hpi (plus oleate). Cells were stained for Tom20 (red), agnoprotein

(green), and DNA (blue) (scale bar, 20 mm).

(D) Live cell imaging using JC-1 dye (5 mM) of mock-infected or infected with BKPyV Dun-AGN and isogenic derivatives

Dun-agn25D39E, Dun-agn25L39L, and Dun-ATCagn, respectively at 48 hpi. Quantification of mitochondrial membrane

potential (Jm) by measuring red fluorescent signal (JC-1 aggregates) with the Safire II plate reader of three independent

experiments (mean G SD, Kruskal-Wallis test).
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Figure 3. Agnoprotein Is Sufficient to Mediate Structural and Functional Alterations of Mitochondrial Network

(A) Schematic presentation of agnoprotein-mEGFP fusion constructs transfected into UTA6 cells. Retained aa indicated in

parenthesis and presented as solid line, deleted parts presented as dotted line. The central amphipathic helix (aa 22–39)

is shown as blue bar. Confocal images of transfected UTA6 cells, transiently expressing the indicated agnoprotein-

mEGFP fusion constructs were taken at 24 hpt. Immunofluorescent staining for Tom20 (red), agnoprotein (magenta), GFP

(green), and DNA (blue) (scale bar, 20 mm).

For MTScox8-agno(20-66), Z-stacks were obtained and colocalizing voxels are shown in yellow.

(B) UTA6-2C9 cells stably transfected with tetracycline (tet)-off inducible BKPyV agnoprotein were cultured for 24 h in the

presence (+tet) or absence (�tet) of tetracycline to suppress or induce BKPyV agnoprotein expression, respectively.

Confocal images of cells stained for DNA (blue), agnoprotein (green), and Tom20 (red). White rectangle indicating
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induce mitochondrial fragmentation if mitochondrial targeting was provided by the MTScox8 sequence

(Figure 3A, bottom row and extra panels; Video S3). This was not observed for MTScox8-mEGFP targeting

mitochondria but lacking agnoprotein sequences (Figure S3A). To investigate LD binding after addition of

oleate, MTScox8-mEGFP and MTScox8-Agno(20-66)mEGFP were transfected and stained for LD using

4,40-Difluoro-4-bora-(3a,4a)-diaza-s-indacene (bodipy) and Tom70 and analyzed by confocal microscopy

(Figures S3B and S3C). The results showed that MTScox8-agno(20-66)mEGFP were co-localizing to LD

while MTScox8-mEGFP was not. The data indicated that the amphipathic helix present in the aa20–aa66

of truncated MTScox8-agno(20-66)mEGFP fusion protein was available for interaction with LD, presumably

on the surface of mitochondria.

As an independent approach, we examined UTA6-2C9 cells harboring a wild-type full-length agnoprotein

under the control of an inducible tetracycline (tet)-off promoter (Cioni et al., 2013). At 24 h in the absence of

tet (-tet), agnoprotein was expressed in the cytoplasm and colocalized with fragmented mitochondria,

whereas in the presence of tet concentrations suppressing agnoprotein expression (+tet), an intact mito-

chondrial network was seen (Figure 3B). Importantly, inducing agnoprotein was associated with MMP

disruption when examining aggregate (red) and monomeric (green) signals or when using automated

JC-1 dye measurements of the cell cultures (Figure 3C).

Because mitochondria play a key role in innate immunity (Koshiba et al., 2011), UTA6-2C9 cells were

cultured for 24 h in the presence or absence of agnoprotein expression and transfected with either

poly(I:C)RNA or poly(dA:dT)DNA, both of which are potent inducers of the type-1 interferon expression

via cytoplasmic phosphorylation and nuclear translocation of the interferon regulatory factor 3 (IRF3). At

4 hpt, the effect of agnoprotein expression on the nuclear localization of the IRF3 was examined. The results

demonstrated that in the presence of agnoprotein, nuclear IRF3 translocation was significantly reduced af-

ter transfecting poly(I:C) (Figure 3D) or poly(dA:dT) (Figure 3E). To functionally relate the agnoprotein-

dependent differences in nuclear IRF3 translocation, interferon (IFN)-b expression was quantified after

transfection of increasing amounts of poly(dA:dT). The results indicated that agnoprotein expression re-

sulted in a significant reduction of IFN-b transcripts and secreted protein levels (Figure 3F). Together,

the data indicated that the expression of BKPyV agnoprotein was necessary and sufficient to induce mito-

chondrial fragmentation, breakdown of MMP, and impairment of the innate immune sensing of cytosolic

DNA and RNA.

BKPyV Replication Is Inhibited by IFN-b

To determine whether or not BKPyV replication is sensitive to IFN-b, RPTECs were pre-treated, which re-

sulted in an IFN-b dose-dependent reduction of LTag-positive cells and supernatant BKPyV loads at

72 hpi (Figure 4A). SDS/PAGE immunoblot analysis demonstrated an increase of IFN-induced protein

with tetratricopeptide repeats (IFIT) and a reduction of the viral capsid protein Vp1 and agnoprotein (Fig-

ure 4B). A time course of IFN-b addition revealed maximal inhibitory effects before or at 2 hpi, but addition

at 36 hpi still reduced the supernatant BKPyV loads by 50% (Figure 4B). The reduction in supernatant BKPyV

loads could be restored by type-I interferon blockade consisting of a cocktail of blocking antibodies

against IFN-a, IFN-b, and IFN-alpha/beta receptor (Figure 4B). Thus, BKPyV replication in primary human

RPTECs was inhibited by IFN-b but could be prevented by anti-IFN-blockade. To examine the role of ag-

noprotein in BKPyV replication, RPTECs were infected with equivalent infectious doses of Dun-AGN or the

Figure 3. Continued

enlarged section. Graph representing corresponding mitochondrial morphology, quantification of six fields using Fiji

software of two independent experiments (mean G SD; two-way ANOVA).

(C) Jm was assessed by JC-1 dye and imaging of live cells using the signal ratio of aggregate (red)/monomeric (green)

normalized to UTA6-2C9 cells not expressing agnoprotein (+tet) versus cells expressing agnoprotein (�tet) using

Mithras2 (mean G SD, unpaired parametric t test).

(D) Nuclear IRF3 translocation following poly(I:C) transfection was compared in UTA6-2C9 cells cultured for 24 h in the

presence or absence of tetracycline to suppress or induce BKPyV agnoprotein expression, respectively. Increasing

amounts of rhodamine-labeled poly(I:C) was delivered to the cells via lipofection, cells were fixed at 4 hpt, stained for IRF3

(magenta), agnoprotein (green), and DNA (blue) (left images, 1,000 ng/mL poly(I:C), right panel quantification of nuclear

IRF3 of six fields using Fiji software (mean G SD, Mann-Whitney)).

(E) Nuclear IRF3 translocation following poly(dA:dT) transfection was compared in UTA6-2C9 cells as described in D (left

images, 1,000 ng/mL poly(dA:dT), right panel quantification of nuclear IRF3 (mean G SD, Mann-Whitney)).

(F) Quantification of IFN-b mRNA and IFN-b secretion into cell culture supernatants following poly(dA:dT) stimulation of

UTA6-2C9 cells, three experiments (mean G SD, Mann-Whitney t test).
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Figure 4. BKPyV Replication in Primary Human RPTECs Is Sensitive to Type-1 Interferon

(A) RPTECs were treated overnight with the indicated concentrations of IFN-b or solvent. LTag positive cells (left panel;

triplicates, mean G SD, two-way ANOVA) and supernatant BKPyV loads (middle panel; triplicates, mean G SD, two-way

ANOVA) were quantified at the indicated times, and a representative LTag staining of RPTECs at 72 hpi is shown (right

panel).

(B) RPTECs were pre-treated with the indicated concentrations of IFN-b and expression of IFIT1 (ISG56), and BKPyV late

viral proteins Vp1 and agnoprotein were analyzed at the indicated times post-infection by immunoblot analysis (left

panel). RPTECs were treated before or at the indicated times post-infection with 200 U/mL IFN-b, and supernatant BKPyV

loads were measured at 72 hpi (middle panel; triplicates, mean G SD, Kruskal-Wallis test). BKPyV-infected RPTECs were

treated with IFN-b in the presence or absence of anti-IFN consisting of antibodies blocking IFN-a, IFN-b, and interferon a/

b receptor (right panel), and supernatant BKPyV loads were measured at 72 hpi (right panel; duplicates, mean G SD,

unpaired parametric t test).

(C) RPTECs were infected with the indicated BKPyV variants (MOI = 1 by nuclear LTag staining of RPTCs) and the number

of infected cells were quantified by immunofluorescence at 72 hpi (left panel; triplicates, meanG SD, unpaired parametric

t test), and supernatant BKPyV loads were measure at the indicated time post-infection (middle panel; triplicates, meanG

SD, two-way ANOVA). Quantification of IFN-b mRNA in RPTECs infected with the indicated strains was performed at

48 hpi and 72 hpi and normalized to the BKPyV loads (right panel; triplicates, mean G SD, two-way ANOVA).
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mutant derivatives Dun-agn25D39E and Dun-ATCagn. Although the mutant variants replicated, both had

lower supernatant BKPyV loads at 72 hpi and a reduced number of LTag- and Vp1-positive cells compared

with wild-type virus (Figure 4C). Comparing the IFN-b transcripts at the 48 hpi showed declining levels in

the wild-type virus at 72 hpi but significantly higher levels at both time points after Dun-agn25D39E and

Dun-ATCagn infection (Figure 4C). Similarly, significantly lower IFN-b transcripts normalized to LTAg

transcripts were detected after transfecting RPTECs with the wild-type compared with either of the mutant

genomes at 48 hpt and 72 hpt (Figure S4A).

To investigate whether or not the reduced replication of Dun-agn25D39E could be rescued, the TBK-1-in-

hibitor (Bx795) to prevent IRF3 phosphorylation or the type-1 interferon-blocking cocktail was added at

36 hpi. The results demonstrated that TBK-1 inhibition or type-1 interferon blockade were able to partially

rescue BKPyV Dun-agn25D39E replication (Figure 4C). Under these conditions, there was no effect of TBK-1

inhibition on BKPyV Dun-AGN replication (Figure S4B). Because CoCl2-treatment has been described to

induce functional hypoxia by disrupting the MMP (Jung and Kim, 2004), RPTECs were infected with Dun-

agn25D39E and treated with 150 mM or 300 mM CoCl2 at 24 hpi. Partial mitochondrial fragmentation of

BKPyV Dun-agn25D39E-infected cells was seen together with increased supernatant viral loads at 72 hpi

(Figure 4D). Together, the results indicated that the failure of the agn25D39E mutant protein to disrupt

the MMP and the mitochondrial network was associated with reduced replication, which could be partially

rescued by interfering with innate immune activation, type-1 interferon expression and MMP-dependent

mitochondrial signaling relays.

BecauseMAVS is an important sensor of cytosolic nucleic acids and located onmitochondria, we examined

its distribution in Dun-AGN- and mock-infected RPTECs by confocal microscopy. As shown, MAVS colocal-

ized with both intact and agnoprotein-fragmented mitochondria in RPTECs (Figure 5A). Similarly, MAVS

also colocalized with fragmented mitochondria in UTA6-2C9 cells following tet-off-induced agnoprotein

expression (data not shown). To compare the levels of MAVS in Dun-AGN-infected and mock-treated

RPTECs, cell extracts were analyzed by SDS/PAGE and immunoblotting, showing reduced MAVS levels

following BKPyV Dun-AGN infection (Figure 5B). Sequential immunoblotting for GAPDH as loading control

and for Tom20 revealed a 60%–70% decrease in intensity of the major MAVS band and Tom20 in Dun-AGN-

infected RPTECs compared with non-infected control cells (Figure 5B).

Fragmentation of the mitochondrial network with intact MMP occurs physiologically prior to mitosis and

mitochondria partitioning into daughter cells and involves phosphorylation of the dynamin-related protein

(Drp)1 at S616 by the cell division kinase CDK1/cyclin B (Figure 5C, mock). In BKPyV Dun-AGN-infected

RPTECs, increased Drp1-S616 phosphorylation was detected in Vp1-positive cells but unrelated to mitosis

(Figure 5C, AGN). By SDS/PAGE and immunoblotting, Drp1-S616 phosphorylation was increased in Dun-

AGN-infected cells compared with mock (Figure 5C, right panel), although overall Drp1 levels were similar

(Figure S5A). Comparing isogenic mutant viruses by confocal microscopy revealed that Drp1-S616

phosphorylation was increased in Dun-agn25D39E- and Dun-ATCagn-replicating RPTECs, in which the

mitochondrial network remained intact (Figure S5B). The results indicated that increased Drp1-S616 phos-

phorylation was related to BKPyV infection occurring independent of cell division or expression or function-

ality of agnoprotein. However, agnoprotein-mediated fragmentation of the mitochondrial network was

associated with lowered protein levels of MAVS and Tom20.

Agnoprotein-Disrupted Mitochondria Are Targeted for p62/SQSTM1 Mitophagy

Given the striking differences in mitochondrial network structure by confocal microscopy, we applied by

transmission electron microscopy to examine BKPyV-Dun-AGN- or Dun-agn25D39E-infected RPTECs. At

72 hpi, viral particles in the nucleus served as a marker of the late viral life cycle equivalent to nuclear

Vp1 staining in confocal microscopy. In the cytoplasm of Dun-AGN-infected RPTECs, small disruptedmito-

chondrial vesicles were seen, matching the results obtained by confocal microscopy, as well as several

Figure 4. Continued

(D) RPTECs were infected with BKPyV Dun-agn25D39E, the TBK-1 inhibitor BX795, antibodies blocking IFN-a, IFN-b, and

interferon a/b receptor or solvent were added at 36 hpi, and supernatant BKPyV loads were measured at 72 hpi (left panel;

triplicates of two independent experiments, mean G SD, unpaired parametric t test). RPTECs were infected with BKPyV

Dun-agn25D39E and treated with the indicated concentrations of CoCl2 or solvent at 24 hpi, and at 72 hpi, confocal

microscopy was performed for Tom20 (red), agnoprotein (green) and DNA (blue), and supernatant BKPyV loads

quantified (right panel; triplicates, mean G SD, unpaired parametric t test).
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smaller densemultilaminar structures. In contrast, longer filamentousmitochondrial structures were seen in

BKPyV Dun-agn25D39E (Figure 6A) in line with tangential cuts of the intact three-dimensional mitochon-

drial network seen by confocal microscopy (Figure S6). Because damaged mitochondria with MMP break-

down are known to be targeted for autophagy, we investigated p62/SQSTM1 as a marker of mitochondrial

autophagosomes (Johansen and Lamark, 2011). At 72 hpi, a significant increase in large confluent p62/

SQSTM1-positive signals was observed in Dun-AGN-infected RPTECs compared with the disperse cyto-

plasmic distribution p62/SQSTM1 in mutant Dun-agn25D39E-infected cells (Figure 6A). Moreover, cyto-

plasmic aggregates of p62/SQSTM1 colocalizing with Tom20 were prominent in Dun-AGN-infected

RPTECs with mitochondrial fragmentation but rare in Dun-agn25D39E-infected cells with intact

Figure 5. MAVS Colocalizes to Fragmented Mitochondria and Is Decreased in BKPyV-Infected RPTECs

(A) RPTECs were infected with BKPyV Dun-AGN or mock-treated and were either fixed after 72 h for confocal microscopy

staining for DNA (blue), agnoprotein (green), and MAVS (red) (top left panel) or were harvested lysing 2.0 3 104 cells per

10 mL Laemmli Sample Buffer and analyzed by SDS/PAGE and immunoblotting for MAVS and agnoprotein (top panels).

(B) The immunoblot (lower panel) stained for MAVS and agnoprotein (first) was subsequently stained for GAPDH and

Tom20 (second). MAVS and Tom20 levels were normalized to GAPDH levels as indicated (right panel). GAPDH signal was

overlapping with MAVS-specific band (indicated by asterisk) and was subtracted prior normalization.

(C) RPTECs were mock-treated (top panels, left) or infected with BKPyV Dun-AGN bottom panels) and were fixed after

72 h for confocal microscopy for DNA (blue), Vp1 (cyan), MAVS (red), and phosphorylated Drp1-S616 (magenta) (bottom

panels, left). Cell lysates were analyzed by SDS/PAGE and immunoblotting using antibodies to total Drp1,

phosphorylated Drp1-S616, agnoprotein, and actin (panels, right).
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Figure 6. Agnoprotein-Mediated Mitochondrial Fragmentation and p62/SQSTM1-Autophagosomes in Cell

Culture and Kidney Transplant Biopsy Tissue

(A) RPTECs were infected with BKPyV Dun-AGN or BKPyV Dun-agn25D39E. At 72 hpi, cells were fixed and processed for

TEM (top panels; scale bar, 2 mm) or for confocal microscopy (bottom left panels) staining for Tom20 (red), agnoprotein

(green), p62/SQSTM1 (cyan), and DNA (blue). p62/SQSTM1-positive autophagosomes of six fields were quantified using

Fiji at 48 hpi and 72 hpi (bottom right panels; mean G SD, two-way ANOVA).

(B) UTA6-2C9 cells were cultured for 24 h or 48 h in the presence or absence of tetracycline to suppress or induce BKPyV

agnoprotein expression, respectively. At the indicated times, confocal microscopy (left panels) was performed after fixing

and staining for Tom20 (red), agnoprotein (green), p62/SQSTM1 (cyan), and DNA (blue). p62/SQSTM1-positive

autophagosomes were quantified as described in A at 24 h and 48 h (right panels; mean G SD, two-way ANOVA).
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mitochondrial networks (Figure S6). Similarly, agnoprotein-dependent p62/SQSTM1 aggregates were

seen in UTA6-2C9 cells at 24 h post-induction, which condensed at 48 h, indicating that agnoprotein-

induced breakdown of the mitochondrial membrane potential and network was followed by p62/

SQSTM1-positive autophagosome formation (Figure 6B).

To investigate whether or not similar changes could be observed in BKPyV-associated nephropathy in kid-

ney transplant patients, allograft biopsy samples were analyzed. Indeed, transmission electron microscopy

revealed small disrupted mitochondria in the cytoplasm of tubular epithelial cells having viral particles in

the nuclei, whereas noninfected tubular epithelial cells showed prominent long mitochondria (Figure 6C).

Immunofluorescent staining of kidney allograft biopsies and confocal microscopy for agnoprotein, Tom20,

and p62/SQSTM1 revealed fragmented mitochondria and p62/SQSTM1 aggregates in agnoprotein-pos-

itive cells in BKPyV-infected parts, which were not seen in non-infected tubular epithelial cells of the

same biopsy core (Figure 6C). Together, the data extended the cell culture results to renal allograft ne-

phropathy, showing that BKPyV replication was associated with mitochondrial fragmentation and p62/

SQSTM1-positive autophagosome formation in kidney transplant patients.

To investigate autophagic flux as a dynamic marker of p62/SQSTM1 mitophagy, the expression levels of

LC3-I and its activated lipid-derivative LC3-II were examined in UTA6-2C9 cells by immunoblotting. In

untreated cells, mostly LC3-I was detected, but in the presence of the lysosomal protease inhibitor pepsta-

tin-A1/E64d, LC3-I increased and LC3-II became apparent as expected for inhibition of the steady-state

autophagic flux (Figure 7A). Following agnoprotein expression, LC3-I and the derivative LC3-II levels

were also increased and increased further in the presence of pepstatin-A1/E64d, indicating that

agnoprotein expression increased the autophagic flux, which could be partly blocked by lysosomal prote-

ase inhibitors (Figure 7A). Treatment with carbonyl cyanide m-chlorophenylhydrazone (CCCP) is known to

chemically disrupt the MMP and to induce PINK-Parkin-dependent mitophagy (Narendra et al., 2008).

Similar to agnoprotein expression, CCCP treatment caused an increase in LC3-I and -II, which further

increased in the presence of pepstatin-A1/E64d (Figure 7A). However, agnoprotein expression followed

by CCCP treatment did not result in a further increase of LC3-I/II levels but rather increased the relative

LC3-II proportion, suggesting that the autophagic flux induced by agnoprotein was further maximized

by CCCP treatment. To investigate the role of parkin in this process, UTA6-2C9 cells were transfected

with a yellow fluorescent protein (YFP)-Parkin expression construct and analyzed by confocal microscopy.

In YFP-transfected UTA6-2C9 cells not expressing agnoprotein (+tet), little colocalization with fragmented

mitochondria was observed. Following the addition of CCCP, extensive cytoplasmic YFP-parkin positive

aggregates overlaid Tom20-positive structures in the cytoplasm (Figure S7, +tet, CCCP, magnification).

In UTA6-2C9 cells expressing agnoprotein (-tet), the YFP-Parkin signals appeared displaced by agnopro-

tein from Tom20-colocalizing structures accumulating in the perinuclear cytoplasm (Figure S7, tet-, magni-

fication). Using isosurface rendering to analyze the agnoprotein-induced mitochondrial fragmentation

supported the notion that Tom20-positive mitochondrial structures were surrounded by agnoprotein-pos-

itive layer, which displaced another layer of YFP-parking (Figure S7, tet-, bottom panels, dashed circle).

Together, the data suggested that despite a shared breakdown of the MMP, CCCP- and agnoprotein-

induced mitophagy appeared to differ in associating directly and indirectly with Parkin, respectively.

To independently investigate the role of p62/SQSTM1 in autophagic flux following BKPyV infection of

RPTECs, LC3 was analyzed in RPTEC with or without siRNA-p62 knockdown. Immunoblotting of the

siRNA-p62 knockdown RPTECs revealed a reduction of p62/SQSTM1 levels to approximately 30% of the

control RPTECs (Figure 7B, left panel). Upon pepstatin-A1/E64d treatment, p62/SQSTM1 levels as well

as the levels of LC3-I and -II increased in the control cells, but not to the same extent in the siRNA-p62

knockdown cells, indicating that the decrease in p62/SQSTM1 levels was associated with lower LC3-II for-

mation and reduced steady-state autophagic flux (Figure 7B, left panel). Following Dun-AGN-infection and

pepstatin-A1/E64 treatment, LC3-I and -II levels increased, but the overall levels were lower in the siRNA-

p62 knockdown cells, and the LC3-II/-I ratio was decreased as well as the Vp1 levels (Figure 7B, left panel).

To investigate the impact of the siRNA-p62 knockdown, whole-cell extracts were prepared and analyzed by

SDS/PAGE immunoblotting for MAVS levels in infected and uninfected RPTECs. The results after

Figure 6. Continued

(C) Tissue biopsies from kidney transplant patients with (infected) or without (non-infected) BKPyV-associated

nephropathy were studied by transmission electronmicroscopy (left panels; scale bar, 1 mm) or confocal microscopy (right

panels) staining for Tom20 (red), agnoprotein (green), p62/SQSTM1 (cyan), and DNA (blue).
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Figure 7. Agnoprotein Mediates p62/SQSTM1-Dependent Autophagic Flux and Mitophagy

(A) UTA6-2C9 cells were cultured for 48 h in the presence or absence of tetracycline to suppress or induce BKPyV

agnoprotein expression, respectively. At 24 h post-induction, pepstatin-A1/E64d (10 mg/mL) and CCCP (10 mM) were

added as indicated and cell extracts were prepared and analyzed by immunoblotting as described in Transparent

Methods, using RIPA buffer, for LC3-I and II, agnoprotein expression and actin. LC3-II/I ratio were normalized using

untreated cells without agnoprotein (+tet) expression as reference.
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normalization to actin revealed that MAVS levels were not affected by siRNA-p62 knockdown, but

decreased upon BKPyV-AGN-infection, but which could be partly inhibited in the presence of the lyso-

somal protease inhibitors pepstatin-A1/E64d (Figure 7B, right panel). Together, the data suggested that

BKPyV Dun-AGN infection of RPTECs was associated with an increased p62/SQSTM1-dependent autopha-

gic flux, which involved MAVS degradation and which could be reduced by siRNA-p62 knockdown or

pepstatin-A1/E64d treatment.

To further investigate mitophagy following BKPyV infection, the tandem tag mitophagy reporter mCherry-

mEGFP-OMP25TM carrying the transmembrane domain (TM of OMP25) for targeting to the mitochondrial

outer membrane (Bhujabal et al., 2017) was transfected into RPTECs infected with Dun-AGN or Dun-

agn25D39E. Quantifying the red and green signals in z-stacks of Vp1-expressing cells following confocal

microscopy revealed that the number of mitochondrial signals with mCherry red signals exceeding GFP

green signals were higher in Dun-AGN-infected RPTECs and increased as the number of residual mito-

chondrial fragments progressively decreased in advanced replication phase as compared with Dun-

agn25D39E-infected cells or mock-treated controls (Figure 7C). The data indicated that the mitochondrial

tandem tag reporter was associated with the mitochondrial network in RPTECs infected with Dun-AGN or

Dun-agn25D39E but was progressively disrupted and targeted to the acidic environment of autophago-

somes in the former. Together, the data supported the notion that BKPyV Dun-AGN infection of RPTECs

was associated with increased mitophagy, which was not observed to this extent for infection with the

mutant Dun-agn25D39E.

Mitochondrial Colocalization and Fragmentation of Agnoproteins Is Conserved among

BKPyV, JCPyV, and SV40

To investigate the impact of agnoprotein expression in another BKPyV strain, infection of RPTECs was stud-

ied using a well-characterized, yet slowly replicating BKPyV-WW(1.4) strain carrying an archetype NCCR

(Bethge et al., 2015; Gosert et al., 2008). Similar to Dun-AGN, the BKPyV-WW(1.4) strain showed that agno-

protein expression was associated with mitochondrial fragmentation (Figure 8A). Because agnoprotein ho-

mologues have been identified in the human polyomavirus JCPyV, we examined SVG-A cells infected with

JCPyV-Mad4 strain, for which cytoplasmic agnoprotein expression has been reported previously (Gosert

et al., 2010). Colocalization of JCPyV agnoprotein with Tom20 and mitochondrial fragmentation was

observed (Figure 8B). Moreover, treatment with oleate and staining with LipidTox revealed colocalization

of the JCPyV agnoprotein with LD as has been reported for the BKPyV-encoded agnoprotein (Unterstab

et al., 2010).

SV40 infection was studied in CV-1 cells using Vp2/3-expression in the nucleus as a marker of the late viral

replication phase (Figure 8C). Because SV40 agnoprotein antibodies were not available, we used the partly

cross-reacting antibody raised against the JCPyV agnoprotein together with Tom20 demonstrating frag-

mentation of the mitochondrial network and colocalization with SV40 agnoprotein (Figure 8C). Together,

the data support the view that mitochondrial fragmentation is a conserved feature among different yet

related renotropic polyomaviruses found in human and animal species.

DISCUSSION

In the last decade, significant information has been accumulated about how cytoplasmic sensing of viral

infections is achieved by the innate immune system (Takeuchi and Akira, 2010; Zevini et al., 2017) and

how this crucial first line of defense is subverted to allow for transient or persistent immune escape of acute

and chronic viral infections, respectively (Garcia-Sastre, 2017; Goubau et al., 2013). Despite a high infection

Figure 7. Continued

(B) RPTECs transfected with siRNA-p62 (p62 knockdown) or control were infected with BKPyV Dun-AGN (indicated as

AGN). Pepstatin-A1/E64d (10 mg/mL) was added at 48 hpi; when indicated, 2.0 3 104 cells were harvested and lysed per

10 mL Laemmli sample buffer and analyzed by immunoblotting as described in Transparent Methods for p62/SQSTM1,

BKPyV Vp1, and LC3-I and -II expression (on 0.22 mm PVDF membrane, left panel) or MAVS, actin, BKPyV LTag, and

agnoprotein (on 0.45 mm PVDF-FL membrane, right panel).

(C) RPTECs transfected with mCherry-GFP-OMP25TM tandem tag mitophagy reporter were infected with BKPyV Dun-

AGN or BKPyV Dun-agn25D39E. At 72 hpi, cells were fixed and stained for Vp1 and DNA. Colocalization of mCherry and

GFP (yellow), Vp1 (cyan), and DNA (blue). Z-stacks were acquired and analyzed with IMARIS, and the mCherry signal was

transformed into countable spots (according voxel intensity). The GFP and mCherry mean intensity within the spots were

quantified (bars represent mean G95% CI, Wilson/Brown method).
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rate (Virgin et al., 2009) and evidence of immune evasion in the general population (Egli et al., 2009; Kaur

et al., 2019), comparatively little is known about relevant mechanisms operating in human polyomaviruses.

In this study, we report that the small BKPyV-encoded agnoprotein of 66aa facilitates polyomavirus

Figure 8. Agnoprotein of Archetype BKPyV, JC Polyomavirus, and the Simian SV40 Colocalize to Mitochondria

and Disrupt the Mitochondrial Network

(A) RPTECs were infected with BKPyV-WW(1.4) carrying an archetype non-coding control region, and confocal

microscopy was performed at 6 dpi after staining for Tom20 (red), agnoprotein (green), and DNA (blue).

(B) SVG-A cells were infected with JCPyV-Mad4, and confocal microscopy was performed at 72 hpi after staining for

Tom20 (red), anti-JCPyV agnoprotein (green), and DNA (blue) (top panels). Z-stacks of JCPyV-replicating SVG-A cells

were acquired, deconvolved, and processed with IMARIS. 3D isosurface renderings of the mitochondrial marker Tom20

(red), agnoprotein (green), and DNA (blue) are shown. Colocalizing voxels are shown in yellow (middle panels). Confocal

image of SVG-A cells infected with JCPyV-Mad4, 48 hpi, treated with 300 mM oleate at 24 hpi. Cells were stained for lipid

droplets (red), agnoprotein (green), Vp1 (cyan), and DNA (blue). Lipid droplets indicated by white arrow (bottom panels).

(C) CV-1 cells were infected with SV40, and confocal microscopy was performed at 48 hpi after staining for Tom20 (red),

Vp2/3 (blue) (top panels), or cross-reacting antisera raised against JCPyV agnoprotein (green) (lower panels).
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replication by disrupting the mitochondrial network and its membrane potential during the late phase of

the viral replication cycle. Thereby, BKPyV replication is able to evade cytosolic innate immune sensing in

this critical stage of viral progeny accumulation, during which DNA damage (Hein et al., 2009) as well as

abundant viral DNA genomes and RNA transcripts cumulate in the host cell (Funk et al., 2008; Funk

et al., 2006). The precise timing to the critical late viral replication phase (Bernhoff et al., 2008; Low

et al., 2004) allows this window of immune evasion to be equally open following de novo cell infection or

intracellular reactivation, permitting viral cell-to-cell spread in the renal tubules below the radar of the im-

mune system.

Transfection experiments using the entire agnoprotein or different subdomains fused to the reporter

mEGFP as well as the tet-off inducible agnoprotein expression indicate that agnoprotein is necessary

and sufficient, using its amino-terminal and central helix for mitochondrial targeting and mitochondrial

disruption, respectively. As expected from the key role of mitochondria in relaying innate immune sensing,

the agnoprotein-mediated disruption of the MMP was associated with significantly reduced IRF3 translo-

cation into the cell nucleus as well as lowered IFN-b transcript and protein expression following poly(I:C)

RNA or poly(dA:dT)DNA stimulation. Importantly, BKPyV viral variants either lacking agnoprotein expres-

sion due to a start codon mutation (Dun-ATCagn) or carrying mutations abrogating the amphipathic char-

acter of the central helix (Dun-agn25D39E) showed intact mitochondrial networks and little mitophagy but

significantly impaired replication compared with the wild-type strain Dun-AGN. The lower replication rate

of the mutant Dun-agn25D39E could be partially reversed on three levels of the mitochondrial innate im-

mune relay, namely by CoCl2 treatment affecting the respiratory chain and disrupting the MMP (Jung and

Kim, 2004), by BX795 inhibiting the downstream signaling kinase TBK-1, or by type-1 interferon blockade.

Our study also reveals for the first time a critical role of mitophagy in polyomavirus biology. Mitophagy is

known to assist in the disposal of irreversibly damagedmitochondria including the irreversible disruption of

the MMP as mediated by the wild-type agnoprotein. MAVS remains colocalized to the agnoprotein-medi-

ated mitochondrial fragments targeted for mitophagy leading to significantly lower levels after BKPyV

DUN-AGN infection, which could be partially reversed by pepstatin-A1/E64d protease inhibition or by

siRNA-knockdown of p62/SQSTM1. Thus, the MMP breakdown and network fragmentation appears to

be the immediate key event preventing the activation of the innate immune sensing, to which mitophagy

including MAVS or potentially STING degradation follow as common secondary events. The pepstatin-A1/

E64d protease inhibition and siRNA knockdown experiments also indicate that agnoprotein increases the

p62/SQSTM1-dependent steady-state autophagic flux via LC3-II lipidation in a fashion similar to the one

observed following the CCCP-induced mitochondrial membrane potential breakdown (Johansen and La-

mark, 2011). Although CCCP-induced mitophagy has been reported to directly involve the PINK-Parkin

pathway (Bhujabal et al., 2017), our results indicate that mitophagy by agnoprotein involves shifting Parkin

by an agnoprotein layer away from the fragmented mitochondria. Confocal microscopy and comparison of

LCI/II levels indicate that mitophagy by agnoprotein can be further increased by CCCP. Together, this

suggests that the agnoprotein-mediated mitophagy appears to differ from the direct CCCP-induced Par-

kin-involving process. Further evidence for increased autophagic flux was obtained using the tandem tag

mitophagy reporter mCherry-mEGFP-OMP25TM revealing acidification in mitophagosomes of BKPyV-

AGN-infected RPTECs, which was not observed to the same extent in agn25D39E-mutant-infected

RPTECs. Notably, pepstatin-A1/E64d protease inhibition and p62-siRNA knockdown were associated

with the reduced Vp1-protein levels in BKPyV Dun-AGN-infected primary human RPTECs. This observation

suggests that the autophagic flux may be relevant for the effective biosynthesis in the exhaustive late viral

replication phase following the functional and structural loss of the mitochondrial power plants (Forbes,

2016). However, the precise adaptor proteins and pathways need further study (Farre and Subramani,

2016).

Innate immune sensors have been characterized in primary human RPTECs and in kidney biopsies by tran-

scriptional profiling identifying antiviral, proinflammatory, and proapoptotic responses (Heutinck et al.,

2012; Ribeiro et al., 2012). Other studies reported that BKPyV infection of RPTECs can occur without

inducing innate immune sensors by as yet unknown mechanisms (Abend et al., 2010; An et al., 2019; de

Kort et al., 2017). However, these studies failed to reveal inhibition of BKPyV replication by type-1 inter-

ferons, which is in contrast to our results for BKPyV shown here and those recently reported for JCPyV

(Assetta et al., 2016). We show that wild-type BKPyV is susceptible to IFN-b, an effect that can be blocked

by type-I interferon blockade. Conversely, the IFN-b transcript levels were higher in both agn25D39E and
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ATCagnmutants compared with the wild-type Dun-AGN virus. Indeed, type-I interferon blockade and the

TBK-1 inhibition partially reversed the reduced replication of themutant Dun-agn25D39E virus in line with a

higher basal IFN-b transcript expression in the agnomutant compared with wild-type virus, whereas TBK-1

inhibition has no effect on the wild-type BKPyV-Dun replication.

Importantly, confocal and transmission electron microscopy studies of biopsies obtained from kidney

transplant patients provide independent evidence of mitochondrial fragmentation and p62/SQSTM1 mi-

tophagy in vivo. These data suggest that the combined effects of immune escape, mitophagy, and viral

spread are operating not only in a relevant primary human cell culture model of RPTECs but also in one

of the currently most challenging pathologies affecting kidney transplantation (Ramos et al., 2009). Intrigu-

ingly, the BKPyV-agnoprotein-induced immune subversion and p62/SQSTM1 mitophagy may explain the

earlier reported paradox of abundant detection of agnoprotein in vivo and the low agnoprotein-specific

antibody and T cell response (Leuenberger et al., 2007) and provide a new twist to BKPyV-promoting hyp-

oxic mechanisms following renal ischemia/reperfusion injury (Atencio et al., 1993; Fishman, 2002; Hirsch

et al., 2006).

Our results also shed new light on previous reports on BKPyV agnoprotein and the closely related JCPyV

and SV40 homologues (Gerits and Moens, 2012; Saribas et al., 2019): These include facilitating polyomavi-

rus replication (Ng et al., 1985), increasing viral late-phase production (Carswell et al., 1986) and plaques

size (Hou-Jong et al., 1987), acting as viroporin (Suzuki et al., 2010) or egress factor (Panou et al., 2018)

from the nucleus, by disrupting the tight surrounding mitochondrial network. We demonstrate that mito-

chondrial fragmentation occurs not only for BKPyV strains carrying an archetype NCCR but also for the

human JCPyV or the monkey SV40, suggesting that this dramatic agnoprotein-mediated function is evolu-

tionary conserved and active across different species, cell types, and hosts. In line with this notion, we were

unable to identify relevant point mutations in the critical amphipathic wheel of agnoprotein among more

than 300 whole genome sequences available in the GenBank (unpublished data) (Leuzinger et al., 2019).

Thus, we conclude that the small agnoprotein of less than 66 aa facilitates BKPyV replication by an effective

mechanism also seen in other renotropic human and animal polyomaviruses, which is unmatched in other

DNA viruses through its dramatic simplicity (Koshiba et al., 2011).

Indeed, rather complex viral mechanisms have been described targeting the cytosolic sensing platforms at

steps up- and downstream of mitochondria and associated ER membranes (Khan et al., 2015). Thus, the

matrix protein (M-protein) of parainfluenza-3 has been reported to translocate to mitochondria, where it

induces mitophagy via LC3-II in a PINK/Parkin-independent manner (Ding et al., 2017). However, the M-

protein is a structural protein and according to the current model acts early following entry into host cells

and requires piggy-back import via the mitochondrial elongation factor TUFM (Ding et al., 2017), whereas

our study indicates that the non-structural BKPyV agnoprotein targets mitochondria directly during the late

replication phase. Unlike BKPyV, HCV and other (+)-ssRNA viruses replicating in the cytoplasm appear to

induce mitochondrial fragmentation and mitophagy in a PINK-Parkin-dependent fashion (Gou et al., 2017).

Although structurally unrelated to agnoprotein, the 247aa-long cytomegalovirus (CMV) US9 glycoprotein

appears to suppress both MAVS and STING pathways, TBK-1 activation, and IFN-b expression by disrupt-

ing the mitochondrial membrane potential in the late CMV replication phase (Choi et al., 2018; Mandic

et al., 2009). Given the association of agnoprotein with LD, we were intrigued by the similarity to the anti-

viral host cell protein viperin, which is expressed following RNA and DNA virus infections (Gizzi et al., 2018;

Hee and Cresswell, 2017). The antiviral effects of viperin have been attributed to a perplexing variety of

functions including interference with lipid metabolism and formation of detergent-resistant lipid rafts at

the sites of influenza budding (Wang et al., 2007). Similar to agnoprotein, viperin contains an amphipathic

helix required for adsorbing to the cytosolic face of LD and ER membranes (Hinson and Cresswell, 2009a,

b). However, viperin may facilitate viral replication (Hee and Cresswell, 2017), when re-directed to mito-

chondria by the CMV-encoded Bax-specific inhibitor viral mitochondria-localized inhibitor of apoptosis

(vMIA) carrying a mitochondrial targeting domain (Cam et al., 2010; Seo et al., 2011). Thus, the hijacked vi-

perin-CMV-vMIA complex shares properties accommodated in only 66aa of BKPyV agnoprotein.

Limitations of the Study

We cannot exclude a more direct role of agnoprotein on STING signaling through MMP breakdown or

through its ER colocalization. Current concepts suggest that BKPyV as a DNA virus would be expected

to preferentially be sensed via cGAS/STING according. However, increasing data indicate a close
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interaction between DNA- and RNA-sensing pathway coupling MAVS and STING activation on mitochon-

dria and ER to TBK-1 activation downstream including through RNA-polymerase III transcription of cyto-

plasmic DNA-fragments (Chiu et al., 2009; Zevini et al., 2017). Our results demonstrate that agnoprotein

expression alone is sufficient to inhibit innate immune responses to both poly(I:C)-RNA and poly(dA:dT)-

DNA.

Even though our study indicates that agnoprotein is both necessary and sufficient for MMP breakdown and

mitochondrial fragmentation, it is presently unclear, whether or not this is achieved by the direct interaction

with cellular proteins other than the mitochondrial import machinery. Experimental MMP breakdown by

CCCP has been shown to also suppress STING signaling, further merging the cytosolic RNA- and DNA-trig-

gered responses (Kwon et al., 2017). Finally, details of the mitophagy process, the role of the involved pro-

teins, and their direct or indirect interaction require further study.

Given the abundance of BKPyV agnoprotein in the cytoplasm and the clearly distinct colocalization pat-

terns to ER in addition to mitochondria, further studies need to be carefully conducted in order to avoid

misleading artifacts. For the Bcl-2 family of proteins, a hierarchy of interactome complexes has emerged

over the last decade (Bleicken et al., 2017; Edlich et al., 2011). Moreover, for the related JCPyV agnoprotein,

a strong tendency to form multimeric aggregates in vitro has been reported (Sami Saribas et al., 2013),

which undoubtedly reduces the specificity of otherwise straight-forward pull-down approaches and com-

plicates potential functional attributions. This notion has been recently confirmed by a detailed study of

potential proteomic interaction partners for the homologous JCPyV agnoprotein (Saribas et al., 2019).

Presently, we favor a minimal model (Figure 9) in which mitochondrial targeting of N-terminal domain of

agnoprotein allows for embedding the central amphipathic helix into the outer leaflet of the outer mito-

chondrial membrane similar to other amphipathic proteins, where it remains available for LD-binding. In-

direct support comes from the recruitment of LD to the MTScox8-agno(20-66)mEGFP not observed for

MTScox8-mEGFP following transfection and oleate treatment. However, further studies are needed to

investigate whether or not this simple plug-and-play suffices to progressively leaking protons and causing

the loss of membrane potential, preventing TBK-1 activation, and targeting for p62/SQSTM1 mitophagy

(Jarsch et al., 2016; McMahon and Gallop, 2005; Shen et al., 2012).

In summary, our study provides important novel perspectives into how BKPyV replication is effectively facil-

itated in the critical late phase of the viral life cycle by the small accessory agnoprotein in at least three com-

plementary ways: (1) inactivating immune sensing and the inhibitory effects of interferon-b expression by

breakdown of the mitochondrial membrane potential; (2) enhancing the supply of biosynthetic building

blocks via increased autophagic flux, and (3) facilitating viral release of nuclear virions by fragmenting

the nucleus-surrounding mitochondrial network. Finally, our observations suggest that BKPyV agnoprotein

is not only important for immune escape and urinary shedding in healthy immunocompetent hosts but may

also facilitate the rapid cell-to-cell spread inside the renal tubules, and hence the progression to BKPyV

nephropathy in kidney transplant patients. These insights may help to design novel antiviral and immuni-

zation strategies and permit identifying novel markers readily distinguishing BKPyV nephropathy from allo-

graft rejection (Hirsch and Randhawa, 2019).
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Figure S1. Comparing the prediction of mitochondrial presequence BKPyV 
agnoprotein, point mutant derivatives and cytochrome c oxidase cox8, related to 
Figure 1. 

A mitochondrial presequence was predicted within the blue bar of the first 25 amino acids with 
a precision of 0.79 and a recall of 0.80 using the MitoFate prediction tool 
(http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi, accessed 26.02.2020) for the amino acids 
encoded in the AGN, agn25D39E, agn25L39L sequences and for the mitochondrial targeting 
sequence (MTS) of cytochrome c oxidase cox-8. 

 

http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi


 

 

Figure S2. BKPyV early and late viral protein expression in primary human RPTECs, 
related to Figure 1. Cells were infected with the indicated viral strains, fixed at 48 hpi, 
stained for confocal microscopy and z-stack acquisition (see Transparent Methods).  

(A) BKPyV Dun-AGN: DNA (blue), early viral LTag (red), late viral Vp1 (cyan), and 
agnoprotein (green). 
(B) BKPyV Dun-agn25D39E: DNA (blue), early viral LTag (red), late viral Vp1 (cyan), and 
agnoprotein (green). 
(C) BKPyV Dun-agn25D39E: DNA (blue), Tom20 (magenta), agnoprotein (green), PDI (red). 
Colocalizing voxels are shown in yellow. 



 

Figure S3. MTScox8-mEGFP and MTScox8-Agno(20-66)mEGFP colocalize to 
mitochondria, but only MTScox8- Agno(20-66)mEGFP disrupts mitochondrial network 
and binds to lipid droplets (LD), related to Figure 3.  
(A) Confocal images of transfected UTA-6 cells, transiently expressing MTScox8-mEGFP 
fusion protein at 24 hpt. DNA (blue), Tom20 (red), and mEGFP (green). 
(B) Confocal images of transfected Vero cells, transiently expressing MTScox8-mEGFP or 
MTScox8-Agno(20-66)mEGFP fusion proteins at 24 hpt. Left panels in the absence (- 
oleate): DNA (blue), Tom70 (red), and mEGFP (green). Right panels in the presence of 300 
µM oleate (+ oleate). DNA (blue), Tom70 (magenta), mEGFP (green), and LD (red). 
(C) Confocal images of transfected Vero cells, transiently expressing MTScox8- Agno(20-
66)mEGFP fusion proteins at 24 hpt in the presence of 300 µM oleate (+ oleate). DNA 
(blue), Tom70 (magenta), mEGFP (green), and LD (red). 



 

 

Figure S4. Characterization of Interferon- in wildtype and agnomutant BKPyV 
replication, related to Figure 4. 

(A) Interferon- expression is increased in mutant BKPyV Dun-agn25D39E and Dun-

ATCagn compared to the wildtype BKPyV Dun-AGN. 
RPTECS were transfected with genomic viral DNA of the indicated viral variants, and total 

RNA was analyzed at the indicated hours posttransfection (hpt) for LTAg and Interferon- 

expression levels, and the results normalized for 36 hpt (triplicates, mean ± SD, 2-Way 
ANOVA).   
(B) BKPyV-Dun-AGN replication is not affected by TBK-1 inhibition under conditions 
mediating partial rescue of BKPyV Dun-agn25E39D replication.  
RPTECS were infected with BKPyV Dun-AGN, the TBK-1 inhibitor BX795 or solvent were 
added at 36 hpi, and supernatant BKPyV loads were measured at 72 hpi, input virus load is 
indicated by the 24 hpi time-point (triplicates of two independent experiments, mean ± SD, 
unpaired parametric t-test). 
 



 

 
Figure S5. Phosphorylation of Drp1 at serine 616 (Drp1-S616) is increased in BKPyV 
variants expressing the amphipathic helix mutant (BKPyV Dun-agn25D39E) or no 
agnoprotein (BKPyV Dun-ATCagn), related to Figure 5. 
(A) RPTECs were infected with BKPyV-Dun-AGN or mock-treated and at 72 hpi, cell lysates 
were prepared using RIPA buffer, and analysed by SDS/PAGE and immunoblotting using 
antibodies to Drp1-total protein (red triangle), BKPyV LTag (green triangle), Vp1, and 
agnoprotein. 
(B) RPTECs were infected with Dun-agn25D39E, Dun-ATCagn, or mock-treated and confocal 
microscopy was performed for Vp1 (cyan), Drp1-S616 (magenta), MAVS (red), and DNA 
(blue). 



 
 
Figure S6. BKPyV Dun-AGN-replicating RPTECs show mitochondrial fragmentation 
and increased Tom20-p62/SQSTM1 colocalization compared to BKPyV Dun-
agn25D39E-replicating RPTECs, related to Figure 6. 
 
RPTECs were infected with BKPyV Dun-AGN or Dun-agn25D39E and at 72 hpi confocal 
microscopy was performed for Tom20 (red), agnoprotein (green), p62/SQSTM1 (cyan), and 
DNA (blue). Colocalizing voxels shown in yellow. 



 

Figure S7. UTA6-2C9 cells transfected with YFP-Parkin show parkin-positive 
mitophagy following CCCP treatment, but displacement by interjacent agnoprotein 
layer following agnoprotein expression, related to Figure 7. 
UTA6-2C9 cells harboring the tetracycline (tet)-off inducible BKPyV agnoprotein were 
transfected with yellow-fluorescence protein-Parkin construct, and confocal microscopy was 
performed at 48 hpt. BKPyV agnoprotein suppression (tet+) and expression (tet-) is 
indicated, respectively. CCCP treatment (10 µM) for 3 h served as positive control for parkin-
positive mitophagy. Confocal images of cells stained for DNA (blue), Tom20 (red), YFP-
parkin (yellow), and agnoprotein (green). Magnification and 3D-isosurface rendering 
showing agnoprotein layer (green) displacing YFP-parkin layer (yellow). Dashed circle marks 
area on mitochondria (red) where YFP-parkin (yellow) is displaced by agnoprotein (green). 



TRANSPARENT METHODS 

Detailed methods are provided belowand include the following: 

o KEY RESOURCES TABLE 

o EXPERIMENTAL MODEL 

• Cell lines and viruses 

o METHOD DETAILS 

• Reagents 

• Antibodies 

• Quantitative nucleic acid testing (QNAT) 

• Plasmids 

• Transfection 

• Electron microscopy 

• Immunofluorescence microscopy 

• Confocal Laser Scanning Microscopy (CLSM) 

• SDS/PAGE and immunoblotting  

• Enzyme-linked immunosorbent assays (ELISA)  

• Immunohistochemistry 
 

o QUANTIFICATION AND STATISTICAL ANALYSIS 

• Statistics 
 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rabbit polyclonal anti-BKPyV agno (clone 81038) (Rinaldo et al., 1998) N/A 

Rabbit polyclonal anti-aa52-66 BKPyV agno (clone 753) This paper (unpublished) N/A 

Rabbit polyclonal anti-aa40-53 BKPyV agno (clone 1163) This paper (unpublished) N/A 

Rabbit polyclonal anti-aa40-59 JCPyV agno (clone 1172) This paper (unpublished) N/A 

Rabbit polyclonal anti-BKPyV LTag (clone 81048) (Rinaldo et al., 1998) N/A 

Mouse monoclonal IgG2a anti-SV40 LTag Calbiochem Cat#PAb416 

Mouse monoclonal IgG1 anti-BKPyV Vp1 Abnova Cat#MAB3204-M19 

Rabbit polyclonal anti-SV40 Vp2/Vp3 Abcam Cat#ab53983 

Mouse monoclonal IgG2a anti-Tom20 Santa Cruz Cat#sc-17764 

Mouse monoclonal IgG2a anti-MAVS Santa Cruz Cat#sc-166583 

Mouse monoclonal IgG1 anti-IRF3 Novus Biological Cat#NBP1-04308 

Mouse monoclonal IgG1 anti-Interferon  pbl assay science Cat#21116-1 

Mouse monoclonal IgG1 anti-Interferon  pbl assay science Cat#21400-1 



Mouse monoclonal IgG1 anti-Interferon  receptor chain 2 pbl assay science Cat#21385-1 

Mouse monoclonal IgG1 anti-p62/SQSTM1 Santa Cruz Cat#sc-28359 

Guinea pig polyclonal anti-p62/SQSTM1 Progen Cat#GP62-C 

Mouse monoclonal IgG1 anti-PDI Enzo Life Cat#SPA-891 

Chicken polyclonal anti-Calreticulin Abcam Cat#ab14234 

Rabbit polyclonal phosphor-Drp1(Ser616) Cell Signalling Cat#3455 

Mouse monoclonal IgG1 anti-Drp1 Novus Biologicals Cat#23489 

Mouse monoclonal IgG2b anti-STING R&D Systems Cat#MAB7169 

Polyclonal rabbit anti-LC3A/B Cell Signalling Cat#4108S 

Mouse monoclonal IgG1 anti-beta Actin Abcam Cat#ab6276 

Mouse monoclonal IgG1 anti-Tubulin Invitrogen Cat#A-11126 

Mouse monoclonal IgG anti-GAPDH Santa Cruz Cat#sc-47724 

Goat anti-mouse IgG2a Alexa Fluor 568 Invitrogen Cat#A-21134 

Donkey anti-rabbit Alexa Fluor 647 Abcam Cat#ab150075 

Goat anti-mouse IgG1 Alexa Fluor 488 Invitrogen Cat#A-21121 

Goat anti-mouse IgG1 Alexa Fluor 647 Invitrogen Cat#A-21240 

Goat anti-mouse IgG2b Alexa Fluor 647 Invitrogen Cat#A-21242 

Goat anti-chicken Alexa Fluor 488 Invitrogen Cat#A-11039 

Goat anti-rabbit Alexa Fluor 488 Abcam Cat#ab150077 

Donkey anti-guinea pig IRDye 680RD LI-COR Cat#926-68077 

Donkey anti-mouse Alexa Fluor 680 Invitrogen Cat#A-10038 

Goat anti-rabbit IRDye 800CW LI-COR Cat#926-32211 

Donkey anti-goat IRDye 800CW LI-COR Cat#926-32214 

Bacterial and Virus Strains  

BKPyV Dunlop-AGN, GENBANK: V01108.1 (Henriksen et al., 2015) N/A 

SV40 (776 strain), GENBANK: AF316139.1 (Henriksen et al., 2016) N/A 

JCPyV Mad-4 ATCC Cat#ATCC VR-1583 

BKPyV-WW(1.4), GENBANK: AB211371.1 (Gosert et al., 2008) N/A 

Chemicals, Peptides, and Recombinant Proteins 

Oleate Sigma-Aldrich Cat#O1383 

JC-1 dye Invitrogen Cat#T3168 

Hoechst 33342 Invitrogen Cat#H21492 

LipidTox Red Molecular Probes H34476 

Poly(I:C) (HMW) Rhodamine InvivoGen Cat#tlrl-picr 

Poly(dA:dT) Rhodamine InvivoGen Cat#tlrl-patrh 

ViaFect Promega Cat#E4982 

Lipofectamine 3000 Thermo Fisher Cat#L3000001 



IFN-beta 1a pbl assay science Cat#11410-2 

BX795 Selleck Chemicals Cat#S1274 

CoCl2 Sigma-Aldrich Cat#C8661 

Tetracycline Sigma-Aldrich Cat#T7660 

CCCP Sigma-Aldrich Cat#C2759 

Pepstatin A1 Enzo Life Science Cat#ALX-260-085 

E64d Enzo Life Science Cat#BML-PI107 

Critical Commercial Assays 

VeriKine-HsTM Human IFN Beta Serum ELISA KIT pbl assay science Cat#41415 

High Capacity cDNA reverse transcript kit Applied Biosystems Cat#4368814 

QIAshredder kit Qiagen Cat#79654 

RNeasy Mini kit Qiagen Cat#74106 

Human Interferon b1 assay Thermo Fisher Scientific Cat#4331182 

Human-HPRT1 endogenous control Applied Biosystems Cat#4333768F 

Experimental Models: Cell Lines 

RPTEC (Lot: 5111) ScienCell 4100 

CV-1 ATCC ATCC CCL-70 

SVG-A (Henriksen et al., 2014) N/A 

Vero E6 ATCC ATCC No. CRL-1586 

UTA6-2C9 (Cioni et al., 2013) N/A 

Oligonucleotides 

SMARTpool siGENOME SQSTM1 siRNA Dharmacon Cat#M-010230-00-0005 

siGENOME Non-Targeting siRNA #2 Dharmacon Cat#D-001210-02-05 

BKPyV qPCR primer F: AGCAGGCAAGGGTTCTATTACTAAAT (Hirsch et al., 2016) N/A 

BKPyV qPCR primer R: GAAGCAACAGCAGATTCTCAACA (Hirsch et al., 2016) N/A 

BKPyV qPCR probe: FAM-

AAGACCCTAAAGACTTTCCCTCTGATCTACACCAGTTT-TAMRA 

(Hirsch et al., 2016) N/A 

Recombinant DNA 

Agno(1-66)-mEGFP (Unterstab et al., 2010) N/A 

Agno(1-53)-mEGFP (Unterstab et al., 2010) N/A 

Agno(1-20)-mEGFP (Unterstab et al., 2010) N/A 

Agno(20-66)-mEGFP (Unterstab et al., 2010) N/A 

Agno(42-66)-mEGFP (Unterstab et al., 2010) N/A 

MTScox8-Agno(20-66)-mEGFP This paper (unpublished) N/A 

MTScox8-mEGFP This paper (unpublished) N/A 

mCherry-mEGFP-OMP25TM reporter plasmid (Bhujabal et al., 2017) N/A 



pUC57-BKPyV-Dun (Unterstab et al., 2010) N/A 

pUC57-BKPyV-Dun-agn25D39E (Unterstab et al., 2010) N/A 

pUC57-BKPyV-Dun-ATCagn This work N/A 

YFP-Parkin (Narendra et al., 2010) Addgene Plasmid #23955 

Software and Algorithms 

GraphPad Prism software (version 8.1.0) GraphPad https://www.graphpad.com 

Fiji Fiji https://fiji.sc 

Huygens professional software (version 19.10) Scientific Volume Imaging https://svi.nl/Huygens-

Professional 

IMARIS (version 9.3.1) Bitplane AG https://imaris.oxinst.com/ 

 

 

EXPERIMENTAL MODEL 

 

• Cell lines and viruses 

Primary human renal proximal tubular epithelial cells (RPTEC Lot:5111; 4100, ScienCell) 

were maintained in epithelial cell medium (EpiCM; 4101, ScienCell) and passaged with 

Trypsin (T3924, Sigma-Aldrich) and Defined Trypsin Inhibitor (DTI; R007100, Invitrogen). 

UTA6-2C9 cells stably transfected with the AGN gene under a tetracyclin-dependent 

suppressor (tet-off) have been described previously (Cioni et al., 2013). The African green 

monkey kidney cell line CV-1 (ATCC CCL-70) was cultured in Dulbecco’s modified Eagle’s 

medium (D5671, Sigma-Aldrich) supplemented with 5% FBS (S0115, Biochrom) and 2 mM 

Stable Glutamine (5-10K50-H, Amimed). The SVG-A cells (generous gift from C. Hanssen-

Rinaldo) were kept in Minimum Essential Medium (M2279, Sigma-Aldrich) including 10% 

FBS. One day after seeding, RPTEC were infected with BKPyV Dunlop at a MOI of 1.0 

determined by nuclear LTag staining on RPTECs. The infection was carried out for 2 h 

before surplus infectious units were removed and EpiCM containing 0.5% FCS was added. 

One day after seeding, CV-1 cells were infected with SV40 (776 strain) at a MOI of 0.5-1.0 

pfu/cell using a supernatant from SV40-infected BS-C-1 cells. The infection was carried out 

for 2 h before surplus infectious units were removed and complete medium added. One day 



after seeding, SVG-A cells were infected with JCPyV Mad-4 using a supernatant from 

JCPyV Mad-4 transfected COS-7 cells. The infection was carried out for 2 h before surplus 

infectious units were removed and complete medium added.  

 

METHOD DETAILS 

• Reagents 

The following reagents were used (Table 1). Nuclei were stained with Hoechst 33342 

(Invitrogen, H21492). To measure mitochondrial membrane potential, cells were stained with 

5 µM JC-1 dye (T3168, Molecular Probes) for 30 minutes at 37°C, washed twice with D-PBS 

for 5 min, followed by addition of live cell imaging solution (A14291DJ, Thermo Fisher). The 

cells were illuminated at 488 nm and the emission was measured between 515/545 nm and 

575/625 nm with Mithras2 (Berthold Technologies GmbH & Co. KG, Bad Wildbad Germany) 

or the Safire II plate reader (Tecan, Maennedorf, Switzerland). Mock infected- or no 

agnoprotein-expressing cells were set to 100%. To induce LDs, culture medium was 

supplemented with 300 μM oleate (O1383, Sigma-Aldrich) bound to essentially fatty acid 

free bovine albumin (A6003; Sigma-Aldrich) as described (Unterstab et al., 2010). Poly(I:C) 

(HMW) Rhodamine (tlrl-picr, InvivoGen) or Poly(dA:dT) Rhodamine (tlrl-patrh, InvivoGen) 

was transfected with ViaFect™ Transfection Reagent (E4982, Promega) at a reagent: DNA 

ratio of 3:1 according to manufacturer’s instructions. As TBK-1 inhibitor BX-795, (S1274, 

Selleck Chemicals) was used. BX-795 stock was diluted in DMSO and a stock concentration 

of 10 mM was generated. CCCP powder (C2759, Sigma-Aldrich) was diluted in DMSO to 

generate a stock concentration of 100 mM. The protease inhibitors pepstatin A1 (ALX-260-

085, Enzo Life Science) and E64d (BML-PI107, Enzo Life Science) were diluted to generate 

a 10 mg/mL stock concentration in DMSO and Ethanol, respectively.  

 

• Antibodies 

Goat anti-mouse IgG2a Alexa Fluor 568 (A21134, Invitrogen), donkey anti-rabbit Alexa Fluor 

647 (Abcam, ab150075), goat anti-mouse IgG1 Alexa Fluor 488 (A-21121, Molecular 



Probe), goat anti-mouse IgG1 Alexa Fluor 647 (A-21240, Invitrogen), goat anti-mouse IgG2b 

Alexa Fluor 647 (A21242, Molecular Probes), goat anti-chicken Alexa Fluor 488 (A11039, 

Molecular Probes), goat anti-rabbit Alexa Fluor 488 (ab150077, Abcam), donkey anti-guinea 

pig IRDye 680RD (926-68077, LI-COR) donkey anti-mouse Alexa Fluor 680 (A10038, 

Invitrogen), goat anti-rabbit IRDye 800CW (926-32211, LI-COR), donkey anti-goat IRDye 

800CW (926-32214, LI-COR), polyclonal rabbit anti-aa40-59 JCPyV agno-sera (generated 

on request by Eurogentec, Belgium), polyconal anti-BKPyV agnosera (generous gift from C. 

Hanssen-Rinaldo, clone 81038), polyclonal rabbit anti-aa52-66 BKPyV agno-sera 

(generated on request by Eurogentec, Belgium, clone 753), polyclonal rabbit anti-aa40-53 

BKPyV agno-sera (generated on request by Eurogentec, clone 1163), polyclonal rabbit anti-

BKPyV LTag sera (generous gift from C. Hanssen-Rinaldo, clone81048), mouse monoclonal 

IgG2a anti-SV40-LTag cross-reacting with BKPyV LTag (PAb416, Calbiochem), mouse 

monoclonal IgG1 anti-BKPyV Vp1 (MAB3204-M19, Abnova), polyclonal rabbit anti-SV40 

Vp2/Vp3 (ab53983, Abcam), mouse monoclonal IgG2a anti-Tom20 (sc-17764, Santa Cruz), 

mouse monoclonal IgG2a anti-MAVS (sc-166583, Santa Cruz), mouse monoclonal IgG1 

anti-IRF3 (NBP1-04308, Novus Biologicals), mouse monoclonal IgG1 anti-Interferon  

(21116-1, pbl assay science), mouse monoclonal IgG1 anti-Interferon  (21400-1, pbl assay 

science), mouse monoclonal IgG2a anti-Interferon    receptor chain 2 (21385-1, pbl assay 

science), mouse monoclonal IgG1 anti-p62/SQSTM1 (sc-28359, Santa Cruz), polyclonal 

guinea pig anti-p62/SQSTM1 (GP62-C, Progen), mouse monoclonal IgG1 anti-PDI (SPA-

891, Enzo Life Science), polyclonal chicken anti-Calreticulin (ab14234, Abcam), polyclonal 

rabbit anti-Phospho-Drp1-(Ser616) (3455, Cell Signalling), mouse monoclonal IgG1 anti-

Drp1 (NBP2-23489, Novus Biologicals), mouse monoclonal IgG2b anti-STING (MAB7169, 

R&D Systems), polyclonal rabbit anti-LC3A/B (4108S, Cell Signalling), mouse monoclonal 

IgG1 anti-beta Actin (ab6276, Abcam), mouse monoclonal IgG1 and anti-Tubulin (A-11126, 

Molecular Probes), mouse monoclonal IgG1 anti-GAPDH (sc-47724, Santa Cruz). 

 



• Quantitative nucleic acid testing (QNAT) 

BKPyV loads were quantified form cell culture supernatant as described previously (Hirsch 

et al., 2016). To quantify interferon- transcripts, cellular RNA was extracted using the 

QIAshredder kit and the RNeasy Mini kit (79654 and 74106, Qiagen). The cDNA was 

generated using High Capacity cDNA reverse transcript kit (4368814, Applied Biosystems) 

and RT-QNAT was performed on a Veriti 96 Well Thermal Cycler (Applied Biosystems, 

Lincoln, USA) using a human interferon b1 assay (4331182, Thermo Fisher Scientific) and 

human HPRT1 endogenous control (4333768F, Applied Biosystems). LTag transcripts were 

measured as described (Bernhoff et al., 2008). 

 

• Plasmids 

The different agnoprotein constructs and the plasmids containing the full genomes of BKPyV 

Dun-AGN, Dun-agn25D39E have been described in (Unterstab et al., 2010). The plasmid 

harboring the BKPyV Dun-ATCagn is a derivate of the DUN-AGN constructed by site-

directed mutagenesis. Mitochondrial membrane localization signal (MTS) of cytochrome c 

oxidase cox8 was N-terminally fused to agno(20-66)-EGFP and named MTScox8-Agno(20-

66). The mCherry-mEGFP-OMP25TM tandem tag mitophagy reporter was a generous gift of 

Professor Terje Johansen, UiT The Arctic University of Norway, Tromsø, Norway. The YFP-

Parkin plasmid was a gift from Richard Youle (Addgene plasmid # 23955; 

http://n2t.net/addgene:23955 ; RRID:Addgene_23955)(Narendra et al., 2008). 

 

• Transfection 

Transfection of BKPyV genomic DNA or plasmids containing the agnoprotein into RPTECs 

or UTA6 cells was performed at 90-95% confluency using ViaFect™ Transfection Reagent 

(E4982, Promega) at a reagent: DNA ratio of 3:1 according to manufacturer’s instructions. At 

24 h post-transfection, medium was replaced with EpiCM with 0.5% FBS and DMEM high 

Glucose containing 5% FBS (S0115, Biochrom AG), respectively. For p62/SQSTM1 knock-



down experiments the SMARTpool siGENOME SQSTM1 siRNA (M-010230-00-0005, 

Dharmacon) and siGENOME Non-Targeting siRNA #2 (D-001210-02-05, Dharmacon) were 

transfected with Lipofectamine 3000 Reagent (L3000001, Thermo Fisher) according to 

manufacturer’s instructions, using 100 nM siRNA. 

 

• Electron microscopy 

Samples were rinsed with ice-cold cacodylate 0.1 M pH 7.4 and fixed with 2% 

paraformaldehyde, 2.5% glutaraldehyde (01909; Polysciences) in 0.1 M cacodylate pH 7.4. 

Samples were washed again with cacodylate buffer (0.1 M, pH 7.0 and postfixed in 1% 

osmium tetroxide and 1.5% potassium ferrocyanide in cacodylate buffer (0.1 M pH 7.4), 

followed by a 1% osmium in cacolylate buffer treatment. Sections were washed in distilled 

water. Samples were stained with 1% uracil acetate in water and rinsed once with H2O. 

Samples were de-hydrated in graded alcohol series and embedded in Epon. The images 

were taken with a TecnaiTm Spirit TEM (Fei, Thermo Fisher). Biopsy specimens were 

processed and analyzed as described previously (Drachenberg et al., 1999). 

 

• Immunofluorescence microscopy 

Microscopy was performed using an epifluorescence microscope (model eclipseE800; 

Nikon, Tokio, Japan) equipped with suitable filters and a digital camera (Hamamatsu, Tokio, 

Japan). The pictures were analyzed by Fiji (U.S. National Institutes of Health, Bethesda, 

MD) as described previously (Hirsch et al., 2016). 

 

• Confocal Laser Scanning Microscopy (CLSM) 

Confocal pictures were taken with a LeicaSP5 (Leica, Wetzlar, Germany) with a 63x Plan 

Apochromat/NA1.4 oil objective and pictures were further processed by Fiji. Z-stacks were 

acquired with a 63x Plan Apochromat/NA1.4 oil objective and the requirements of the 

Nyquist theorem were fulfilled, with voxel xyz size of 45, 45, 150 nm, respectively. To 

exclude the possibility of channel crosstalk, images were acquired sequentially using the 



multi-track mode. Deconvolution and visualization were done essentially as described in 

(Unterstab et al., 2010). For deconvolution, the Huygens professional software (Scientific 

Volume Imaging, Hilversum, the Netherlands) was used, applying the Classic Maximum 

Likelihood Estimation Mode (CMLE) using a theoretical point spread function (PSF) and 

IMARIS (Bitplane AG, Zurich, Switzerland) was used for visualization, colocalization 

analyzes, and quantification. 

 

• SDS/PAGE and immunoblotting  

Cells were lysed with RIPA buffer: 10 mM Tris/HCl pH 7.5; 150 mM NaCl; 0.5 mM EDTA. 

1.0% Nonidet P-40 and proteinase inhibitor (04693132001, Roche). Cell lysates were 

separated by Mini Protean TGX Gradient Gel 4-20% (4561095, Bio-Rad) and 

electrotransferred onto 0.45-μm Immobilon-FL polyvinylidene difluoride (PVDF) membrane 

(IPFL00010, Millipore/Merck). Membranes were blocked with Odyssey blocking buffer (927-

40000, LI-COR) diluted 1:2 in Tris-buffered saline (TBS). Primary and secondary antibodies 

were diluted in Odyssey blocking buffer diluted 1:2 in TBS-0.1% Tween 20 and incubated at 

RT for 1 h (or o/n at 4°C) or 45 min, respectively. Washing in between was performed with 

TBS–0.1% Tween 20. For the detection of p62/SQSTM1, cells were trypsinized and 2.0x104 

cells were resuspended and lysed per 10µL 1x Laemmli Sample Buffer (161-0747, Bio-Rad). 

10µL cell lysate was separated by SDS-PAGE, electrotransfered onto 0.2 µm Immobilon®-

PSQ PVDF membrane (ISEQ00010, Millipore/Merck) and immunoblotting was done 

essentially as described above, but 3.0% milk (T145.2, Roth) in TBS-0.1% Tween 20 was 

used instead of the Odyseey blocking buffer. Detection and quantification were done with 

the Odyssey CLx system (LI-COR, Lincoln, USA). 

 

• Enzyme-linked immunosorbent assays (ELISA)  

The ELISA was performed using the VeriKine-HsTM Human IFN Beta Serum ELISA KIT 

(41415, pbl assay science). The recommended enhanced protocol form improved 



performance in serum evolution was used. Samples were measured by Safire II plate reader 

in triplicates and the standard curve was generated using GraphPad Prism software (v8.1.0). 

 

• Immunohistochemistry 

After deparaffinization samples were heated for 30 min in the microwave at 98°C in citrate-

buffer (pH 6.0) and cooled down for 30 min. Samples were washed 15min with D-PBS and 

15 min in 10 mM D-PBS + 0.1% Tween20 (93773, Fluka). Samples were blocked with 5% 

normal goat serum (50197Z, Thermo Fisher), for 1 h at RT. Primary antibodies were diluted 

in 3% BSA/PBS (A9647, Sigma-Aldrich) and samples were incubated over night at 4°C 

followed by 25min washes in 10 mM PBS. Secondary antibodies were diluted in 3% 

BSA/PBS containing 1 µg/ml Hoechst 33342 (B2261, Sigma-Aldrich), followed by 25 min 

washes in 10 mM PBS. Samples were mounted with Prolong Gold (P36935, Thermo 

Fisher). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

All results were analyzed by GraphPad Prism software (version 8.1.0). Level of significant 

variability between groups was tested as indicated in figure legends, using paired t-test or 

two-way analyses of variance (ANOVA), respectively. Significant differences were assumed 

for P values of <0.05. Unless indicated differently, groups were plotted as mean values and 

standard deviation (SD). 
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